Abstract

Optical spectroscopy in highly turbid liquid material is often restricted by simultaneous occurrence of absorption and scattering of light. Photon Density Wave (PDW) spectroscopy is one of the very few, yet widely unknown, technologies for the independent quantification of these two optical processes. Here, a concise overview about modern PDW spectroscopy is given, including all necessary equations concerning the optical description of the investigated material, dependent light scattering, particle sizing, and PDW spectroscopy itself. Additionally, it is shown how the ambiguity in particle sizing, arising from Mie theory, can be correctly solved. Due to its high temporal resolution, its applicability to highest particle concentrations, and its purely fiber-optical probe, PDW spectroscopy possesses all fundamental characteristics for optical in-line process analysis. Several application examples from the chemical industry are presented.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Fishkin, S. Fantini, M. J. vande Ven, and E. Gratton, “Gigahertz photon density waves in a turbid medium: theory and experiments,” Phys. Rev. E 53, 2307–2319 (1996).
    [CrossRef]
  2. Z. Sun, Y. Huang, and E. M. Sevick-Muraca, “Precise analysis of frequency domain migration measurement for characterization of concentrated colloidal suspension,” Rev. Sci. Instrum. 73, 383–393 (2002).
    [CrossRef]
  3. O. Reich, H.-G. Löhmannsröben, and F. Schael, “Optical sensing with photon density waves: investigation of model media,” Phys. Chem. Chem. Phys. 5, 5182–5187 (2003).
    [CrossRef]
  4. B. Cletus, R. Künnemeyer, P. Martinsen, and V. A. McGlone, “Temperature-dependent optical properties of Intralipid measured with frequency-domain photon-migration spectroscopy,” J. Biomed. Opt. 15, 017003–017006 (2010).
    [CrossRef]
  5. J. Tanguchi, H. Murata, and Y. Okamura, “Analysis of aggregation and dispersion states of small particles in concentrated suspension by using diffused photon density wave spectroscopy,” Colloids Surf. B 76, 137–144 (2010).
    [CrossRef]
  6. R. Hass and O. Reich, “Photon Density Wave spectroscopy for dilution-free sizing of highly concentrated nanoparticles during starved-feed polymerization,” Chem. Phys. Chem. 12, 2572–2575 (2011).
    [CrossRef]
  7. S. Vargas Ruiz, R. Hass, and O. Reich, “Optical monitoring of milk fat phase transition within homogenized fresh milk by Photon Density Wave spectroscopy,” Int. Dairy J. 26, 120–126 (2012).
    [CrossRef]
  8. V. Kholodovych, W. Welsh, and J. E. Mark, eds., Physical Properties of Polymers Handbook (Springer, 2007).
  9. A. H. Harvey, J. S. Gallagher, and J. M. H. Levelt Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761–774 (1998).
    [CrossRef]
  10. N. Sultanova, S. Kasarova, and I. Nikolov, “Dispersion properties of optical polymers,” Acta Phys. Pol. A 116, 585–587 (2009).
  11. J. M. Beechem, “Global analysis of biochemical and biophysical data,” Methods Enzymol. 210, 37–54 (1992).
    [CrossRef]
  12. W. Raith, Lehrbuch der Experimentalphysik, Band 2, Elektromagnetismus (Walter de Gruyter, 2006).
  13. P. W. Atkins, Physical Chemistry (Oxford University, 1998).
  14. N. G. Sultanova, I. D. Nikolov, and C. D. Ivanov, “Measuring the refractometric characteristics of optical plastics,” Opt. Quantum Electron. 35, 21–34 (2003).
    [CrossRef]
  15. L. Bressel, R. Hass, and O. Reich, “Particle sizing in highly turbid dispersions by Photon Density Wave spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer (to be published), http://dx.doi:.org/10.1016/j.jqsrt.2012.11.031 .
  16. D. J. Durian, “The diffusion coefficient depends on absorption,” Opt. Lett. 23, 1502–1504 (1998).
    [CrossRef]
  17. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969).
  18. S. M. Richter, R. R. Shinde, G. V. Balgi, and E. M. Sevick-Muraca, “Particle sizing using frequency domain photon migration,” Part. Part. Syst. Charact. 15, 9–15 (1998).
    [CrossRef]
  19. G. Mie, “Beträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 25, 377–445 (1908).
    [CrossRef]
  20. A. Vrij, E. A. Nieuwenhuis, H. M. Fijnaut, and W. G. M. Agterof, “Application of modern concepts in liquid-state theory to concentrated particle dispersions,” Faraday Discuss. 65, 101–113 (1978).
    [CrossRef]
  21. P. M. Saulnier, M. P. Zinkin, and G. H. Watson, “Scatterer correlation effects on photon transport in dense random media,” Phys. Rev. B 42, 2621–2623 (1990).
    [CrossRef]
  22. S. M. Richter and E. M. Sevick-Muraca, “Characterization of concentrated colloidal suspensions using time-dependent photon migration measurements,” Colloids Surf. A 172, 163–173 (2000).
    [CrossRef]
  23. R. J. Hunter, Foundations of Colloid Science, Volume II(Oxford University, 1995).
  24. D. R. Lide and W. M. Haynes, CRC Handbook of Chemistry and Physics, 90th edition (CRC Press, 2009).
  25. K. Shinoda and H. Saito, “The stability of o/w type emulsions as functions of temperature and the HLB of emulsifiers: The emulsification by PIT-method,” J. Colloid Interface Sci. 30, 258–263 (1969).
    [CrossRef]
  26. P. Izquierdo and J. Esquena, “Phase behavior and nano-emulsion formation by the Phase Inversion Temperature method,” Langmuir 20, 6594–6598 (2004).
    [CrossRef]
  27. L. Bressel, R. Hass, M. Münzberg, and O. Reich, “In-line characterization of highly concentrated industrial dispersions by Photon Density Wave spectroscopy,” in Applied Industrial Optics: Spectroscopy, Imaging, & Metrology (AIO) (Optical Society of America, 2012), paper ATu1A.3.
  28. H. Domininghaus, Kunststoffe: Eigenschaften und Anwendungen, P. Elsner, P. Eyerer, and T. Hirth, eds. (Springer, 2008).
  29. R. M. Waxler, D. Horowitz, and A. Feldman, “Optical and physical parameters of Plexiglas 55 and Lexan,” Appl. Opt. 18, 101–104 (1979).
    [CrossRef]
  30. C. S. Chern, “Emulsion polymerization mechanisms and kinetics,” Prog. Polym. Sci. 31, 443–486 (2006).
    [CrossRef]

