Abstract

In this article we report recent modeling and design work indicating that mixtures of nanoparticles in liquids can be used as an alternative to conventional optical filters. The major motivation for creating liquid optical filters is that they can be pumped in and out of a system to meet transient needs in an application. To demonstrate the versatility of this new class of filters, we present the design of nanofluids for use as long-pass, short-pass, and bandpass optical filters using a simple Monte Carlo optimization procedure. With relatively simple mixtures, we achieve filters with <15% mean-squared deviation in transmittance from conventional filters. We also discuss the current commercial feasibility of nanofluid-based optical filters by including an estimation of today’s off-the-shelf cost of the materials. While the limited availability of quality commercial nanoparticles makes it hard to compete with conventional filters, new synthesis methods and economies of scale could enable nanofluid-based optical filters in the near future. As such, this study lays the groundwork for creating a new class of selective optical filters for a wide range of applications, namely communications, electronics, optical sensors, lighting, photography, medicine, and many more.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Martinu and D. Poitras, “Plasma deposition of optical films and coatings: a review,” J. Vac. Sci. Technol. A 18, 2619–2645 (2000).
    [CrossRef]
  2. A. G. Imenes, and D. R. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review,” Sol. Energy Mater. Sol. Cells 84, 19–69 (2004).
    [CrossRef]
  3. S. Zaitsu, T. Jitsuno, M. Nakatsuka, T. Yamanaka, and S. Motokoshi, “Optical thin films consisting of nanoscale laminated layers,” Appl. Phys. Lett. 80, 2442–2444 (2002).
    [CrossRef]
  4. J. Kaluza, K.-H. Funken, U. Groer, A. Neumann, and K.-J. Riffelmann, “Properties of an optical fluid filter: theoretical evaluations and measurement results,” J. Phys. IV 09, Pr3-655–Pr3-660 (1999).
    [CrossRef]
  5. M. A. Chendo, M. R. Jacobson, and D. E. Osborn, “Liquid and thin-film filters for hybrid solar energy conversion systems,” Solar Wind Technol. 4, 131–1381987).
    [CrossRef]
  6. J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem. 60, 147–165 (2009).
    [CrossRef]
  7. R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, and H. Tyagi, “Small particles, big impacts: a review of the diverse applications of nanofluids,” J. Appl. Phys. 113, 011301 (2013).
    [CrossRef]
  8. R. A. Taylor, T. P. Otanicar, and G. Rosengarten, “Nanofluid-based optical filter optimization for PV/T systems,” Light Sci. Appl. 1, 1–7 (2012).
    [CrossRef]
  9. T. P. Otanicar, P. E. Phelan, and J. S. Golden, “Optical properties of liquids for direct absorption solar thermal energy systems,” Sol. Energy 83, 969–977 (2009).
    [CrossRef]
  10. T. P. Otanicar, P. E. Phelan, R. S. Prasher, G. Rosengarten, and R. A. Taylor, “Nanofluid-based direct absorption solar collector,” J. Renewable Sustainable Energy 2, 033102 (2010).
    [CrossRef]
  11. T. P. Otanicar, I. Chowdhury, R. Prasher, and P. E. Phelan, “Band-gap tuned direct absorption for a hybrid concentrating solar photovoltaic/thermal system,” J. Sol. Energy Eng. 133, 041014 (2011).
    [CrossRef]
  12. T. P. Otanicar, P. E. Phelan, R. A. Taylor, and H. Tyagi, “Spatially varying extinction coefficient for direct absorption solar thermal collector optimization,” J. Sol. Energy Eng. 133, 024501 (2011).
    [CrossRef]
  13. T. P. Otanicar, R. A. Taylor, P. E. Phelan, and R. S. Prasher, “Impact of size and scattering mode on the optimal solar absorbing nanofluid,” in Proceedings of the ASME 2009 3rd International Conference of Energy Sustainability (American Society of Mechanical Engineers (ASME), 2009), pp. 1–6.
  14. R. A. Taylor, P. E. Phelan, T. P. Otanicar, R. Adrian, and R. Prasher, “Nanofluid optical property characterization: towards efficient direct absorption solar collectors,” Nanoscale Res. Lett. 6, 225 (2011).
    [CrossRef]
  15. R. A. Taylor, P. E. Phelan, T. P. Otanicar, C. A. Walker, M. Nguyen, S. Trimble, and R. Prasher, “Applicability of nanofluids in high flux solar collectors,” J. Renewable Sustainable Energy 3, 023104 (2011).
    [CrossRef]
  16. R. A. Taylor, P. E. Phelan, T. Otanicar, R. J. Adrian, and R. S. Prasher, “Vapor generation in a nanoparticle liquid suspension using a focused, continuous laser beam,” Appl. Phys. Lett. 95, 161907 (2009).
    [CrossRef]
  17. W. Lv, P. E. Phelan, R. Swaminathan, T. P. Otanicar, and R. A. Taylor, “Multifunctional core-shell nanoparticle suspensions for efficient absorption,” J. Sol. Energy Eng. 135, 021005(2013).
    [CrossRef]
  18. Schott, “Optical filters” (2012), retrieved 10 March 2012, http://www.schott.com/advanced_optics/english/filter/index.html?PHPSESSID=ra0uavqiou413sfj003ublirj4 .
  19. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1997), Vol. 575, p. 999.
  20. M. A. G. Soler, S. W. da Silva, V. K. Garg, A. C. Oliveira, R. B. Azevedo, A. C. M. Pimenta, E. C. D. Lima, and P. C. Morais, “Surface passivation and characterization of cobalt-ferrite nanoparticles,” Surf. Sci. 575, 12–16 (2005).
    [CrossRef]
  21. K. K. Fung, B. Qin, and X. X. Zhang, “Passivation of a-Fe nanoparticle by epitaxial g-Fe2O3 shell,” Mater. Sci. Eng. A 286, 135–138 (2010).
    [CrossRef]
  22. J. Tavares, E. J. Swanson, and S. Coulombe, “Plasma synthesis of coated metal nanoparticles with surface properties tailored for dispersion,” Plasma Processes Polym. 5, 759–769 (2008).
    [CrossRef]
  23. N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
    [CrossRef]
  24. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
    [CrossRef]
  25. G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420(2011).
    [CrossRef]
  26. S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606–12612 (2004).
    [CrossRef]
  27. N. Palombo and K. Park, “Investigation of dynamic near-field radiation between quantum dots and plasmonic nanoparticles for effective tailoring of the solar spectrum,” in Proceedings of ASME 2011 International Mechanical Engineering Congress and Exposition (American Society of Mechanical Engineers (ASME), 2011), pp. 1–5.
  28. T. Pham, J. B. Jackson, N. J. Halas, and T. R. Lee, “Preparation and characterization of gold nanoshells coated with self-assembled monolayers,” Langmuir 18, 4915–4920 (2002).
    [CrossRef]
  29. N. Phonthammachai, J. C. Y. Kah, G. Jun, C. J. R. Sheppard, M. C. Olivo, S. G. Mhaisalkar, and T. J. White, “Synthesis of contiguous silica-gold core-shell structures: critical parameters and processes,” Langmuir 24, 5109–5112 (2008).
    [CrossRef]
  30. B. E. Brinson, J. B. Lassiter, C. S. Levin, R. Bardhan, N. Mirin, and N. J. Halas, “Nanoshells made easy: improving Au layer growth on nanoparticle surfaces,” Langmuir 24, 14166–14171 (2008).
    [CrossRef]
  31. B. G. Prevo, S. A. Esakoff, A. Mikhailovsky, and J. A. Zasadzinski, “Scalable routes to gold nanoshells with tunable sizes and response to near-infrared pulsed-laser irradiation,” Small 4, 1183–1195 (2008).
    [CrossRef]
  32. B. Lu, X. L. Dong, H. Huang, X. F. Zhang, X. G. Zhu, J. P. Lei, and J. P. Sun, “Microwave absorption properties of the core/shell-type iron and nickel nanoparticles,” J. Magn. Magn. Mater. 320, 1106–1111 (2008).
    [CrossRef]
  33. Z. Li, L. A. Fredin, P. Tewari, S. A. DiBenedetto, M. T. Lanagan, M. A. Ratner, and T. J. Marks, “In situ catalytic encapsulation of core-shell nanoparticles having variable shell thickness: dielectric and energy storage properties of high-permittivity metal oxide nanocomposites,” Chem. Mater. 22, 5154–5164 (2010).
    [CrossRef]
  34. K.-T. Yong, Y. Sahoo, M. T. Swihart, and P. N. Prasad, “Synthesis and plasmonic properties of silver and gold nanoshells on polystyrene cores of different size and of gold-silver core-shell nanostructures,” Colloids Surf. A 290, 89–105 (2006).
    [CrossRef]
  35. J. B. Jackson and N. J. Halas, “Silver nanoshells: variations in morphologies and optical properties,” J. Phys. Chem. B 105, 2743–2746 (2001).
    [CrossRef]
  36. D. G. Duff, A. Baiker, and P. P. Edwards, “A new hydrosol of gold clusters. 1. Formation and particle size variation,” Langmuir 9, 2301–2309 (1993).
    [CrossRef]
  37. L. K. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
    [CrossRef]
  38. U. Kreibig and V. Vollmer, Optical Properties of Metal Clusters, 1st ed. (Springer, 2010).
  39. R. Averitt, D. Sarkar, and N. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78, 4217–4220(1997).
    [CrossRef]
  40. A. E. Neeves and M. H. Birnboim, “Composite structures for the enhancement of nonlinear-optical susceptibility,” J. Opt. Soc. Am. B 6, 787–796 (1989).
    [CrossRef]
  41. M. Fox, Optical Properties of Solids, 2nd ed. (Oxford University, 2010), Chap. 7, pp. 180–210.
  42. W. Lv, T. P. Otanicar, P. E. Phelan, L. Dai, R. A. Taylor, and R. Swaminathan, “Surface plasmon resonance shifts of a dispersion of core-shell nanoparticles for efficient solar absorption,” in Proceedings of Micro/Nanoscale Heat & Mass Transfer International Conference (American Society of Mechanical Engineers (ASME), 2012), pp. 1–9.
  43. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  44. N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett. 399, 167–171 (2004).
    [CrossRef]
  45. C. Kittel, Introduction to Solid State Physics, 8th ed. (Wiley, 2004), pp. 221–252.
  46. C. N. Berglund and W. E. Spicer, “Photoemission studies of copper and silver: theory,” Phys. Rev. 136, A1030–A1044(1964).
    [CrossRef]
  47. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998), p. 544.
  48. S. G. Moiseev, “Nanocomposite-based ultrathin polarization beamsplitter,” Opt. Spectrosc. 111, 233–240 (2011).
    [CrossRef]
  49. UQG, “Schott colour glass stock optical filters, order online” 2012, retrieved 17 December 2012, http://www.optical-filters.com/Schott_Filters.aspx .
  50. Z. Liang, A. Susha, and F. Caruso, “Gold nanoparticle-based core—shell and hollow spheres and ordered assemblies thereof,” Chem. Mater. 15, 3176–3183 (2003).
    [CrossRef]
  51. M. Zhang, M. Drechsler, and A. H. E. Müller, “Template-controlled synthesis of wire-like cadmium sulfide nanoparticle assemblies within core–shell cylindrical polymer brushes,” Chem. Mater. 16, 537–543 (2004).
    [CrossRef]
  52. M. A. Nash, J. J. Lai, A. S. Hoffman, P. Yager, and P. S. Stayton, ““Smart” diblock copolymers as templates for magnetic-core gold-shell nanoparticle synthesis,” Nano Lett. 10, 85–91 (2010).
    [CrossRef]
  53. L. Lu, G. Sun, H. Zhang, H. Wang, S. Xi, J. Hu, Z. Tian, and R. Chen, “Fabrication of core-shell Au-Pt nanoparticle film and its potential application as catalysis and SERS substrate,” J. Mater. Chem. 14, 1005 (2004).
    [CrossRef]
  54. T. Roques-Carmes, F. Aldeek, L. Balan, S. Corbel, and R. Schneider, “Aqueous dispersions of core/shell CdSe/CdS quantum dots as nanofluids for electrowetting,” Colloids Surf. A 377, 269–277 (2011).
    [CrossRef]
  55. A. Abou-Hassan, R. Bazzi, and V. Cabuil, “Multistep continuous-flow microsynthesis of magnetic and fluorescent gamma-Fe2O3@SiO2 core/shell nanoparticles,” Angew. Chem. Int. Ed. Engl., Suppl. 48, 7180–7183 (2009).
    [CrossRef]
  56. J. M. Pringle, O. Winther-Jensen, C. Lynam, G. G. Wallace, M. Forsyth, and D. R. MacFarlane, “One step synthesis of conducting polymer-noble metal nanoparticle composites using an ionic liquid,” Adv. Funct. Mater. 18, 2031–2040 (2008).
    [CrossRef]
  57. K. Kaneda, T. Mitsudome, T. Mizugaki, and K. Jitsukawa, “Development of heterogeneous olympic medal metal nanoparticle catalysts for environmentally benign molecular transformations based on the surface properties of hydrotalcite,” Molecules 15, 8988–9007 (2010).
    [CrossRef]
  58. N. Zheng and G. D. Stucky, “A general synthetic strategy for oxide-supported metal nanoparticle catalysts,” J. Chem. Am. Soc. 128, 14278–14280 (2006).
    [CrossRef]
  59. M. Grzelczak, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37, 1783–1791 (2008).
    [CrossRef]
  60. T. C. Wang, M. F. Rubner, and R. E. Cohen, “Polyelectrolyte multilayer nanoreactors for preparing silver nanoparticle composites: controlling metal concentration and nanoparticle size,” Langmuir 18, 3370–3375 (2002).
    [CrossRef]
  61. K.-S. Kim, D. Demberelnyamba, and H. Lee, “Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquids,” Langmuir 20, 556–560 (2004).
    [CrossRef]
  62. K. R. Gopidas, J. K. Whitesell, M. A. Fox, and N. Carolina, “Catalytic applications of a palladium-nanoparticle-cored dendrimer,” Nano Lett. 3, 1–4 (2003).
    [CrossRef]
  63. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16, 1824–1832 (1999).
    [CrossRef]
  64. W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26, 62–69 (1968).
    [CrossRef]
  65. NanoComposix, “NanoComposix: gold metal nanoshells” (2012), retrieved 9 September 2012, http://nanocomposix.com/products/gold/nanoshells .
  66. NanoSight, “Nanoparticle size analysis, particle size software, LM10-HS—Products—NanoSight” (2012), retrieved 9 September 2012, http://www.nanosight.com/products/lm10-hs .
  67. F. Le, N. Lwin, N. Halas, and P. Nordlander, “Plasmonic interactions between a metallic nanoshell and a thin metallic film,” Phys. Rev. B 76, 165410 (2007).
    [CrossRef]
  68. NanoComposix, “NanoComposix products” (2012), retrieved 22 November 2012, http://nanocomposix.com/products .
  69. A. Ghadimi, R. Saidur, and H. S. C. Metselaar, “A review of nanofluid stability properties and characterization in stationary conditions,” Int. J. Heat Mass Transfer 54, 4051–4068 (2011).
    [CrossRef]
  70. Y. Hwang, J. Lee, C. Lee, Y. Jung, S. Cheong, B. Ku, and S. Jang, “Stability and thermal conductivity characteristics of nanofluids,” Thermochim. Acta 455, 70–74 (2007).
    [CrossRef]
  71. J. Tavares and S. Coulombe, “Dual plasma synthesis and characterization of a stable copper-ethylene glycol nanofluid,” Powder Technol. 210, 132–142 (2011).
    [CrossRef]
  72. J. U. Kang, “Observation of random lasing in gold-silica nanoshell/water solution,” Appl. Phys. Lett. 89, 221112(2006).
    [CrossRef]
  73. S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9, 2825–2831 (2009).
    [CrossRef]
  74. G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, N. G. Khlebtsov, B. N. Khlebtsov, G. G. Akchurin, I. L. Maksimova, and V. V. Tuchin, “Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy,” J. Biomed. Opt. 14, 021016 (2009).
    [CrossRef]