2012

S. Vargas Ruiz, R. Hass, and O. Reich, “Optical monitoring of milk fat phase transition within homogenized fresh milk by Photon Density Wave spectroscopy,” Int. Dairy J. 26, 120–126 (2012).
[CrossRef]

2011

R. Hass and O. Reich, “Photon Density Wave spectroscopy for dilution-free sizing of highly concentrated nanoparticles during starved-feed polymerization,” Chem. Phys. Chem. 12, 2572–2575 (2011).
[CrossRef]

2010

B. Cletus, R. Künnemeyer, P. Martinsen, and V. A. McGlone, “Temperature-dependent optical properties of Intralipid measured with frequency-domain photon-migration spectroscopy,” J. Biomed. Opt. 15, 017003–017006 (2010).
[CrossRef]

J. Tanguchi, H. Murata, and Y. Okamura, “Analysis of aggregation and dispersion states of small particles in concentrated suspension by using diffused photon density wave spectroscopy,” Colloids Surf. B 76, 137–144 (2010).
[CrossRef]

2009

N. Sultanova, S. Kasarova, and I. Nikolov, “Dispersion properties of optical polymers,” Acta Phys. Pol. A 116, 585–587 (2009).

2006

C. S. Chern, “Emulsion polymerization mechanisms and kinetics,” Prog. Polym. Sci. 31, 443–486 (2006).
[CrossRef]

2004

P. Izquierdo and J. Esquena, “Phase behavior and nano-emulsion formation by the Phase Inversion Temperature method,” Langmuir 20, 6594–6598 (2004).
[CrossRef]

2003

N. G. Sultanova, I. D. Nikolov, and C. D. Ivanov, “Measuring the refractometric characteristics of optical plastics,” Opt. Quantum Electron. 35, 21–34 (2003).
[CrossRef]

O. Reich, H.-G. Löhmannsröben, and F. Schael, “Optical sensing with photon density waves: investigation of model media,” Phys. Chem. Chem. Phys. 5, 5182–5187 (2003).
[CrossRef]

2002

Z. Sun, Y. Huang, and E. M. Sevick-Muraca, “Precise analysis of frequency domain migration measurement for characterization of concentrated colloidal suspension,” Rev. Sci. Instrum. 73, 383–393 (2002).
[CrossRef]

2000

S. M. Richter and E. M. Sevick-Muraca, “Characterization of concentrated colloidal suspensions using time-dependent photon migration measurements,” Colloids Surf. A 172, 163–173 (2000).
[CrossRef]

1998

S. M. Richter, R. R. Shinde, G. V. Balgi, and E. M. Sevick-Muraca, “Particle sizing using frequency domain photon migration,” Part. Part. Syst. Charact. 15, 9–15 (1998).
[CrossRef]

A. H. Harvey, J. S. Gallagher, and J. M. H. Levelt Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761–774 (1998).
[CrossRef]

D. J. Durian, “The diffusion coefficient depends on absorption,” Opt. Lett. 23, 1502–1504 (1998).
[CrossRef]

1996

J. B. Fishkin, S. Fantini, M. J. vande Ven, and E. Gratton, “Gigahertz photon density waves in a turbid medium: theory and experiments,” Phys. Rev. E 53, 2307–2319 (1996).
[CrossRef]

1992

J. M. Beechem, “Global analysis of biochemical and biophysical data,” Methods Enzymol. 210, 37–54 (1992).
[CrossRef]

1990

P. M. Saulnier, M. P. Zinkin, and G. H. Watson, “Scatterer correlation effects on photon transport in dense random media,” Phys. Rev. B 42, 2621–2623 (1990).
[CrossRef]

1979

1978

A. Vrij, E. A. Nieuwenhuis, H. M. Fijnaut, and W. G. M. Agterof, “Application of modern concepts in liquid-state theory to concentrated particle dispersions,” Faraday Discuss. 65, 101–113 (1978).
[CrossRef]

1969

K. Shinoda and H. Saito, “The stability of o/w type emulsions as functions of temperature and the HLB of emulsifiers: The emulsification by PIT-method,” J. Colloid Interface Sci. 30, 258–263 (1969).
[CrossRef]

1908

G. Mie, “Beträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 25, 377–445 (1908).
[CrossRef]

Agterof, W. G. M.

A. Vrij, E. A. Nieuwenhuis, H. M. Fijnaut, and W. G. M. Agterof, “Application of modern concepts in liquid-state theory to concentrated particle dispersions,” Faraday Discuss. 65, 101–113 (1978).
[CrossRef]

Atkins, P. W.

P. W. Atkins, Physical Chemistry (Oxford University, 1998).

Balgi, G. V.

S. M. Richter, R. R. Shinde, G. V. Balgi, and E. M. Sevick-Muraca, “Particle sizing using frequency domain photon migration,” Part. Part. Syst. Charact. 15, 9–15 (1998).
[CrossRef]

Beechem, J. M.

J. M. Beechem, “Global analysis of biochemical and biophysical data,” Methods Enzymol. 210, 37–54 (1992).
[CrossRef]

Bressel, L.

L. Bressel, R. Hass, and O. Reich, “Particle sizing in highly turbid dispersions by Photon Density Wave spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer (to be published), http://dx.doi:.org/10.1016/j.jqsrt.2012.11.031 .

L. Bressel, R. Hass, M. Münzberg, and O. Reich, “In-line characterization of highly concentrated industrial dispersions by Photon Density Wave spectroscopy,” in Applied Industrial Optics: Spectroscopy, Imaging, & Metrology (AIO) (Optical Society of America, 2012), paper ATu1A.3.

Chern, C. S.

C. S. Chern, “Emulsion polymerization mechanisms and kinetics,” Prog. Polym. Sci. 31, 443–486 (2006).
[CrossRef]

Cletus, B.

B. Cletus, R. Künnemeyer, P. Martinsen, and V. A. McGlone, “Temperature-dependent optical properties of Intralipid measured with frequency-domain photon-migration spectroscopy,” J. Biomed. Opt. 15, 017003–017006 (2010).
[CrossRef]

Domininghaus, H.

H. Domininghaus, Kunststoffe: Eigenschaften und Anwendungen, P. Elsner, P. Eyerer, and T. Hirth, eds. (Springer, 2008).

Durian, D. J.

Esquena, J.

P. Izquierdo and J. Esquena, “Phase behavior and nano-emulsion formation by the Phase Inversion Temperature method,” Langmuir 20, 6594–6598 (2004).
[CrossRef]

Fantini, S.

J. B. Fishkin, S. Fantini, M. J. vande Ven, and E. Gratton, “Gigahertz photon density waves in a turbid medium: theory and experiments,” Phys. Rev. E 53, 2307–2319 (1996).
[CrossRef]

Feldman, A.

Fijnaut, H. M.

A. Vrij, E. A. Nieuwenhuis, H. M. Fijnaut, and W. G. M. Agterof, “Application of modern concepts in liquid-state theory to concentrated particle dispersions,” Faraday Discuss. 65, 101–113 (1978).
[CrossRef]

Fishkin, J. B.

J. B. Fishkin, S. Fantini, M. J. vande Ven, and E. Gratton, “Gigahertz photon density waves in a turbid medium: theory and experiments,” Phys. Rev. E 53, 2307–2319 (1996).
[CrossRef]

Gallagher, J. S.

A. H. Harvey, J. S. Gallagher, and J. M. H. Levelt Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761–774 (1998).
[CrossRef]

Gratton, E.

J. B. Fishkin, S. Fantini, M. J. vande Ven, and E. Gratton, “Gigahertz photon density waves in a turbid medium: theory and experiments,” Phys. Rev. E 53, 2307–2319 (1996).
[CrossRef]

Harvey, A. H.

A. H. Harvey, J. S. Gallagher, and J. M. H. Levelt Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761–774 (1998).
[CrossRef]

Hass, R.