2013

R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, and H. Tyagi, “Small particles, big impacts: a review of the diverse applications of nanofluids,” J. Appl. Phys. 113, 011301 (2013).
[CrossRef]

W. Lv, P. E. Phelan, R. Swaminathan, T. P. Otanicar, and R. A. Taylor, “Multifunctional core-shell nanoparticle suspensions for efficient absorption,” J. Sol. Energy Eng. 135, 021005(2013).
[CrossRef]

2012

R. A. Taylor, T. P. Otanicar, and G. Rosengarten, “Nanofluid-based optical filter optimization for PV/T systems,” Light Sci. Appl. 1, 1–7 (2012).
[CrossRef]

2011

T. P. Otanicar, I. Chowdhury, R. Prasher, and P. E. Phelan, “Band-gap tuned direct absorption for a hybrid concentrating solar photovoltaic/thermal system,” J. Sol. Energy Eng. 133, 041014 (2011).
[CrossRef]

T. P. Otanicar, P. E. Phelan, R. A. Taylor, and H. Tyagi, “Spatially varying extinction coefficient for direct absorption solar thermal collector optimization,” J. Sol. Energy Eng. 133, 024501 (2011).
[CrossRef]

R. A. Taylor, P. E. Phelan, T. P. Otanicar, R. Adrian, and R. Prasher, “Nanofluid optical property characterization: towards efficient direct absorption solar collectors,” Nanoscale Res. Lett. 6, 225 (2011).
[CrossRef]

R. A. Taylor, P. E. Phelan, T. P. Otanicar, C. A. Walker, M. Nguyen, S. Trimble, and R. Prasher, “Applicability of nanofluids in high flux solar collectors,” J. Renewable Sustainable Energy 3, 023104 (2011).
[CrossRef]

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef]

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420(2011).
[CrossRef]

S. G. Moiseev, “Nanocomposite-based ultrathin polarization beamsplitter,” Opt. Spectrosc. 111, 233–240 (2011).
[CrossRef]

T. Roques-Carmes, F. Aldeek, L. Balan, S. Corbel, and R. Schneider, “Aqueous dispersions of core/shell CdSe/CdS quantum dots as nanofluids for electrowetting,” Colloids Surf. A 377, 269–277 (2011).
[CrossRef]

A. Ghadimi, R. Saidur, and H. S. C. Metselaar, “A review of nanofluid stability properties and characterization in stationary conditions,” Int. J. Heat Mass Transfer 54, 4051–4068 (2011).
[CrossRef]

J. Tavares and S. Coulombe, “Dual plasma synthesis and characterization of a stable copper-ethylene glycol nanofluid,” Powder Technol. 210, 132–142 (2011).
[CrossRef]

2010

K. Kaneda, T. Mitsudome, T. Mizugaki, and K. Jitsukawa, “Development of heterogeneous olympic medal metal nanoparticle catalysts for environmentally benign molecular transformations based on the surface properties of hydrotalcite,” Molecules 15, 8988–9007 (2010).
[CrossRef]

M. A. Nash, J. J. Lai, A. S. Hoffman, P. Yager, and P. S. Stayton, ““Smart” diblock copolymers as templates for magnetic-core gold-shell nanoparticle synthesis,” Nano Lett. 10, 85–91 (2010).
[CrossRef]

T. P. Otanicar, P. E. Phelan, R. S. Prasher, G. Rosengarten, and R. A. Taylor, “Nanofluid-based direct absorption solar collector,” J. Renewable Sustainable Energy 2, 033102 (2010).
[CrossRef]

Z. Li, L. A. Fredin, P. Tewari, S. A. DiBenedetto, M. T. Lanagan, M. A. Ratner, and T. J. Marks, “In situ catalytic encapsulation of core-shell nanoparticles having variable shell thickness: dielectric and energy storage properties of high-permittivity metal oxide nanocomposites,” Chem. Mater. 22, 5154–5164 (2010).
[CrossRef]

K. K. Fung, B. Qin, and X. X. Zhang, “Passivation of a-Fe nanoparticle by epitaxial g-Fe2O3 shell,” Mater. Sci. Eng. A 286, 135–138 (2010).
[CrossRef]

2009

R. A. Taylor, P. E. Phelan, T. Otanicar, R. J. Adrian, and R. S. Prasher, “Vapor generation in a nanoparticle liquid suspension using a focused, continuous laser beam,” Appl. Phys. Lett. 95, 161907 (2009).
[CrossRef]

T. P. Otanicar, P. E. Phelan, and J. S. Golden, “Optical properties of liquids for direct absorption solar thermal energy systems,” Sol. Energy 83, 969–977 (2009).
[CrossRef]

J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem. 60, 147–165 (2009).
[CrossRef]

A. Abou-Hassan, R. Bazzi, and V. Cabuil, “Multistep continuous-flow microsynthesis of magnetic and fluorescent gamma-Fe2O3@SiO2 core/shell nanoparticles,” Angew. Chem. Int. Ed. Engl., Suppl. 48, 7180–7183 (2009).
[CrossRef]

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9, 2825–2831 (2009).
[CrossRef]

G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, N. G. Khlebtsov, B. N. Khlebtsov, G. G. Akchurin, I. L. Maksimova, and V. V. Tuchin, “Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy,” J. Biomed. Opt. 14, 021016 (2009).
[CrossRef]

2008

J. M. Pringle, O. Winther-Jensen, C. Lynam, G. G. Wallace, M. Forsyth, and D. R. MacFarlane, “One step synthesis of conducting polymer-noble metal nanoparticle composites using an ionic liquid,” Adv. Funct. Mater. 18, 2031–2040 (2008).
[CrossRef]

M. Grzelczak, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37, 1783–1791 (2008).
[CrossRef]

J. Tavares, E. J. Swanson, and S. Coulombe, “Plasma synthesis of coated metal nanoparticles with surface properties tailored for dispersion,” Plasma Processes Polym. 5, 759–769 (2008).
[CrossRef]

N. Phonthammachai, J. C. Y. Kah, G. Jun, C. J. R. Sheppard, M. C. Olivo, S. G. Mhaisalkar, and T. J. White, “Synthesis of contiguous silica-gold core-shell structures: critical parameters and processes,” Langmuir 24, 5109–5112 (2008).
[CrossRef]

B. E. Brinson, J. B. Lassiter, C. S. Levin, R. Bardhan, N. Mirin, and N. J. Halas, “Nanoshells made easy: improving Au layer growth on nanoparticle surfaces,” Langmuir 24, 14166–14171 (2008).
[CrossRef]

B. G. Prevo, S. A. Esakoff, A. Mikhailovsky, and J. A. Zasadzinski, “Scalable routes to gold nanoshells with tunable sizes and response to near-infrared pulsed-laser irradiation,” Small 4, 1183–1195 (2008).
[CrossRef]

B. Lu, X. L. Dong, H. Huang, X. F. Zhang, X. G. Zhu, J. P. Lei, and J. P. Sun, “Microwave absorption properties of the core/shell-type iron and nickel nanoparticles,” J. Magn. Magn. Mater. 320, 1106–1111 (2008).
[CrossRef]

2007

Y. Hwang, J. Lee, C. Lee, Y. Jung, S. Cheong, B. Ku, and S. Jang, “Stability and thermal conductivity characteristics of nanofluids,” Thermochim. Acta 455, 70–74 (2007).
[CrossRef]

F. Le, N. Lwin, N. Halas, and P. Nordlander, “Plasmonic interactions between a metallic nanoshell and a thin metallic film,” Phys. Rev. B 76, 165410 (2007).
[CrossRef]

2006

J. U. Kang, “Observation of random lasing in gold-silica nanoshell/water solution,” Appl. Phys. Lett. 89, 221112(2006).
[CrossRef]

N. Zheng and G. D. Stucky, “A general synthetic strategy for oxide-supported metal nanoparticle catalysts,” J. Chem. Am. Soc. 128, 14278–14280 (2006).
[CrossRef]