S. Vargas Ruiz, R. Hass, and O. Reich, “Optical monitoring of milk fat phase transition within homogenized fresh milk by Photon Density Wave spectroscopy,” Int. Dairy J. 26, 120–126 (2012).
[CrossRef]

R. Hass and O. Reich, “Photon Density Wave spectroscopy for dilution-free sizing of highly concentrated nanoparticles during starved-feed polymerization,” Chem. Phys. Chem. 12, 2572–2575 (2011).
[CrossRef]

L. Bressel, R. Hass, M. Münzberg, and O. Reich, “In-line characterization of highly concentrated industrial dispersions by Photon Density Wave spectroscopy,” in Applied Industrial Optics: Spectroscopy, Imaging, & Metrology (AIO) (Optical Society of America, 2012), paper ATu1A.3.

L. Bressel, R. Hass, and O. Reich, “Particle sizing in highly turbid dispersions by Photon Density Wave spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer (to be published), http://dx.doi:.org/10.1016/j.jqsrt.2012.11.031 .

Haynes, W. M.

D. R. Lide and W. M. Haynes, CRC Handbook of Chemistry and Physics, 90th edition (CRC Press, 2009).

Horowitz, D.

Huang, Y.

Z. Sun, Y. Huang, and E. M. Sevick-Muraca, “Precise analysis of frequency domain migration measurement for characterization of concentrated colloidal suspension,” Rev. Sci. Instrum. 73, 383–393 (2002).
[CrossRef]

Hunter, R. J.

R. J. Hunter, Foundations of Colloid Science, Volume II(Oxford University, 1995).

Ivanov, C. D.

N. G. Sultanova, I. D. Nikolov, and C. D. Ivanov, “Measuring the refractometric characteristics of optical plastics,” Opt. Quantum Electron. 35, 21–34 (2003).
[CrossRef]

Izquierdo, P.

P. Izquierdo and J. Esquena, “Phase behavior and nano-emulsion formation by the Phase Inversion Temperature method,” Langmuir 20, 6594–6598 (2004).
[CrossRef]

Kasarova, S.

N. Sultanova, S. Kasarova, and I. Nikolov, “Dispersion properties of optical polymers,” Acta Phys. Pol. A 116, 585–587 (2009).

Kerker, M.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969).

Künnemeyer, R.

B. Cletus, R. Künnemeyer, P. Martinsen, and V. A. McGlone, “Temperature-dependent optical properties of Intralipid measured with frequency-domain photon-migration spectroscopy,” J. Biomed. Opt. 15, 017003–017006 (2010).
[CrossRef]

Levelt Sengers, J. M. H.

A. H. Harvey, J. S. Gallagher, and J. M. H. Levelt Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761–774 (1998).
[CrossRef]

Lide, D. R.

D. R. Lide and W. M. Haynes, CRC Handbook of Chemistry and Physics, 90th edition (CRC Press, 2009).

Löhmannsröben, H.-G.

O. Reich, H.-G. Löhmannsröben, and F. Schael, “Optical sensing with photon density waves: investigation of model media,” Phys. Chem. Chem. Phys. 5, 5182–5187 (2003).
[CrossRef]

Martinsen, P.

B. Cletus, R. Künnemeyer, P. Martinsen, and V. A. McGlone, “Temperature-dependent optical properties of Intralipid measured with frequency-domain photon-migration spectroscopy,” J. Biomed. Opt. 15, 017003–017006 (2010).
[CrossRef]

McGlone, V. A.

B. Cletus, R. Künnemeyer, P. Martinsen, and V. A. McGlone, “Temperature-dependent optical properties of Intralipid measured with frequency-domain photon-migration spectroscopy,” J. Biomed. Opt. 15, 017003–017006 (2010).
[CrossRef]

Mie, G.

G. Mie, “Beträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 25, 377–445 (1908).
[CrossRef]

Münzberg, M.

L. Bressel, R. Hass, M. Münzberg, and O. Reich, “In-line characterization of highly concentrated industrial dispersions by Photon Density Wave spectroscopy,” in Applied Industrial Optics: Spectroscopy, Imaging, & Metrology (AIO) (Optical Society of America, 2012), paper ATu1A.3.

Murata, H.

J. Tanguchi, H. Murata, and Y. Okamura, “Analysis of aggregation and dispersion states of small particles in concentrated suspension by using diffused photon density wave spectroscopy,” Colloids Surf. B 76, 137–144 (2010).
[CrossRef]

Nieuwenhuis, E. A.

A. Vrij, E. A. Nieuwenhuis, H. M. Fijnaut, and W. G. M. Agterof, “Application of modern concepts in liquid-state theory to concentrated particle dispersions,” Faraday Discuss. 65, 101–113 (1978).
[CrossRef]

Nikolov, I.

N. Sultanova, S. Kasarova, and I. Nikolov, “Dispersion properties of optical polymers,” Acta Phys. Pol. A 116, 585–587 (2009).

Nikolov, I. D.

N. G. Sultanova, I. D. Nikolov, and C. D. Ivanov, “Measuring the refractometric characteristics of optical plastics,” Opt. Quantum Electron. 35, 21–34 (2003).
[CrossRef]

Okamura, Y.

J. Tanguchi, H. Murata, and Y. Okamura, “Analysis of aggregation and dispersion states of small particles in concentrated suspension by using diffused photon density wave spectroscopy,” Colloids Surf. B 76, 137–144 (2010).
[CrossRef]

Raith, W.

W. Raith, Lehrbuch der Experimentalphysik, Band 2, Elektromagnetismus (Walter de Gruyter, 2006).

Reich, O.

S. Vargas Ruiz, R. Hass, and O. Reich, “Optical monitoring of milk fat phase transition within homogenized fresh milk by Photon Density Wave spectroscopy,” Int. Dairy J. 26, 120–126 (2012).
[CrossRef]

R. Hass and O. Reich, “Photon Density Wave spectroscopy for dilution-free sizing of highly concentrated nanoparticles during starved-feed polymerization,” Chem. Phys. Chem. 12, 2572–2575 (2011).
[CrossRef]

O. Reich, H.-G. Löhmannsröben, and F. Schael, “Optical sensing with photon density waves: investigation of model media,” Phys. Chem. Chem. Phys. 5, 5182–5187 (2003).
[CrossRef]

L. Bressel, R. Hass, M. Münzberg, and O. Reich, “In-line characterization of highly concentrated industrial dispersions by Photon Density Wave spectroscopy,” in Applied Industrial Optics: Spectroscopy, Imaging, & Metrology (AIO) (Optical Society of America, 2012), paper ATu1A.3.

L. Bressel, R. Hass, and O. Reich, “Particle sizing in highly turbid dispersions by Photon Density Wave spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer (to be published), http://dx.doi:.org/10.1016/j.jqsrt.2012.11.031 .

Richter, S. M.

S. M. Richter and E. M. Sevick-Muraca, “Characterization of concentrated colloidal suspensions using time-dependent photon migration measurements,” Colloids Surf. A 172, 163–173 (2000).
[CrossRef]

S. M. Richter, R. R. Shinde, G. V. Balgi, and E. M. Sevick-Muraca, “Particle sizing using frequency domain photon migration,” Part. Part. Syst. Charact. 15, 9–15 (1998).
[CrossRef]

Saito, H.

K. Shinoda and H. Saito, “The stability of o/w type emulsions as functions of temperature and the HLB of emulsifiers: The emulsification by PIT-method,” J. Colloid Interface Sci. 30, 258–263 (1969).
[CrossRef]

Saulnier, P. M.

P. M. Saulnier, M. P. Zinkin, and G. H. Watson, “Scatterer correlation effects on photon transport in dense random media,” Phys. Rev. B 42, 2621–2623 (1990).
[CrossRef]

Schael, F.

O. Reich, H.-G. Löhmannsröben, and F. Schael, “Optical sensing with photon density waves: investigation of model media,” Phys. Chem. Chem. Phys. 5, 5182–5187 (2003).
[CrossRef]

Sevick-Muraca, E. M.

Z. Sun, Y. Huang, and E. M. Sevick-Muraca, “Precise analysis of frequency domain migration measurement for characterization of concentrated colloidal suspension,” Rev. Sci. Instrum. 73, 383–393 (2002).
[CrossRef]

S. M. Richter and E. M. Sevick-Muraca, “Characterization of concentrated colloidal suspensions using time-dependent photon migration measurements,” Colloids Surf. A 172, 163–173 (2000).
[CrossRef]

S. M. Richter, R. R. Shinde, G. V. Balgi, and E. M. Sevick-Muraca, “Particle sizing using frequency domain photon migration,” Part. Part. Syst. Charact. 15, 9–15 (1998).
[CrossRef]

Shinde, R. R.

S. M. Richter, R. R. Shinde, G. V. Balgi, and E. M. Sevick-Muraca, “Particle sizing using frequency domain photon migration,” Part. Part. Syst. Charact. 15, 9–15 (1998).
[CrossRef]

Shinoda, K.

K. Shinoda and H. Saito, “The stability of o/w type emulsions as functions of temperature and the HLB of emulsifiers: The emulsification by PIT-method,” J. Colloid Interface Sci. 30, 258–263 (1969).
[CrossRef]

Sultanova, N.

N. Sultanova, S. Kasarova, and I. Nikolov, “Dispersion properties of optical polymers,” Acta Phys. Pol. A 116, 585–587 (2009).

Sultanova, N. G.