K.-T. Yong, Y. Sahoo, M. T. Swihart, and P. N. Prasad, “Synthesis and plasmonic properties of silver and gold nanoshells on polystyrene cores of different size and of gold-silver core-shell nanostructures,” Colloids Surf. A 290, 89–105 (2006).
[CrossRef]

2005

M. A. G. Soler, S. W. da Silva, V. K. Garg, A. C. Oliveira, R. B. Azevedo, A. C. M. Pimenta, E. C. D. Lima, and P. C. Morais, “Surface passivation and characterization of cobalt-ferrite nanoparticles,” Surf. Sci. 575, 12–16 (2005).
[CrossRef]

2004

A. G. Imenes, and D. R. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review,” Sol. Energy Mater. Sol. Cells 84, 19–69 (2004).
[CrossRef]

N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett. 399, 167–171 (2004).
[CrossRef]

S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606–12612 (2004).
[CrossRef]

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[CrossRef]

K.-S. Kim, D. Demberelnyamba, and H. Lee, “Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquids,” Langmuir 20, 556–560 (2004).
[CrossRef]

L. Lu, G. Sun, H. Zhang, H. Wang, S. Xi, J. Hu, Z. Tian, and R. Chen, “Fabrication of core-shell Au-Pt nanoparticle film and its potential application as catalysis and SERS substrate,” J. Mater. Chem. 14, 1005 (2004).
[CrossRef]

M. Zhang, M. Drechsler, and A. H. E. Müller, “Template-controlled synthesis of wire-like cadmium sulfide nanoparticle assemblies within core–shell cylindrical polymer brushes,” Chem. Mater. 16, 537–543 (2004).
[CrossRef]

2003

Z. Liang, A. Susha, and F. Caruso, “Gold nanoparticle-based core—shell and hollow spheres and ordered assemblies thereof,” Chem. Mater. 15, 3176–3183 (2003).
[CrossRef]

K. R. Gopidas, J. K. Whitesell, M. A. Fox, and N. Carolina, “Catalytic applications of a palladium-nanoparticle-cored dendrimer,” Nano Lett. 3, 1–4 (2003).
[CrossRef]

L. K. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

2002

T. Pham, J. B. Jackson, N. J. Halas, and T. R. Lee, “Preparation and characterization of gold nanoshells coated with self-assembled monolayers,” Langmuir 18, 4915–4920 (2002).
[CrossRef]

S. Zaitsu, T. Jitsuno, M. Nakatsuka, T. Yamanaka, and S. Motokoshi, “Optical thin films consisting of nanoscale laminated layers,” Appl. Phys. Lett. 80, 2442–2444 (2002).
[CrossRef]

T. C. Wang, M. F. Rubner, and R. E. Cohen, “Polyelectrolyte multilayer nanoreactors for preparing silver nanoparticle composites: controlling metal concentration and nanoparticle size,” Langmuir 18, 3370–3375 (2002).
[CrossRef]

2001

J. B. Jackson and N. J. Halas, “Silver nanoshells: variations in morphologies and optical properties,” J. Phys. Chem. B 105, 2743–2746 (2001).
[CrossRef]

2000

L. Martinu and D. Poitras, “Plasma deposition of optical films and coatings: a review,” J. Vac. Sci. Technol. A 18, 2619–2645 (2000).
[CrossRef]

1999

J. Kaluza, K.-H. Funken, U. Groer, A. Neumann, and K.-J. Riffelmann, “Properties of an optical fluid filter: theoretical evaluations and measurement results,” J. Phys. IV 09, Pr3-655–Pr3-660 (1999).
[CrossRef]

R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16, 1824–1832 (1999).
[CrossRef]

1997

R. Averitt, D. Sarkar, and N. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78, 4217–4220(1997).
[CrossRef]

1993

D. G. Duff, A. Baiker, and P. P. Edwards, “A new hydrosol of gold clusters. 1. Formation and particle size variation,” Langmuir 9, 2301–2309 (1993).
[CrossRef]

1989

1987

M. A. Chendo, M. R. Jacobson, and D. E. Osborn, “Liquid and thin-film filters for hybrid solar energy conversion systems,” Solar Wind Technol. 4, 131–1381987).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1968

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26, 62–69 (1968).
[CrossRef]

1964

C. N. Berglund and W. E. Spicer, “Photoemission studies of copper and silver: theory,” Phys. Rev. 136, A1030–A1044(1964).
[CrossRef]

Abou-Hassan, A.

A. Abou-Hassan, R. Bazzi, and V. Cabuil, “Multistep continuous-flow microsynthesis of magnetic and fluorescent gamma-Fe2O3@SiO2 core/shell nanoparticles,” Angew. Chem. Int. Ed. Engl., Suppl. 48, 7180–7183 (2009).
[CrossRef]

Adrian, R.

R. A. Taylor, P. E. Phelan, T. P. Otanicar, R. Adrian, and R. Prasher, “Nanofluid optical property characterization: towards efficient direct absorption solar collectors,” Nanoscale Res. Lett. 6, 225 (2011).
[CrossRef]

Adrian, R. J.

R. A. Taylor, P. E. Phelan, T. Otanicar, R. J. Adrian, and R. S. Prasher, “Vapor generation in a nanoparticle liquid suspension using a focused, continuous laser beam,” Appl. Phys. Lett. 95, 161907 (2009).
[CrossRef]

Akchurin, G. G.

G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, N. G. Khlebtsov, B. N. Khlebtsov, G. G. Akchurin, I. L. Maksimova, and V. V. Tuchin, “Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy,” J. Biomed. Opt. 14, 021016 (2009).
[CrossRef]

Aldeek, F.

T. Roques-Carmes, F. Aldeek, L. Balan, S. Corbel, and R. Schneider, “Aqueous dispersions of core/shell CdSe/CdS quantum dots as nanofluids for electrowetting,” Colloids Surf. A 377, 269–277 (2011).
[CrossRef]

Anders, A.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420(2011).
[CrossRef]

Averitt, R.

R. Averitt, D. Sarkar, and N. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78, 4217–4220(1997).
[CrossRef]

Averitt, R. D.

Azevedo, R. B.

M. A. G. Soler, S. W. da Silva, V. K. Garg, A. C. Oliveira, R. B. Azevedo, A. C. M. Pimenta, E. C. D. Lima, and P. C. Morais, “Surface passivation and characterization of cobalt-ferrite nanoparticles,” Surf. Sci. 575, 12–16 (2005).
[CrossRef]

Baiker, A.

D. G. Duff, A. Baiker, and P. P. Edwards, “A new hydrosol of gold clusters. 1. Formation and particle size variation,” Langmuir 9, 2301–2309 (1993).
[CrossRef]

Balan, L.

T. Roques-Carmes, F. Aldeek, L. Balan, S. Corbel, and R. Schneider, “Aqueous dispersions of core/shell CdSe/CdS quantum dots as nanofluids for electrowetting,” Colloids Surf. A 377, 269–277 (2011).
[CrossRef]

Bardhan, R.

B. E. Brinson, J. B. Lassiter, C. S. Levin, R. Bardhan, N. Mirin, and N. J. Halas, “Nanoshells made easy: improving Au layer growth on nanoparticle surfaces,” Langmuir 24, 14166–14171 (2008).
[CrossRef]

Bazzi, R.

A. Abou-Hassan, R. Bazzi, and V. Cabuil, “Multistep continuous-flow microsynthesis of magnetic and fluorescent gamma-Fe2O3@SiO2 core/shell nanoparticles,” Angew. Chem. Int. Ed. Engl., Suppl. 48, 7180–7183 (2009).
[CrossRef]

Berglund, C. N.

C. N. Berglund and W. E. Spicer, “Photoemission studies of copper and silver: theory,” Phys. Rev. 136, A1030–A1044(1964).
[CrossRef]

Birnboim, M. H.

Bohn, E.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26, 62–69 (1968).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998), p. 544.

Brinson, B. E.

B. E. Brinson, J. B. Lassiter, C. S. Levin, R. Bardhan, N. Mirin, and N. J. Halas, “Nanoshells made easy: improving Au layer growth on nanoparticle surfaces,” Langmuir 24, 14166–14171 (2008).
[CrossRef]

Buonsanti, R.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420(2011).
[CrossRef]

Cabuil, V.

A. Abou-Hassan, R. Bazzi, and V. Cabuil, “Multistep continuous-flow microsynthesis of magnetic and fluorescent gamma-Fe2O3@SiO2 core/shell nanoparticles,” Angew. Chem. Int. Ed. Engl., Suppl. 48, 7180–7183 (2009).
[CrossRef]

Carolina, N.

K. R. Gopidas, J. K. Whitesell, M. A. Fox, and N. Carolina, “Catalytic applications of a palladium-nanoparticle-cored dendrimer,” Nano Lett. 3, 1–4 (2003).
[CrossRef]

Caruso, F.

Z. Liang, A. Susha, and F. Caruso, “Gold nanoparticle-based core—shell and hollow spheres and ordered assemblies thereof,” Chem. Mater. 15, 3176–3183 (2003).
[CrossRef]

Chang, W.-S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef]

Chen, R.

L. Lu, G. Sun, H. Zhang, H. Wang, S. Xi, J. Hu, Z. Tian, and R. Chen, “Fabrication of core-shell Au-Pt nanoparticle film and its potential application as catalysis and SERS substrate,” J. Mater. Chem. 14, 1005 (2004).
[CrossRef]

Chendo, M. A.

M. A. Chendo, M. R. Jacobson, and D. E. Osborn, “Liquid and thin-film filters for hybrid solar energy conversion systems,” Solar Wind Technol. 4, 131–1381987).
[CrossRef]

Cheong, S.

Y. Hwang, J. Lee, C. Lee, Y. Jung, S. Cheong, B. Ku, and S. Jang, “Stability and thermal conductivity characteristics of nanofluids,” Thermochim. Acta 455, 70–74 (2007).
[CrossRef]

Chowdhury, I.

T. P. Otanicar, I. Chowdhury, R. Prasher, and P. E. Phelan, “Band-gap tuned direct absorption for a hybrid concentrating solar photovoltaic/thermal system,” J. Sol. Energy Eng. 133, 041014 (2011).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Cohen, R. E.

T. C. Wang, M. F. Rubner, and R. E. Cohen, “Polyelectrolyte multilayer nanoreactors for preparing silver nanoparticle composites: controlling metal concentration and nanoparticle size,” Langmuir 18, 3370–3375 (2002).
[CrossRef]

Corbel, S.

T. Roques-Carmes, F. Aldeek, L. Balan, S. Corbel, and R. Schneider, “Aqueous dispersions of core/shell CdSe/CdS quantum dots as nanofluids for electrowetting,” Colloids Surf. A 377, 269–277 (2011).
[CrossRef]

Coronado, E.

L. K. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Coulombe, S.

R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, and H. Tyagi, “Small particles, big impacts: a review of the diverse applications of nanofluids,” J. Appl. Phys. 113, 011301 (2013).
[CrossRef]

J. Tavares and S. Coulombe, “Dual plasma synthesis and characterization of a stable copper-ethylene glycol nanofluid,” Powder Technol. 210, 132–142 (2011).
[CrossRef]

J. Tavares, E. J. Swanson, and S. Coulombe, “Plasma synthesis of coated metal nanoparticles with surface properties tailored for dispersion,” Plasma Processes Polym. 5, 759–769 (2008).
[CrossRef]

da Silva, S. W.

M. A. G. Soler, S. W. da Silva, V. K. Garg, A. C. Oliveira, R. B. Azevedo, A. C. M. Pimenta, E. C. D. Lima, and P. C. Morais, “Surface passivation and characterization of cobalt-ferrite nanoparticles,” Surf. Sci. 575, 12–16 (2005).
[CrossRef]

Dai, L.

W. Lv, T. P. Otanicar, P. E. Phelan, L. Dai, R. A. Taylor, and R. Swaminathan, “Surface plasmon resonance shifts of a dispersion of core-shell nanoparticles for efficient solar absorption,” in Proceedings of Micro/Nanoscale Heat & Mass Transfer International Conference (American Society of Mechanical Engineers (ASME), 2012), pp. 1–9.

Demberelnyamba, D.

K.-S. Kim, D. Demberelnyamba, and H. Lee, “Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquids,” Langmuir 20, 556–560 (2004).
[CrossRef]

DiBenedetto, S. A.

Z. Li, L. A. Fredin, P. Tewari, S. A. DiBenedetto, M. T. Lanagan, M. A. Ratner, and T. J. Marks, “In situ catalytic encapsulation of core-shell nanoparticles having variable shell thickness: dielectric and energy storage properties of high-permittivity metal oxide nanocomposites,” Chem. Mater. 22, 5154–5164 (2010).
[CrossRef]

Dong, X. L.

B. Lu, X. L. Dong, H. Huang, X. F. Zhang, X. G. Zhu, J. P. Lei, and J. P. Sun, “Microwave absorption properties of the core/shell-type iron and nickel nanoparticles,” J. Magn. Magn. Mater. 320, 1106–1111 (2008).
[CrossRef]

Drechsler, M.

M. Zhang, M. Drechsler, and A. H. E. Müller, “Template-controlled synthesis of wire-like cadmium sulfide nanoparticle assemblies within core–shell cylindrical polymer brushes,” Chem. Mater. 16, 537–543 (2004).
[CrossRef]

Duff, D. G.

D. G. Duff, A. Baiker, and P. P. Edwards, “A new hydrosol of gold clusters. 1. Formation and particle size variation,” Langmuir 9, 2301–2309 (1993).
[CrossRef]

Edwards, P. P.

D. G. Duff, A. Baiker, and P. P. Edwards, “A new hydrosol of gold clusters. 1. Formation and particle size variation,” Langmuir 9, 2301–2309 (1993).
[CrossRef]

Emelianov, S.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9, 2825–2831 (2009).
[CrossRef]

Esakoff, S. A.

B. G. Prevo, S. A. Esakoff, A. Mikhailovsky, and J. A. Zasadzinski, “Scalable routes to gold nanoshells with tunable sizes and response to near-infrared pulsed-laser irradiation,” Small 4, 1183–1195 (2008).
[CrossRef]

Fink, A.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26, 62–69 (1968).
[CrossRef]

Forsyth, M.

J. M. Pringle, O. Winther-Jensen, C. Lynam, G. G. Wallace, M. Forsyth, and D. R. MacFarlane, “One step synthesis of conducting polymer-noble metal nanoparticle composites using an ionic liquid,” Adv. Funct. Mater. 18, 2031–2040 (2008).
[CrossRef]

Fox, M.

M. Fox, Optical Properties of Solids, 2nd ed. (Oxford University, 2010), Chap. 7, pp. 180–210.

Fox, M. A.

K. R. Gopidas, J. K. Whitesell, M. A. Fox, and N. Carolina, “Catalytic applications of a palladium-nanoparticle-cored dendrimer,” Nano Lett. 3, 1–4 (2003).
[CrossRef]

Fredin, L. A.

Z. Li, L. A. Fredin, P. Tewari, S. A. DiBenedetto, M. T. Lanagan, M. A. Ratner, and T. J. Marks, “In situ catalytic encapsulation of core-shell nanoparticles having variable shell thickness: dielectric and energy storage properties of high-permittivity metal oxide nanocomposites,” Chem. Mater. 22, 5154–5164 (2010).
[CrossRef]

Fung, K. K.

K. K. Fung, B. Qin, and X. X. Zhang, “Passivation of a-Fe nanoparticle by epitaxial g-Fe2O3 shell,” Mater. Sci. Eng. A 286, 135–138 (2010).
[CrossRef]

Funken, K.-H.

J. Kaluza, K.-H. Funken, U. Groer, A. Neumann, and K.-J. Riffelmann, “Properties of an optical fluid filter: theoretical evaluations and measurement results,” J. Phys. IV 09, Pr3-655–Pr3-660 (1999).
[CrossRef]

Garcia, G.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420(2011).
[CrossRef]

Garg, V. K.

M. A. G. Soler, S. W. da Silva, V. K. Garg, A. C. Oliveira, R. B. Azevedo, A. C. M. Pimenta, E. C. D. Lima, and P. C. Morais, “Surface passivation and characterization of cobalt-ferrite nanoparticles,” Surf. Sci. 575, 12–16 (2005).
[CrossRef]

Ghadimi, A.

A. Ghadimi, R. Saidur, and H. S. C. Metselaar, “A review of nanofluid stability properties and characterization in stationary conditions,” Int. J. Heat Mass Transfer 54, 4051–4068 (2011).
[CrossRef]

Golden, J. S.

T. P. Otanicar, P. E. Phelan, and J. S. Golden, “Optical properties of liquids for direct absorption solar thermal energy systems,” Sol. Energy 83, 969–977 (2009).
[CrossRef]

Gopidas, K. R.

K. R. Gopidas, J. K. Whitesell, M. A. Fox, and N. Carolina, “Catalytic applications of a palladium-nanoparticle-cored dendrimer,” Nano Lett. 3, 1–4 (2003).
[CrossRef]

Grady, N. K.

N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett. 399, 167–171 (2004).
[CrossRef]

Groer, U.

J. Kaluza, K.-H. Funken, U. Groer, A. Neumann, and K.-J. Riffelmann, “Properties of an optical fluid filter: theoretical evaluations and measurement results,” J. Phys. IV 09, Pr3-655–Pr3-660 (1999).
[CrossRef]

Grzelczak, M.

M. Grzelczak, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37, 1783–1791 (2008).
[CrossRef]

Gunawan, A.

R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, and H. Tyagi, “Small particles, big impacts: a review of the diverse applications of nanofluids,” J. Appl. Phys. 113, 011301 (2013).
[CrossRef]

Halas, N.

F. Le, N. Lwin, N. Halas, and P. Nordlander, “Plasmonic interactions between a metallic nanoshell and a thin metallic film,” Phys. Rev. B 76, 165410 (2007).
[CrossRef]

R. Averitt, D. Sarkar, and N. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78, 4217–4220(1997).
[CrossRef]

Halas, N. J.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef]

B. E. Brinson, J. B. Lassiter, C. S. Levin, R. Bardhan, N. Mirin, and N. J. Halas, “Nanoshells made easy: improving Au layer growth on nanoparticle surfaces,” Langmuir 24, 14166–14171 (2008).
[CrossRef]

N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett. 399, 167–171 (2004).
[CrossRef]

T. Pham, J. B. Jackson, N. J. Halas, and T. R. Lee, “Preparation and characterization of gold nanoshells coated with self-assembled monolayers,” Langmuir 18, 4915–4920 (2002).
[CrossRef]

J. B. Jackson and N. J. Halas, “Silver nanoshells: variations in morphologies and optical properties,” J. Phys. Chem. B 105, 2743–2746 (2001).
[CrossRef]

R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16, 1824–1832 (1999).
[CrossRef]

Hasan, W.

J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem. 60, 147–165 (2009).
[CrossRef]

Henzie, J.

J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem. 60, 147–165 (2009).
[CrossRef]

Hoffman, A. S.

M. A. Nash, J. J. Lai, A. S. Hoffman, P. Yager, and P. S. Stayton, ““Smart” diblock copolymers as templates for magnetic-core gold-shell nanoparticle synthesis,” Nano Lett. 10, 85–91 (2010).
[CrossRef]

Hu, J.

L. Lu, G. Sun, H. Zhang, H. Wang, S. Xi, J. Hu, Z. Tian, and R. Chen, “Fabrication of core-shell Au-Pt nanoparticle film and its potential application as catalysis and SERS substrate,” J. Mater. Chem. 14, 1005 (2004).
[CrossRef]

Huang, H.

B. Lu, X. L. Dong, H. Huang, X. F. Zhang, X. G. Zhu, J. P. Lei, and J. P. Sun, “Microwave absorption properties of the core/shell-type iron and nickel nanoparticles,” J. Magn. Magn. Mater. 320, 1106–1111 (2008).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998), p. 544.

Hwang, Y.

Y. Hwang, J. Lee, C. Lee, Y. Jung, S. Cheong, B. Ku, and S. Jang, “Stability and thermal conductivity characteristics of nanofluids,” Thermochim. Acta 455, 70–74 (2007).
[CrossRef]

Imenes, A. G.

A. G. Imenes, and D. R. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review,” Sol. Energy Mater. Sol. Cells 84, 19–69 (2004).
[CrossRef]

Jackson, J. B.

T. Pham, J. B. Jackson, N. J. Halas, and T. R. Lee, “Preparation and characterization of gold nanoshells coated with self-assembled monolayers,” Langmuir 18, 4915–4920 (2002).
[CrossRef]

J. B. Jackson and N. J. Halas, “Silver nanoshells: variations in morphologies and optical properties,” J. Phys. Chem. B 105, 2743–2746 (2001).
[CrossRef]

Jacobson, M. R.

M. A. Chendo, M. R. Jacobson, and D. E. Osborn, “Liquid and thin-film filters for hybrid solar energy conversion systems,” Solar Wind Technol. 4, 131–1381987).
[CrossRef]

Janel, N.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[CrossRef]

Jang, S.

Y. Hwang, J. Lee, C. Lee, Y. Jung, S. Cheong, B. Ku, and S. Jang, “Stability and thermal conductivity characteristics of nanofluids,” Thermochim. Acta 455, 70–74 (2007).
[CrossRef]

Jitsukawa, K.

K. Kaneda, T. Mitsudome, T. Mizugaki, and K. Jitsukawa, “Development of heterogeneous olympic medal metal nanoparticle catalysts for environmentally benign molecular transformations based on the surface properties of hydrotalcite,” Molecules 15, 8988–9007 (2010).
[CrossRef]

Jitsuno, T.

S. Zaitsu, T. Jitsuno, M. Nakatsuka, T. Yamanaka, and S. Motokoshi, “Optical thin films consisting of nanoscale laminated layers,” Appl. Phys. Lett. 80, 2442–2444 (2002).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Joshi, P. P.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9, 2825–2831 (2009).
[CrossRef]

Jun, G.

N. Phonthammachai, J. C. Y. Kah, G. Jun, C. J. R. Sheppard, M. C. Olivo, S. G. Mhaisalkar, and T. J. White, “Synthesis of contiguous silica-gold core-shell structures: critical parameters and processes,” Langmuir 24, 5109–5112 (2008).
[CrossRef]

Jung, Y.

Y. Hwang, J. Lee, C. Lee, Y. Jung, S. Cheong, B. Ku, and S. Jang, “Stability and thermal conductivity characteristics of nanofluids,” Thermochim. Acta 455, 70–74 (2007).
[CrossRef]

Kah, J. C. Y.

N. Phonthammachai, J. C. Y. Kah, G. Jun, C. J. R. Sheppard, M. C. Olivo, S. G. Mhaisalkar, and T. J. White, “Synthesis of contiguous silica-gold core-shell structures: critical parameters and processes,” Langmuir 24, 5109–5112 (2008).
[CrossRef]

Kaluza, J.

J. Kaluza, K.-H. Funken, U. Groer, A. Neumann, and K.-J. Riffelmann, “Properties of an optical fluid filter: theoretical evaluations and measurement results,” J. Phys. IV 09, Pr3-655–Pr3-660 (1999).
[CrossRef]

Kaneda, K.

K. Kaneda, T. Mitsudome, T. Mizugaki, and K. Jitsukawa, “Development of heterogeneous olympic medal metal nanoparticle catalysts for environmentally benign molecular transformations based on the surface properties of hydrotalcite,” Molecules 15, 8988–9007 (2010).
[CrossRef]

Kang, J. U.

J. U. Kang, “Observation of random lasing in gold-silica nanoshell/water solution,” Appl. Phys. Lett. 89, 221112(2006).
[CrossRef]

Karpiouk, A.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9, 2825–2831 (2009).
[CrossRef]

Kelly, L. K.

L. K. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Khlebtsov, B. N.

G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, N. G. Khlebtsov, B. N. Khlebtsov, G. G. Akchurin, I. L. Maksimova, and V. V. Tuchin, “Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy,” J. Biomed. Opt. 14, 021016 (2009).
[CrossRef]

Khlebtsov, N. G.