N. G. Sultanova, I. D. Nikolov, and C. D. Ivanov, “Measuring the refractometric characteristics of optical plastics,” Opt. Quantum Electron. 35, 21–34 (2003).
[CrossRef]

Sun, Z.

Z. Sun, Y. Huang, and E. M. Sevick-Muraca, “Precise analysis of frequency domain migration measurement for characterization of concentrated colloidal suspension,” Rev. Sci. Instrum. 73, 383–393 (2002).
[CrossRef]

Tanguchi, J.

J. Tanguchi, H. Murata, and Y. Okamura, “Analysis of aggregation and dispersion states of small particles in concentrated suspension by using diffused photon density wave spectroscopy,” Colloids Surf. B 76, 137–144 (2010).
[CrossRef]

vande Ven, M. J.

J. B. Fishkin, S. Fantini, M. J. vande Ven, and E. Gratton, “Gigahertz photon density waves in a turbid medium: theory and experiments,” Phys. Rev. E 53, 2307–2319 (1996).
[CrossRef]

Vargas Ruiz, S.

S. Vargas Ruiz, R. Hass, and O. Reich, “Optical monitoring of milk fat phase transition within homogenized fresh milk by Photon Density Wave spectroscopy,” Int. Dairy J. 26, 120–126 (2012).
[CrossRef]

Vrij, A.

A. Vrij, E. A. Nieuwenhuis, H. M. Fijnaut, and W. G. M. Agterof, “Application of modern concepts in liquid-state theory to concentrated particle dispersions,” Faraday Discuss. 65, 101–113 (1978).
[CrossRef]

Watson, G. H.

P. M. Saulnier, M. P. Zinkin, and G. H. Watson, “Scatterer correlation effects on photon transport in dense random media,” Phys. Rev. B 42, 2621–2623 (1990).
[CrossRef]

Waxler, R. M.

Zinkin, M. P.

P. M. Saulnier, M. P. Zinkin, and G. H. Watson, “Scatterer correlation effects on photon transport in dense random media,” Phys. Rev. B 42, 2621–2623 (1990).
[CrossRef]

Acta Phys. Pol. A

N. Sultanova, S. Kasarova, and I. Nikolov, “Dispersion properties of optical polymers,” Acta Phys. Pol. A 116, 585–587 (2009).

Ann. Phys.

G. Mie, “Beträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 25, 377–445 (1908).
[CrossRef]

Appl. Opt.

Chem. Phys. Chem.

R. Hass and O. Reich, “Photon Density Wave spectroscopy for dilution-free sizing of highly concentrated nanoparticles during starved-feed polymerization,” Chem. Phys. Chem. 12, 2572–2575 (2011).
[CrossRef]

Colloids Surf. A

S. M. Richter and E. M. Sevick-Muraca, “Characterization of concentrated colloidal suspensions using time-dependent photon migration measurements,” Colloids Surf. A 172, 163–173 (2000).
[CrossRef]

Colloids Surf. B

J. Tanguchi, H. Murata, and Y. Okamura, “Analysis of aggregation and dispersion states of small particles in concentrated suspension by using diffused photon density wave spectroscopy,” Colloids Surf. B 76, 137–144 (2010).
[CrossRef]

Faraday Discuss.

A. Vrij, E. A. Nieuwenhuis, H. M. Fijnaut, and W. G. M. Agterof, “Application of modern concepts in liquid-state theory to concentrated particle dispersions,” Faraday Discuss. 65, 101–113 (1978).
[CrossRef]

Int. Dairy J.

S. Vargas Ruiz, R. Hass, and O. Reich, “Optical monitoring of milk fat phase transition within homogenized fresh milk by Photon Density Wave spectroscopy,” Int. Dairy J. 26, 120–126 (2012).
[CrossRef]

J. Biomed. Opt.

B. Cletus, R. Künnemeyer, P. Martinsen, and V. A. McGlone, “Temperature-dependent optical properties of Intralipid measured with frequency-domain photon-migration spectroscopy,” J. Biomed. Opt. 15, 017003–017006 (2010).
[CrossRef]

J. Colloid Interface Sci.

K. Shinoda and H. Saito, “The stability of o/w type emulsions as functions of temperature and the HLB of emulsifiers: The emulsification by PIT-method,” J. Colloid Interface Sci. 30, 258–263 (1969).
[CrossRef]

J. Phys. Chem. Ref. Data

A. H. Harvey, J. S. Gallagher, and J. M. H. Levelt Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761–774 (1998).
[CrossRef]

Langmuir

P. Izquierdo and J. Esquena, “Phase behavior and nano-emulsion formation by the Phase Inversion Temperature method,” Langmuir 20, 6594–6598 (2004).
[CrossRef]

Methods Enzymol.