G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, N. G. Khlebtsov, B. N. Khlebtsov, G. G. Akchurin, I. L. Maksimova, and V. V. Tuchin, “Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy,” J. Biomed. Opt. 14, 021016 (2009).
[CrossRef]

Kim, K.-S.

K.-S. Kim, D. Demberelnyamba, and H. Lee, “Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquids,” Langmuir 20, 556–560 (2004).
[CrossRef]

Kittel, C.

C. Kittel, Introduction to Solid State Physics, 8th ed. (Wiley, 2004), pp. 221–252.

Kreibig, U.

U. Kreibig and V. Vollmer, Optical Properties of Metal Clusters, 1st ed. (Springer, 2010).

Ku, B.

Y. Hwang, J. Lee, C. Lee, Y. Jung, S. Cheong, B. Ku, and S. Jang, “Stability and thermal conductivity characteristics of nanofluids,” Thermochim. Acta 455, 70–74 (2007).
[CrossRef]

Lai, J. J.

M. A. Nash, J. J. Lai, A. S. Hoffman, P. Yager, and P. S. Stayton, ““Smart” diblock copolymers as templates for magnetic-core gold-shell nanoparticle synthesis,” Nano Lett. 10, 85–91 (2010).
[CrossRef]

Lal, S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef]

Lanagan, M. T.

Z. Li, L. A. Fredin, P. Tewari, S. A. DiBenedetto, M. T. Lanagan, M. A. Ratner, and T. J. Marks, “In situ catalytic encapsulation of core-shell nanoparticles having variable shell thickness: dielectric and energy storage properties of high-permittivity metal oxide nanocomposites,” Chem. Mater. 22, 5154–5164 (2010).
[CrossRef]

Larson, T.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9, 2825–2831 (2009).
[CrossRef]

Lassiter, J. B.

B. E. Brinson, J. B. Lassiter, C. S. Levin, R. Bardhan, N. Mirin, and N. J. Halas, “Nanoshells made easy: improving Au layer growth on nanoparticle surfaces,” Langmuir 24, 14166–14171 (2008).
[CrossRef]

Le, F.

F. Le, N. Lwin, N. Halas, and P. Nordlander, “Plasmonic interactions between a metallic nanoshell and a thin metallic film,” Phys. Rev. B 76, 165410 (2007).
[CrossRef]

Lee, C.

Y. Hwang, J. Lee, C. Lee, Y. Jung, S. Cheong, B. Ku, and S. Jang, “Stability and thermal conductivity characteristics of nanofluids,” Thermochim. Acta 455, 70–74 (2007).
[CrossRef]

Lee, H.

K.-S. Kim, D. Demberelnyamba, and H. Lee, “Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquids,” Langmuir 20, 556–560 (2004).
[CrossRef]

Lee, J.

J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem. 60, 147–165 (2009).
[CrossRef]

Y. Hwang, J. Lee, C. Lee, Y. Jung, S. Cheong, B. Ku, and S. Jang, “Stability and thermal conductivity characteristics of nanofluids,” Thermochim. Acta 455, 70–74 (2007).
[CrossRef]

Lee, M. H.

J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem. 60, 147–165 (2009).
[CrossRef]

Lee, T. R.

T. Pham, J. B. Jackson, N. J. Halas, and T. R. Lee, “Preparation and characterization of gold nanoshells coated with self-assembled monolayers,” Langmuir 18, 4915–4920 (2002).
[CrossRef]

Lei, J. P.

B. Lu, X. L. Dong, H. Huang, X. F. Zhang, X. G. Zhu, J. P. Lei, and J. P. Sun, “Microwave absorption properties of the core/shell-type iron and nickel nanoparticles,” J. Magn. Magn. Mater. 320, 1106–1111 (2008).
[CrossRef]

Levin, C. S.

B. E. Brinson, J. B. Lassiter, C. S. Levin, R. Bardhan, N. Mirin, and N. J. Halas, “Nanoshells made easy: improving Au layer growth on nanoparticle surfaces,” Langmuir 24, 14166–14171 (2008).
[CrossRef]

Li, Z.

Z. Li, L. A. Fredin, P. Tewari, S. A. DiBenedetto, M. T. Lanagan, M. A. Ratner, and T. J. Marks, “In situ catalytic encapsulation of core-shell nanoparticles having variable shell thickness: dielectric and energy storage properties of high-permittivity metal oxide nanocomposites,” Chem. Mater. 22, 5154–5164 (2010).
[CrossRef]

Liang, Z.

Z. Liang, A. Susha, and F. Caruso, “Gold nanoparticle-based core—shell and hollow spheres and ordered assemblies thereof,” Chem. Mater. 15, 3176–3183 (2003).
[CrossRef]

Lima, E. C. D.

M. A. G. Soler, S. W. da Silva, V. K. Garg, A. C. Oliveira, R. B. Azevedo, A. C. M. Pimenta, E. C. D. Lima, and P. C. Morais, “Surface passivation and characterization of cobalt-ferrite nanoparticles,” Surf. Sci. 575, 12–16 (2005).
[CrossRef]

Link, S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef]

Liz-Marzán, L. M.

M. Grzelczak, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37, 1783–1791 (2008).
[CrossRef]

Llordes, A.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420(2011).
[CrossRef]

Lu, B.

B. Lu, X. L. Dong, H. Huang, X. F. Zhang, X. G. Zhu, J. P. Lei, and J. P. Sun, “Microwave absorption properties of the core/shell-type iron and nickel nanoparticles,” J. Magn. Magn. Mater. 320, 1106–1111 (2008).
[CrossRef]

Lu, L.

L. Lu, G. Sun, H. Zhang, H. Wang, S. Xi, J. Hu, Z. Tian, and R. Chen, “Fabrication of core-shell Au-Pt nanoparticle film and its potential application as catalysis and SERS substrate,” J. Mater. Chem. 14, 1005 (2004).
[CrossRef]

Lv, W.

R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, and H. Tyagi, “Small particles, big impacts: a review of the diverse applications of nanofluids,” J. Appl. Phys. 113, 011301 (2013).
[CrossRef]

W. Lv, P. E. Phelan, R. Swaminathan, T. P. Otanicar, and R. A. Taylor, “Multifunctional core-shell nanoparticle suspensions for efficient absorption,” J. Sol. Energy Eng. 135, 021005(2013).
[CrossRef]

W. Lv, T. P. Otanicar, P. E. Phelan, L. Dai, R. A. Taylor, and R. Swaminathan, “Surface plasmon resonance shifts of a dispersion of core-shell nanoparticles for efficient solar absorption,” in Proceedings of Micro/Nanoscale Heat & Mass Transfer International Conference (American Society of Mechanical Engineers (ASME), 2012), pp. 1–9.

Lwin, N.

F. Le, N. Lwin, N. Halas, and P. Nordlander, “Plasmonic interactions between a metallic nanoshell and a thin metallic film,” Phys. Rev. B 76, 165410 (2007).
[CrossRef]

Lynam, C.

J. M. Pringle, O. Winther-Jensen, C. Lynam, G. G. Wallace, M. Forsyth, and D. R. MacFarlane, “One step synthesis of conducting polymer-noble metal nanoparticle composites using an ionic liquid,” Adv. Funct. Mater. 18, 2031–2040 (2008).
[CrossRef]

MacFarlane, D. R.

J. M. Pringle, O. Winther-Jensen, C. Lynam, G. G. Wallace, M. Forsyth, and D. R. MacFarlane, “One step synthesis of conducting polymer-noble metal nanoparticle composites using an ionic liquid,” Adv. Funct. Mater. 18, 2031–2040 (2008).
[CrossRef]

Maksimova, I. L.

G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, N. G. Khlebtsov, B. N. Khlebtsov, G. G. Akchurin, I. L. Maksimova, and V. V. Tuchin, “Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy,” J. Biomed. Opt. 14, 021016 (2009).
[CrossRef]

Mallidi, S.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9, 2825–2831 (2009).
[CrossRef]

Marks, T. J.

Z. Li, L. A. Fredin, P. Tewari, S. A. DiBenedetto, M. T. Lanagan, M. A. Ratner, and T. J. Marks, “In situ catalytic encapsulation of core-shell nanoparticles having variable shell thickness: dielectric and energy storage properties of high-permittivity metal oxide nanocomposites,” Chem. Mater. 22, 5154–5164 (2010).
[CrossRef]

Martinu, L.

L. Martinu and D. Poitras, “Plasma deposition of optical films and coatings: a review,” J. Vac. Sci. Technol. A 18, 2619–2645 (2000).
[CrossRef]

Maslyakova, G. N.

G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, N. G. Khlebtsov, B. N. Khlebtsov, G. G. Akchurin, I. L. Maksimova, and V. V. Tuchin, “Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy,” J. Biomed. Opt. 14, 021016 (2009).
[CrossRef]

Mendelsberg, R. J.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420(2011).
[CrossRef]

Metselaar, H. S. C.

A. Ghadimi, R. Saidur, and H. S. C. Metselaar, “A review of nanofluid stability properties and characterization in stationary conditions,” Int. J. Heat Mass Transfer 54, 4051–4068 (2011).
[CrossRef]

Mhaisalkar, S. G.

N. Phonthammachai, J. C. Y. Kah, G. Jun, C. J. R. Sheppard, M. C. Olivo, S. G. Mhaisalkar, and T. J. White, “Synthesis of contiguous silica-gold core-shell structures: critical parameters and processes,” Langmuir 24, 5109–5112 (2008).
[CrossRef]

Mikhailovsky, A.

B. G. Prevo, S. A. Esakoff, A. Mikhailovsky, and J. A. Zasadzinski, “Scalable routes to gold nanoshells with tunable sizes and response to near-infrared pulsed-laser irradiation,” Small 4, 1183–1195 (2008).
[CrossRef]

Milliron, D. J.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420(2011).
[CrossRef]

Mills, D. R.

A. G. Imenes, and D. R. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review,” Sol. Energy Mater. Sol. Cells 84, 19–69 (2004).
[CrossRef]

Mirin, N.

B. E. Brinson, J. B. Lassiter, C. S. Levin, R. Bardhan, N. Mirin, and N. J. Halas, “Nanoshells made easy: improving Au layer growth on nanoparticle surfaces,” Langmuir 24, 14166–14171 (2008).
[CrossRef]

Mitsudome, T.

K. Kaneda, T. Mitsudome, T. Mizugaki, and K. Jitsukawa, “Development of heterogeneous olympic medal metal nanoparticle catalysts for environmentally benign molecular transformations based on the surface properties of hydrotalcite,” Molecules 15, 8988–9007 (2010).
[CrossRef]

Mizugaki, T.

K. Kaneda, T. Mitsudome, T. Mizugaki, and K. Jitsukawa, “Development of heterogeneous olympic medal metal nanoparticle catalysts for environmentally benign molecular transformations based on the surface properties of hydrotalcite,” Molecules 15, 8988–9007 (2010).
[CrossRef]

Moiseev, S. G.

S. G. Moiseev, “Nanocomposite-based ultrathin polarization beamsplitter,” Opt. Spectrosc. 111, 233–240 (2011).
[CrossRef]

Morais, P. C.

M. A. G. Soler, S. W. da Silva, V. K. Garg, A. C. Oliveira, R. B. Azevedo, A. C. M. Pimenta, E. C. D. Lima, and P. C. Morais, “Surface passivation and characterization of cobalt-ferrite nanoparticles,” Surf. Sci. 575, 12–16 (2005).
[CrossRef]

Motokoshi, S.

S. Zaitsu, T. Jitsuno, M. Nakatsuka, T. Yamanaka, and S. Motokoshi, “Optical thin films consisting of nanoscale laminated layers,” Appl. Phys. Lett. 80, 2442–2444 (2002).
[CrossRef]

Müller, A. H. E.

M. Zhang, M. Drechsler, and A. H. E. Müller, “Template-controlled synthesis of wire-like cadmium sulfide nanoparticle assemblies within core–shell cylindrical polymer brushes,” Chem. Mater. 16, 537–543 (2004).
[CrossRef]

Mulvaney, P.

M. Grzelczak, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37, 1783–1791 (2008).
[CrossRef]

Nakatsuka, M.

S. Zaitsu, T. Jitsuno, M. Nakatsuka, T. Yamanaka, and S. Motokoshi, “Optical thin films consisting of nanoscale laminated layers,” Appl. Phys. Lett. 80, 2442–2444 (2002).
[CrossRef]

Nash, M. A.

M. A. Nash, J. J. Lai, A. S. Hoffman, P. Yager, and P. S. Stayton, ““Smart” diblock copolymers as templates for magnetic-core gold-shell nanoparticle synthesis,” Nano Lett. 10, 85–91 (2010).
[CrossRef]

Neeves, A. E.

Neumann, A.

J. Kaluza, K.-H. Funken, U. Groer, A. Neumann, and K.-J. Riffelmann, “Properties of an optical fluid filter: theoretical evaluations and measurement results,” J. Phys. IV 09, Pr3-655–Pr3-660 (1999).
[CrossRef]

Nguyen, M.

R. A. Taylor, P. E. Phelan, T. P. Otanicar, C. A. Walker, M. Nguyen, S. Trimble, and R. Prasher, “Applicability of nanofluids in high flux solar collectors,” J. Renewable Sustainable Energy 3, 023104 (2011).
[CrossRef]

Nordlander, P.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef]

F. Le, N. Lwin, N. Halas, and P. Nordlander, “Plasmonic interactions between a metallic nanoshell and a thin metallic film,” Phys. Rev. B 76, 165410 (2007).
[CrossRef]

N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett. 399, 167–171 (2004).
[CrossRef]

Odom, T. W.

J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem. 60, 147–165 (2009).
[CrossRef]

Oliveira, A. C.

M. A. G. Soler, S. W. da Silva, V. K. Garg, A. C. Oliveira, R. B. Azevedo, A. C. M. Pimenta, E. C. D. Lima, and P. C. Morais, “Surface passivation and characterization of cobalt-ferrite nanoparticles,” Surf. Sci. 575, 12–16 (2005).
[CrossRef]

Olivo, M. C.

N. Phonthammachai, J. C. Y. Kah, G. Jun, C. J. R. Sheppard, M. C. Olivo, S. G. Mhaisalkar, and T. J. White, “Synthesis of contiguous silica-gold core-shell structures: critical parameters and processes,” Langmuir 24, 5109–5112 (2008).
[CrossRef]

Osborn, D. E.

M. A. Chendo, M. R. Jacobson, and D. E. Osborn, “Liquid and thin-film filters for hybrid solar energy conversion systems,” Solar Wind Technol. 4, 131–1381987).
[CrossRef]

Otanicar, T.

R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, and H. Tyagi, “Small particles, big impacts: a review of the diverse applications of nanofluids,” J. Appl. Phys. 113, 011301 (2013).
[CrossRef]

R. A. Taylor, P. E. Phelan, T. Otanicar, R. J. Adrian, and R. S. Prasher, “Vapor generation in a nanoparticle liquid suspension using a focused, continuous laser beam,” Appl. Phys. Lett. 95, 161907 (2009).
[CrossRef]

Otanicar, T. P.

W. Lv, P. E. Phelan, R. Swaminathan, T. P. Otanicar, and R. A. Taylor, “Multifunctional core-shell nanoparticle suspensions for efficient absorption,” J. Sol. Energy Eng. 135, 021005(2013).
[CrossRef]

R. A. Taylor, T. P. Otanicar, and G. Rosengarten, “Nanofluid-based optical filter optimization for PV/T systems,” Light Sci. Appl. 1, 1–7 (2012).
[CrossRef]

R. A. Taylor, P. E. Phelan, T. P. Otanicar, C. A. Walker, M. Nguyen, S. Trimble, and R. Prasher, “Applicability of nanofluids in high flux solar collectors,” J. Renewable Sustainable Energy 3, 023104 (2011).
[CrossRef]

T. P. Otanicar, I. Chowdhury, R. Prasher, and P. E. Phelan, “Band-gap tuned direct absorption for a hybrid concentrating solar photovoltaic/thermal system,” J. Sol. Energy Eng. 133, 041014 (2011).
[CrossRef]

T. P. Otanicar, P. E. Phelan, R. A. Taylor, and H. Tyagi, “Spatially varying extinction coefficient for direct absorption solar thermal collector optimization,” J. Sol. Energy Eng. 133, 024501 (2011).
[CrossRef]

R. A. Taylor, P. E. Phelan, T. P. Otanicar, R. Adrian, and R. Prasher, “Nanofluid optical property characterization: towards efficient direct absorption solar collectors,” Nanoscale Res. Lett. 6, 225 (2011).
[CrossRef]

T. P. Otanicar, P. E. Phelan, R. S. Prasher, G. Rosengarten, and R. A. Taylor, “Nanofluid-based direct absorption solar collector,” J. Renewable Sustainable Energy 2, 033102 (2010).
[CrossRef]

T. P. Otanicar, P. E. Phelan, and J. S. Golden, “Optical properties of liquids for direct absorption solar thermal energy systems,” Sol. Energy 83, 969–977 (2009).
[CrossRef]

W. Lv, T. P. Otanicar, P. E. Phelan, L. Dai, R. A. Taylor, and R. Swaminathan, “Surface plasmon resonance shifts of a dispersion of core-shell nanoparticles for efficient solar absorption,” in Proceedings of Micro/Nanoscale Heat & Mass Transfer International Conference (American Society of Mechanical Engineers (ASME), 2012), pp. 1–9.

T. P. Otanicar, R. A. Taylor, P. E. Phelan, and R. S. Prasher, “Impact of size and scattering mode on the optimal solar absorbing nanofluid,” in Proceedings of the ASME 2009 3rd International Conference of Energy Sustainability (American Society of Mechanical Engineers (ASME), 2009), pp. 1–6.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1997), Vol. 575, p. 999.

Palombo, N.

N. Palombo and K. Park, “Investigation of dynamic near-field radiation between quantum dots and plasmonic nanoparticles for effective tailoring of the solar spectrum,” in Proceedings of ASME 2011 International Mechanical Engineering Congress and Exposition (American Society of Mechanical Engineers (ASME), 2011), pp. 1–5.

Park, K.

N. Palombo and K. Park, “Investigation of dynamic near-field radiation between quantum dots and plasmonic nanoparticles for effective tailoring of the solar spectrum,” in Proceedings of ASME 2011 International Mechanical Engineering Congress and Exposition (American Society of Mechanical Engineers (ASME), 2011), pp. 1–5.

Pérez-Juste, J.

M. Grzelczak, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37, 1783–1791 (2008).
[CrossRef]

Pham, T.

T. Pham, J. B. Jackson, N. J. Halas, and T. R. Lee, “Preparation and characterization of gold nanoshells coated with self-assembled monolayers,” Langmuir 18, 4915–4920 (2002).
[CrossRef]

Phelan, P.

R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, and H. Tyagi, “Small particles, big impacts: a review of the diverse applications of nanofluids,” J. Appl. Phys. 113, 011301 (2013).
[CrossRef]

Phelan, P. E.

W. Lv, P. E. Phelan, R. Swaminathan, T. P. Otanicar, and R. A. Taylor, “Multifunctional core-shell nanoparticle suspensions for efficient absorption,” J. Sol. Energy Eng. 135, 021005(2013).
[CrossRef]

R. A. Taylor, P. E. Phelan, T. P. Otanicar, R. Adrian, and R. Prasher, “Nanofluid optical property characterization: towards efficient direct absorption solar collectors,” Nanoscale Res. Lett. 6, 225 (2011).
[CrossRef]

R. A. Taylor, P. E. Phelan, T. P. Otanicar, C. A. Walker, M. Nguyen, S. Trimble, and R. Prasher, “Applicability of nanofluids in high flux solar collectors,” J. Renewable Sustainable Energy 3, 023104 (2011).
[CrossRef]

T. P. Otanicar, P. E. Phelan, R. A. Taylor, and H. Tyagi, “Spatially varying extinction coefficient for direct absorption solar thermal collector optimization,” J. Sol. Energy Eng. 133, 024501 (2011).
[CrossRef]

T. P. Otanicar, I. Chowdhury, R. Prasher, and P. E. Phelan, “Band-gap tuned direct absorption for a hybrid concentrating solar photovoltaic/thermal system,” J. Sol. Energy Eng. 133, 041014 (2011).
[CrossRef]

T. P. Otanicar, P. E. Phelan, R. S. Prasher, G. Rosengarten, and R. A. Taylor, “Nanofluid-based direct absorption solar collector,” J. Renewable Sustainable Energy 2, 033102 (2010).
[CrossRef]

T. P. Otanicar, P. E. Phelan, and J. S. Golden, “Optical properties of liquids for direct absorption solar thermal energy systems,” Sol. Energy 83, 969–977 (2009).
[CrossRef]

R. A. Taylor, P. E. Phelan, T. Otanicar, R. J. Adrian, and R. S. Prasher, “Vapor generation in a nanoparticle liquid suspension using a focused, continuous laser beam,” Appl. Phys. Lett. 95, 161907 (2009).
[CrossRef]

W. Lv, T. P. Otanicar, P. E. Phelan, L. Dai, R. A. Taylor, and R. Swaminathan, “Surface plasmon resonance shifts of a dispersion of core-shell nanoparticles for efficient solar absorption,” in Proceedings of Micro/Nanoscale Heat & Mass Transfer International Conference (American Society of Mechanical Engineers (ASME), 2012), pp. 1–9.

T. P. Otanicar, R. A. Taylor, P. E. Phelan, and R. S. Prasher, “Impact of size and scattering mode on the optimal solar absorbing nanofluid,” in Proceedings of the ASME 2009 3rd International Conference of Energy Sustainability (American Society of Mechanical Engineers (ASME), 2009), pp. 1–6.

Phonthammachai, N.

N. Phonthammachai, J. C. Y. Kah, G. Jun, C. J. R. Sheppard, M. C. Olivo, S. G. Mhaisalkar, and T. J. White, “Synthesis of contiguous silica-gold core-shell structures: critical parameters and processes,” Langmuir 24, 5109–5112 (2008).
[CrossRef]

Pimenta, A. C. M.

M. A. G. Soler, S. W. da Silva, V. K. Garg, A. C. Oliveira, R. B. Azevedo, A. C. M. Pimenta, E. C. D. Lima, and P. C. Morais, “Surface passivation and characterization of cobalt-ferrite nanoparticles,” Surf. Sci. 575, 12–16 (2005).
[CrossRef]

Poitras, D.

L. Martinu and D. Poitras, “Plasma deposition of optical films and coatings: a review,” J. Vac. Sci. Technol. A 18, 2619–2645 (2000).
[CrossRef]

Prasad, P. N.

K.-T. Yong, Y. Sahoo, M. T. Swihart, and P. N. Prasad, “Synthesis and plasmonic properties of silver and gold nanoshells on polystyrene cores of different size and of gold-silver core-shell nanostructures,” Colloids Surf. A 290, 89–105 (2006).
[CrossRef]

Prasher, R.

R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, and H. Tyagi, “Small particles, big impacts: a review of the diverse applications of nanofluids,” J. Appl. Phys. 113, 011301 (2013).
[CrossRef]

R. A. Taylor, P. E. Phelan, T. P. Otanicar, R. Adrian, and R. Prasher, “Nanofluid optical property characterization: towards efficient direct absorption solar collectors,” Nanoscale Res. Lett. 6, 225 (2011).
[CrossRef]

R. A. Taylor, P. E. Phelan, T. P. Otanicar, C. A. Walker, M. Nguyen, S. Trimble, and R. Prasher, “Applicability of nanofluids in high flux solar collectors,” J. Renewable Sustainable Energy 3, 023104 (2011).
[CrossRef]

T. P. Otanicar, I. Chowdhury, R. Prasher, and P. E. Phelan, “Band-gap tuned direct absorption for a hybrid concentrating solar photovoltaic/thermal system,” J. Sol. Energy Eng. 133, 041014 (2011).
[CrossRef]

Prasher, R. S.