J. M. Beechem, “Global analysis of biochemical and biophysical data,” Methods Enzymol. 210, 37–54 (1992).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

N. G. Sultanova, I. D. Nikolov, and C. D. Ivanov, “Measuring the refractometric characteristics of optical plastics,” Opt. Quantum Electron. 35, 21–34 (2003).
[CrossRef]

Part. Part. Syst. Charact.

S. M. Richter, R. R. Shinde, G. V. Balgi, and E. M. Sevick-Muraca, “Particle sizing using frequency domain photon migration,” Part. Part. Syst. Charact. 15, 9–15 (1998).
[CrossRef]

Phys. Chem. Chem. Phys.

O. Reich, H.-G. Löhmannsröben, and F. Schael, “Optical sensing with photon density waves: investigation of model media,” Phys. Chem. Chem. Phys. 5, 5182–5187 (2003).
[CrossRef]

Phys. Rev. B

P. M. Saulnier, M. P. Zinkin, and G. H. Watson, “Scatterer correlation effects on photon transport in dense random media,” Phys. Rev. B 42, 2621–2623 (1990).
[CrossRef]

Phys. Rev. E

J. B. Fishkin, S. Fantini, M. J. vande Ven, and E. Gratton, “Gigahertz photon density waves in a turbid medium: theory and experiments,” Phys. Rev. E 53, 2307–2319 (1996).
[CrossRef]

Prog. Polym. Sci.

C. S. Chern, “Emulsion polymerization mechanisms and kinetics,” Prog. Polym. Sci. 31, 443–486 (2006).
[CrossRef]

Rev. Sci. Instrum.

Z. Sun, Y. Huang, and E. M. Sevick-Muraca, “Precise analysis of frequency domain migration measurement for characterization of concentrated colloidal suspension,” Rev. Sci. Instrum. 73, 383–393 (2002).
[CrossRef]

Other

V. Kholodovych, W. Welsh, and J. E. Mark, eds., Physical Properties of Polymers Handbook (Springer, 2007).

L. Bressel, R. Hass, and O. Reich, “Particle sizing in highly turbid dispersions by Photon Density Wave spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer (to be published), http://dx.doi:.org/10.1016/j.jqsrt.2012.11.031 .

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969).

W. Raith, Lehrbuch der Experimentalphysik, Band 2, Elektromagnetismus (Walter de Gruyter, 2006).

P. W. Atkins, Physical Chemistry (Oxford University, 1998).

R. J. Hunter, Foundations of Colloid Science, Volume II(Oxford University, 1995).

D. R. Lide and W. M. Haynes, CRC Handbook of Chemistry and Physics, 90th edition (CRC Press, 2009).

L. Bressel, R. Hass, M. Münzberg, and O. Reich, “In-line characterization of highly concentrated industrial dispersions by Photon Density Wave spectroscopy,” in Applied Industrial Optics: Spectroscopy, Imaging, & Metrology (AIO) (Optical Society of America, 2012), paper ATu1A.3.

H. Domininghaus, Kunststoffe: Eigenschaften und Anwendungen, P. Elsner, P. Eyerer, and T. Hirth, eds. (Springer, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1.

Experimental refractive indices (solid symbols) of different polymer/water dispersions as function of volume fraction at the wavelengths of 589.3 nm (poly-tert-butylmethacrylate, P-tert-BuMA) and 598.7 nm (polystyrene, PS, and polymethylmethacrylate, PMMA) and extrapolation to the refractive index of the pure polymer according to Eq. (2) (black line) and according to the Lorentz–Lorenz approach (gray line), in comparison to reference data (open symbols) [8,10].

Fig. 2.
Fig. 2.

Extrapolated refractive indices as function of wavelength (solid symbols) of different pure polymers, deduced from their liquid dispersions on basis of Eq. (2), in comparison to reference data (open symbols) [8,10]. Lines indicate values intrapolated by a Cauchy polynomial.

Fig. 3.
Fig. 3.

Experimental reduced scattering coefficients (symbols) of different polystyrene/water dispersions as function of wavelength in comparison to simulated values ( lines + symbols ) on basis of the HSPYA for the given parameters.

Fig. 4.
Fig. 4.

Particle size determination by comparison of experimental and theoretical reduced scattering coefficients, calculated by Mie theory and HSPYA, and consistency in particle diameter due to spectral information.

Fig. 5.
Fig. 5.

Possible droplet diameters from PDW spectroscopy for (a) a cosmetic oil-in-water emulsion with microdroplets with two different laser wavelengths and for (b) a dispersion of polystyrene nano-particles with eight different laser wavelengths. Ellipses indicate the range of wrong diameters within the investigated spectral range.

Fig. 6.
Fig. 6.

Experimental particle sizes as function of wavelength for different polymer dispersions at given volume fractions. Gray symbols indicate biased data due to fluorescence.

Fig. 7.
Fig. 7.

Sum of squared deviation according to Eq. (15) as function of particle diameter on basis of eight different laser wavelengths for a polystyrene/water dispersion with a volume fraction of 0.061.