T. P. Otanicar, P. E. Phelan, R. S. Prasher, G. Rosengarten, and R. A. Taylor, “Nanofluid-based direct absorption solar collector,” J. Renewable Sustainable Energy 2, 033102 (2010).
[CrossRef]

R. A. Taylor, P. E. Phelan, T. Otanicar, R. J. Adrian, and R. S. Prasher, “Vapor generation in a nanoparticle liquid suspension using a focused, continuous laser beam,” Appl. Phys. Lett. 95, 161907 (2009).
[CrossRef]

T. P. Otanicar, R. A. Taylor, P. E. Phelan, and R. S. Prasher, “Impact of size and scattering mode on the optimal solar absorbing nanofluid,” in Proceedings of the ASME 2009 3rd International Conference of Energy Sustainability (American Society of Mechanical Engineers (ASME), 2009), pp. 1–6.

Prevo, B. G.

B. G. Prevo, S. A. Esakoff, A. Mikhailovsky, and J. A. Zasadzinski, “Scalable routes to gold nanoshells with tunable sizes and response to near-infrared pulsed-laser irradiation,” Small 4, 1183–1195 (2008).
[CrossRef]

Pringle, J. M.

J. M. Pringle, O. Winther-Jensen, C. Lynam, G. G. Wallace, M. Forsyth, and D. R. MacFarlane, “One step synthesis of conducting polymer-noble metal nanoparticle composites using an ionic liquid,” Adv. Funct. Mater. 18, 2031–2040 (2008).
[CrossRef]

Qin, B.

K. K. Fung, B. Qin, and X. X. Zhang, “Passivation of a-Fe nanoparticle by epitaxial g-Fe2O3 shell,” Mater. Sci. Eng. A 286, 135–138 (2010).
[CrossRef]

Ratner, M. A.

Z. Li, L. A. Fredin, P. Tewari, S. A. DiBenedetto, M. T. Lanagan, M. A. Ratner, and T. J. Marks, “In situ catalytic encapsulation of core-shell nanoparticles having variable shell thickness: dielectric and energy storage properties of high-permittivity metal oxide nanocomposites,” Chem. Mater. 22, 5154–5164 (2010).
[CrossRef]

Richardson, T. J.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420(2011).
[CrossRef]

Riffelmann, K.-J.

J. Kaluza, K.-H. Funken, U. Groer, A. Neumann, and K.-J. Riffelmann, “Properties of an optical fluid filter: theoretical evaluations and measurement results,” J. Phys. IV 09, Pr3-655–Pr3-660 (1999).
[CrossRef]

Roques-Carmes, T.

T. Roques-Carmes, F. Aldeek, L. Balan, S. Corbel, and R. Schneider, “Aqueous dispersions of core/shell CdSe/CdS quantum dots as nanofluids for electrowetting,” Colloids Surf. A 377, 269–277 (2011).
[CrossRef]

Rosengarten, G.

R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, and H. Tyagi, “Small particles, big impacts: a review of the diverse applications of nanofluids,” J. Appl. Phys. 113, 011301 (2013).
[CrossRef]

R. A. Taylor, T. P. Otanicar, and G. Rosengarten, “Nanofluid-based optical filter optimization for PV/T systems,” Light Sci. Appl. 1, 1–7 (2012).
[CrossRef]

T. P. Otanicar, P. E. Phelan, R. S. Prasher, G. Rosengarten, and R. A. Taylor, “Nanofluid-based direct absorption solar collector,” J. Renewable Sustainable Energy 2, 033102 (2010).
[CrossRef]

Rubner, M. F.

T. C. Wang, M. F. Rubner, and R. E. Cohen, “Polyelectrolyte multilayer nanoreactors for preparing silver nanoparticle composites: controlling metal concentration and nanoparticle size,” Langmuir 18, 3370–3375 (2002).
[CrossRef]

Runnerstrom, E. L.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420(2011).
[CrossRef]

Sahoo, Y.

K.-T. Yong, Y. Sahoo, M. T. Swihart, and P. N. Prasad, “Synthesis and plasmonic properties of silver and gold nanoshells on polystyrene cores of different size and of gold-silver core-shell nanostructures,” Colloids Surf. A 290, 89–105 (2006).
[CrossRef]

Saidur, R.

A. Ghadimi, R. Saidur, and H. S. C. Metselaar, “A review of nanofluid stability properties and characterization in stationary conditions,” Int. J. Heat Mass Transfer 54, 4051–4068 (2011).
[CrossRef]

Sarkar, D.

R. Averitt, D. Sarkar, and N. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78, 4217–4220(1997).
[CrossRef]

Schatz, G. C.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[CrossRef]

S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606–12612 (2004).
[CrossRef]

L. K. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Schneider, R.

T. Roques-Carmes, F. Aldeek, L. Balan, S. Corbel, and R. Schneider, “Aqueous dispersions of core/shell CdSe/CdS quantum dots as nanofluids for electrowetting,” Colloids Surf. A 377, 269–277 (2011).
[CrossRef]

Sheppard, C. J. R.

N. Phonthammachai, J. C. Y. Kah, G. Jun, C. J. R. Sheppard, M. C. Olivo, S. G. Mhaisalkar, and T. J. White, “Synthesis of contiguous silica-gold core-shell structures: critical parameters and processes,” Langmuir 24, 5109–5112 (2008).
[CrossRef]

Sokolov, K.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9, 2825–2831 (2009).
[CrossRef]

Soler, M. A. G.

M. A. G. Soler, S. W. da Silva, V. K. Garg, A. C. Oliveira, R. B. Azevedo, A. C. M. Pimenta, E. C. D. Lima, and P. C. Morais, “Surface passivation and characterization of cobalt-ferrite nanoparticles,” Surf. Sci. 575, 12–16 (2005).
[CrossRef]

Spicer, W. E.

C. N. Berglund and W. E. Spicer, “Photoemission studies of copper and silver: theory,” Phys. Rev. 136, A1030–A1044(1964).
[CrossRef]

Stayton, P. S.

M. A. Nash, J. J. Lai, A. S. Hoffman, P. Yager, and P. S. Stayton, ““Smart” diblock copolymers as templates for magnetic-core gold-shell nanoparticle synthesis,” Nano Lett. 10, 85–91 (2010).
[CrossRef]

Stöber, W.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26, 62–69 (1968).
[CrossRef]

Stucky, G. D.

N. Zheng and G. D. Stucky, “A general synthetic strategy for oxide-supported metal nanoparticle catalysts,” J. Chem. Am. Soc. 128, 14278–14280 (2006).
[CrossRef]

Suleymanova, L. V.

G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, N. G. Khlebtsov, B. N. Khlebtsov, G. G. Akchurin, I. L. Maksimova, and V. V. Tuchin, “Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy,” J. Biomed. Opt. 14, 021016 (2009).
[CrossRef]

Sun, G.

L. Lu, G. Sun, H. Zhang, H. Wang, S. Xi, J. Hu, Z. Tian, and R. Chen, “Fabrication of core-shell Au-Pt nanoparticle film and its potential application as catalysis and SERS substrate,” J. Mater. Chem. 14, 1005 (2004).
[CrossRef]

Sun, J. P.

B. Lu, X. L. Dong, H. Huang, X. F. Zhang, X. G. Zhu, J. P. Lei, and J. P. Sun, “Microwave absorption properties of the core/shell-type iron and nickel nanoparticles,” J. Magn. Magn. Mater. 320, 1106–1111 (2008).
[CrossRef]

Susha, A.

Z. Liang, A. Susha, and F. Caruso, “Gold nanoparticle-based core—shell and hollow spheres and ordered assemblies thereof,” Chem. Mater. 15, 3176–3183 (2003).
[CrossRef]

Swaminathan, R.

W. Lv, P. E. Phelan, R. Swaminathan, T. P. Otanicar, and R. A. Taylor, “Multifunctional core-shell nanoparticle suspensions for efficient absorption,” J. Sol. Energy Eng. 135, 021005(2013).
[CrossRef]

W. Lv, T. P. Otanicar, P. E. Phelan, L. Dai, R. A. Taylor, and R. Swaminathan, “Surface plasmon resonance shifts of a dispersion of core-shell nanoparticles for efficient solar absorption,” in Proceedings of Micro/Nanoscale Heat & Mass Transfer International Conference (American Society of Mechanical Engineers (ASME), 2012), pp. 1–9.

Swanson, E. J.

J. Tavares, E. J. Swanson, and S. Coulombe, “Plasma synthesis of coated metal nanoparticles with surface properties tailored for dispersion,” Plasma Processes Polym. 5, 759–769 (2008).
[CrossRef]

Swihart, M. T.

K.-T. Yong, Y. Sahoo, M. T. Swihart, and P. N. Prasad, “Synthesis and plasmonic properties of silver and gold nanoshells on polystyrene cores of different size and of gold-silver core-shell nanostructures,” Colloids Surf. A 290, 89–105 (2006).
[CrossRef]

Tam, J.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9, 2825–2831 (2009).
[CrossRef]

Tavares, J.

J. Tavares and S. Coulombe, “Dual plasma synthesis and characterization of a stable copper-ethylene glycol nanofluid,” Powder Technol. 210, 132–142 (2011).
[CrossRef]

J. Tavares, E. J. Swanson, and S. Coulombe, “Plasma synthesis of coated metal nanoparticles with surface properties tailored for dispersion,” Plasma Processes Polym. 5, 759–769 (2008).
[CrossRef]

Taylor, R.

R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, and H. Tyagi, “Small particles, big impacts: a review of the diverse applications of nanofluids,” J. Appl. Phys. 113, 011301 (2013).
[CrossRef]

Taylor, R. A.

W. Lv, P. E. Phelan, R. Swaminathan, T. P. Otanicar, and R. A. Taylor, “Multifunctional core-shell nanoparticle suspensions for efficient absorption,” J. Sol. Energy Eng. 135, 021005(2013).
[CrossRef]

R. A. Taylor, T. P. Otanicar, and G. Rosengarten, “Nanofluid-based optical filter optimization for PV/T systems,” Light Sci. Appl. 1, 1–7 (2012).
[CrossRef]

R. A. Taylor, P. E. Phelan, T. P. Otanicar, C. A. Walker, M. Nguyen, S. Trimble, and R. Prasher, “Applicability of nanofluids in high flux solar collectors,” J. Renewable Sustainable Energy 3, 023104 (2011).
[CrossRef]

T. P. Otanicar, P. E. Phelan, R. A. Taylor, and H. Tyagi, “Spatially varying extinction coefficient for direct absorption solar thermal collector optimization,” J. Sol. Energy Eng. 133, 024501 (2011).
[CrossRef]

R. A. Taylor, P. E. Phelan, T. P. Otanicar, R. Adrian, and R. Prasher, “Nanofluid optical property characterization: towards efficient direct absorption solar collectors,” Nanoscale Res. Lett. 6, 225 (2011).
[CrossRef]

T. P. Otanicar, P. E. Phelan, R. S. Prasher, G. Rosengarten, and R. A. Taylor, “Nanofluid-based direct absorption solar collector,” J. Renewable Sustainable Energy 2, 033102 (2010).
[CrossRef]

R. A. Taylor, P. E. Phelan, T. Otanicar, R. J. Adrian, and R. S. Prasher, “Vapor generation in a nanoparticle liquid suspension using a focused, continuous laser beam,” Appl. Phys. Lett. 95, 161907 (2009).
[CrossRef]

W. Lv, T. P. Otanicar, P. E. Phelan, L. Dai, R. A. Taylor, and R. Swaminathan, “Surface plasmon resonance shifts of a dispersion of core-shell nanoparticles for efficient solar absorption,” in Proceedings of Micro/Nanoscale Heat & Mass Transfer International Conference (American Society of Mechanical Engineers (ASME), 2012), pp. 1–9.

T. P. Otanicar, R. A. Taylor, P. E. Phelan, and R. S. Prasher, “Impact of size and scattering mode on the optimal solar absorbing nanofluid,” in Proceedings of the ASME 2009 3rd International Conference of Energy Sustainability (American Society of Mechanical Engineers (ASME), 2009), pp. 1–6.