Fig. 8.
Fig. 8.

Possible results in size for eight different measurement wavelengths for five polystyrene/water dispersions (“mono”- λ , solid gray circles) and result according to Eq. (15) (“multi”- λ , solid blue circles) in comparison to turbidimetry and Fiber Optic Quasi Elastic Light Scattering (open squares and triangles). Sample 5 represents the result of Fig. 7.

Fig. 9.
Fig. 9.

Temperature, reduced scattering coefficient at 778 nm, and droplet diameter as function of time of two PIT processes under different thermal treatment. Dashed lines and solid lines refer to slow and fast cooling speed, respectively. Vertical black lines separate the three different regions.

Fig. 10.
Fig. 10.

Possible droplet diameters (gray and blue symbols) from PDW spectroscopy at a measurement wavelength of 778, 935, and 982 nm for the initial macroemulsion (left) and the final nanoemulsion (right). The consistency criterion reveals the correct solution in size (blue symbols), which is found in agreement with light microscope analysis (inset).

Fig. 11.
Fig. 11.

Final droplet diameter of the nanoemulsion after PIT as function of the cooling rate. Error bars refer to the standard deviation from the temporal mean at the final temperature of 20°C.

Fig. 12.
Fig. 12.

Stirrer speed u , temperature T , reduced scattering coefficient μ s at 936 nm, and particle diameter d during suspension polymerization with low pore builder concentration [27].

Fig. 13.
Fig. 13.

Comparison of the reduced scattering coefficient at 936 nm during suspension polymerization of batches with low and high pore builder concentration. The inset displays normalized μ s for comparing the impact of polymerization onto the reduced scattering coefficient.

Fig. 14.
Fig. 14.

Comparison of particle diameter during suspension polymerization of batches with low and high pore builder concentration.

Fig. 15.
Fig. 15.

Reduced scattering coefficient at a laser wavelength of 469 nm and volume fraction of the organic phase as a function of time during two starved feed polymerization reactions with different emulsifier concentrations.

Fig. 16.
Fig. 16.

Particle diameter as a function of time during two starved feed polymerization reactions with different emulsifier concentrations as a result of on-line PDW spectroscopy and off-line Dynamic Light Scattering.

Fig. 17.
Fig. 17.

Number of particles as a function of time during two starved feed polymerization reactions with different emulsifier concentrations on basis of experimental particle diameter by PDW spectroscopy and total organic volume.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

D d = log 10 I 0 I = μ a + μ s ln 10 l ,
n disperse phase ( λ ) = [ n dispersion 2 ( λ ) + n contin. phase 2 ( λ ) [ ϕ 1 ] ϕ ] 1 2 .
n dispersion ( λ ) = [ ϕ [ n disperse phase 2 ( λ ) n contin. phase 2 ( λ ) ] + n contin. phase 2 ( λ ) ] 1 2 .
ϕ = b disperse phase ρ contin. phase [ ρ disperse phase [ 1 b disperse phase ] + ρ contin. phase b disperse phase ] 1 .
ρ disperse phase = ρ dispersion ρ contin. phase b disperse phase ρ dispersion [ b disperse phase 1 ] + ρ contin. phase .
ρ ( r , t ) = ρ DC 0 r exp [ k DC r ] + ρ AC 0 r exp [ k I r + i k Φ r i ω t ] ,
k I / Φ = [ 3 2 [ [ [ [ α μ a + μ s ] 2 + ω 2 c 2 ] [ μ a 2 + ω 2 c 2 ] ] 1 2 ± μ a [ α μ a + μ s ] ω 2 c 2 ] ] 1 2 .
μ s = μ s [ 1 g ] .
μ s = 3 ϕ Q s [ 1 g ] 2 d .
μ s , dependent = 3 ϕ 2 d 0 π 2 π q s ( θ ) S ( θ , ϕ ) sin ( θ ) [ 1 cos ( θ ) ] d θ .
S PY ( K , ϕ ) = [ 1 + 24 ϕ K 3 [ a PY [ sin ( K ) K cos ( K ) ] + b PY [ [ 2 K 2 1 ] K cos ( K ) + 2 sin ( K ) 2 K ] + ϕ a PY 2 [ 24 K 3 + 4 [ 1 6 K 2 ] sin ( K ) [ 1 12 K 2 + 24 K 4 ] K cos ( K ) ] ] ] 1 ,
a PY = [ 1 + 2 ϕ ] 2 [ 1 ϕ ] 4 ,
b PY = 3 ϕ [ ϕ + 2 ] 2 2 [ 1 ϕ ] 4 ,
K = 4 π λ sin ( θ 2 ) d = q d ,
χ 2 ( d ) = i [ μ s , exp ( λ i ) μ s , theo ( λ i , d ) ] 2 min ,

Metrics