Terentyuk, G. S.

G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, N. G. Khlebtsov, B. N. Khlebtsov, G. G. Akchurin, I. L. Maksimova, and V. V. Tuchin, “Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy,” J. Biomed. Opt. 14, 021016 (2009).
[CrossRef]

Tewari, P.

Z. Li, L. A. Fredin, P. Tewari, S. A. DiBenedetto, M. T. Lanagan, M. A. Ratner, and T. J. Marks, “In situ catalytic encapsulation of core-shell nanoparticles having variable shell thickness: dielectric and energy storage properties of high-permittivity metal oxide nanocomposites,” Chem. Mater. 22, 5154–5164 (2010).
[CrossRef]

Tian, Z.

L. Lu, G. Sun, H. Zhang, H. Wang, S. Xi, J. Hu, Z. Tian, and R. Chen, “Fabrication of core-shell Au-Pt nanoparticle film and its potential application as catalysis and SERS substrate,” J. Mater. Chem. 14, 1005 (2004).
[CrossRef]

Trimble, S.

R. A. Taylor, P. E. Phelan, T. P. Otanicar, C. A. Walker, M. Nguyen, S. Trimble, and R. Prasher, “Applicability of nanofluids in high flux solar collectors,” J. Renewable Sustainable Energy 3, 023104 (2011).
[CrossRef]

Tuchin, V. V.

G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, N. G. Khlebtsov, B. N. Khlebtsov, G. G. Akchurin, I. L. Maksimova, and V. V. Tuchin, “Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy,” J. Biomed. Opt. 14, 021016 (2009).
[CrossRef]

Tyagi, H.

R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, and H. Tyagi, “Small particles, big impacts: a review of the diverse applications of nanofluids,” J. Appl. Phys. 113, 011301 (2013).
[CrossRef]

T. P. Otanicar, P. E. Phelan, R. A. Taylor, and H. Tyagi, “Spatially varying extinction coefficient for direct absorption solar thermal collector optimization,” J. Sol. Energy Eng. 133, 024501 (2011).
[CrossRef]

Vollmer, V.

U. Kreibig and V. Vollmer, Optical Properties of Metal Clusters, 1st ed. (Springer, 2010).

Walker, C. A.

R. A. Taylor, P. E. Phelan, T. P. Otanicar, C. A. Walker, M. Nguyen, S. Trimble, and R. Prasher, “Applicability of nanofluids in high flux solar collectors,” J. Renewable Sustainable Energy 3, 023104 (2011).
[CrossRef]

Wallace, G. G.

J. M. Pringle, O. Winther-Jensen, C. Lynam, G. G. Wallace, M. Forsyth, and D. R. MacFarlane, “One step synthesis of conducting polymer-noble metal nanoparticle composites using an ionic liquid,” Adv. Funct. Mater. 18, 2031–2040 (2008).
[CrossRef]

Wang, H.

L. Lu, G. Sun, H. Zhang, H. Wang, S. Xi, J. Hu, Z. Tian, and R. Chen, “Fabrication of core-shell Au-Pt nanoparticle film and its potential application as catalysis and SERS substrate,” J. Mater. Chem. 14, 1005 (2004).
[CrossRef]

Wang, T. C.

T. C. Wang, M. F. Rubner, and R. E. Cohen, “Polyelectrolyte multilayer nanoreactors for preparing silver nanoparticle composites: controlling metal concentration and nanoparticle size,” Langmuir 18, 3370–3375 (2002).
[CrossRef]

Westcott, S. L.

White, T. J.

N. Phonthammachai, J. C. Y. Kah, G. Jun, C. J. R. Sheppard, M. C. Olivo, S. G. Mhaisalkar, and T. J. White, “Synthesis of contiguous silica-gold core-shell structures: critical parameters and processes,” Langmuir 24, 5109–5112 (2008).
[CrossRef]

Whitesell, J. K.

K. R. Gopidas, J. K. Whitesell, M. A. Fox, and N. Carolina, “Catalytic applications of a palladium-nanoparticle-cored dendrimer,” Nano Lett. 3, 1–4 (2003).
[CrossRef]

Winther-Jensen, O.

J. M. Pringle, O. Winther-Jensen, C. Lynam, G. G. Wallace, M. Forsyth, and D. R. MacFarlane, “One step synthesis of conducting polymer-noble metal nanoparticle composites using an ionic liquid,” Adv. Funct. Mater. 18, 2031–2040 (2008).
[CrossRef]

Xi, S.

L. Lu, G. Sun, H. Zhang, H. Wang, S. Xi, J. Hu, Z. Tian, and R. Chen, “Fabrication of core-shell Au-Pt nanoparticle film and its potential application as catalysis and SERS substrate,” J. Mater. Chem. 14, 1005 (2004).
[CrossRef]

Yager, P.

M. A. Nash, J. J. Lai, A. S. Hoffman, P. Yager, and P. S. Stayton, ““Smart” diblock copolymers as templates for magnetic-core gold-shell nanoparticle synthesis,” Nano Lett. 10, 85–91 (2010).
[CrossRef]

Yamanaka, T.

S. Zaitsu, T. Jitsuno, M. Nakatsuka, T. Yamanaka, and S. Motokoshi, “Optical thin films consisting of nanoscale laminated layers,” Appl. Phys. Lett. 80, 2442–2444 (2002).
[CrossRef]

Yong, K.-T.

K.-T. Yong, Y. Sahoo, M. T. Swihart, and P. N. Prasad, “Synthesis and plasmonic properties of silver and gold nanoshells on polystyrene cores of different size and of gold-silver core-shell nanostructures,” Colloids Surf. A 290, 89–105 (2006).
[CrossRef]

Zaitsu, S.

S. Zaitsu, T. Jitsuno, M. Nakatsuka, T. Yamanaka, and S. Motokoshi, “Optical thin films consisting of nanoscale laminated layers,” Appl. Phys. Lett. 80, 2442–2444 (2002).
[CrossRef]

Zasadzinski, J. A.

B. G. Prevo, S. A. Esakoff, A. Mikhailovsky, and J. A. Zasadzinski, “Scalable routes to gold nanoshells with tunable sizes and response to near-infrared pulsed-laser irradiation,” Small 4, 1183–1195 (2008).
[CrossRef]

Zhang, H.

L. Lu, G. Sun, H. Zhang, H. Wang, S. Xi, J. Hu, Z. Tian, and R. Chen, “Fabrication of core-shell Au-Pt nanoparticle film and its potential application as catalysis and SERS substrate,” J. Mater. Chem. 14, 1005 (2004).
[CrossRef]

Zhang, M.

M. Zhang, M. Drechsler, and A. H. E. Müller, “Template-controlled synthesis of wire-like cadmium sulfide nanoparticle assemblies within core–shell cylindrical polymer brushes,” Chem. Mater. 16, 537–543 (2004).
[CrossRef]

Zhang, X. F.

B. Lu, X. L. Dong, H. Huang, X. F. Zhang, X. G. Zhu, J. P. Lei, and J. P. Sun, “Microwave absorption properties of the core/shell-type iron and nickel nanoparticles,” J. Magn. Magn. Mater. 320, 1106–1111 (2008).
[CrossRef]

Zhang, X. X.

K. K. Fung, B. Qin, and X. X. Zhang, “Passivation of a-Fe nanoparticle by epitaxial g-Fe2O3 shell,” Mater. Sci. Eng. A 286, 135–138 (2010).
[CrossRef]

Zhao, L. L.

L. K. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Zheng, N.

N. Zheng and G. D. Stucky, “A general synthetic strategy for oxide-supported metal nanoparticle catalysts,” J. Chem. Am. Soc. 128, 14278–14280 (2006).
[CrossRef]

Zhu, X. G.

B. Lu, X. L. Dong, H. Huang, X. F. Zhang, X. G. Zhu, J. P. Lei, and J. P. Sun, “Microwave absorption properties of the core/shell-type iron and nickel nanoparticles,” J. Magn. Magn. Mater. 320, 1106–1111 (2008).
[CrossRef]

Zou, S.

S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606–12612 (2004).
[CrossRef]

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[CrossRef]

Adv. Funct. Mater.

J. M. Pringle, O. Winther-Jensen, C. Lynam, G. G. Wallace, M. Forsyth, and D. R. MacFarlane, “One step synthesis of conducting polymer-noble metal nanoparticle composites using an ionic liquid,” Adv. Funct. Mater. 18, 2031–2040 (2008).
[CrossRef]

Angew. Chem. Int. Ed. Engl., Suppl.

A. Abou-Hassan, R. Bazzi, and V. Cabuil, “Multistep continuous-flow microsynthesis of magnetic and fluorescent gamma-Fe2O3@SiO2 core/shell nanoparticles,” Angew. Chem. Int. Ed. Engl., Suppl. 48, 7180–7183 (2009).
[CrossRef]

Annu. Rev. Phys. Chem.

J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem. 60, 147–165 (2009).
[CrossRef]

Appl. Phys. Lett.

S. Zaitsu, T. Jitsuno, M. Nakatsuka, T. Yamanaka, and S. Motokoshi, “Optical thin films consisting of nanoscale laminated layers,” Appl. Phys. Lett. 80, 2442–2444 (2002).
[CrossRef]

R. A. Taylor, P. E. Phelan, T. Otanicar, R. J. Adrian, and R. S. Prasher, “Vapor generation in a nanoparticle liquid suspension using a focused, continuous laser beam,” Appl. Phys. Lett. 95, 161907 (2009).
[CrossRef]

J. U. Kang, “Observation of random lasing in gold-silica nanoshell/water solution,” Appl. Phys. Lett. 89, 221112(2006).
[CrossRef]

Chem. Mater.

Z. Li, L. A. Fredin, P. Tewari, S. A. DiBenedetto, M. T. Lanagan, M. A. Ratner, and T. J. Marks, “In situ catalytic encapsulation of core-shell nanoparticles having variable shell thickness: dielectric and energy storage properties of high-permittivity metal oxide nanocomposites,” Chem. Mater. 22, 5154–5164 (2010).
[CrossRef]

Z. Liang, A. Susha, and F. Caruso, “Gold nanoparticle-based core—shell and hollow spheres and ordered assemblies thereof,” Chem. Mater. 15, 3176–3183 (2003).
[CrossRef]

M. Zhang, M. Drechsler, and A. H. E. Müller, “Template-controlled synthesis of wire-like cadmium sulfide nanoparticle assemblies within core–shell cylindrical polymer brushes,” Chem. Mater. 16, 537–543 (2004).
[CrossRef]

Chem. Phys. Lett.

N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett. 399, 167–171 (2004).
[CrossRef]

Chem. Rev.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef]

Chem. Soc. Rev.

M. Grzelczak, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37, 1783–1791 (2008).
[CrossRef]

Colloids Surf. A

T. Roques-Carmes, F. Aldeek, L. Balan, S. Corbel, and R. Schneider, “Aqueous dispersions of core/shell CdSe/CdS quantum dots as nanofluids for electrowetting,” Colloids Surf. A 377, 269–277 (2011).
[CrossRef]

K.-T. Yong, Y. Sahoo, M. T. Swihart, and P. N. Prasad, “Synthesis and plasmonic properties of silver and gold nanoshells on polystyrene cores of different size and of gold-silver core-shell nanostructures,” Colloids Surf. A 290, 89–105 (2006).
[CrossRef]

Int. J. Heat Mass Transfer

A. Ghadimi, R. Saidur, and H. S. C. Metselaar, “A review of nanofluid stability properties and characterization in stationary conditions,” Int. J. Heat Mass Transfer 54, 4051–4068 (2011).
[CrossRef]

J. Appl. Phys.

R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, and H. Tyagi, “Small particles, big impacts: a review of the diverse applications of nanofluids,” J. Appl. Phys. 113, 011301 (2013).
[CrossRef]

J. Biomed. Opt.

G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, N. G. Khlebtsov, B. N. Khlebtsov, G. G. Akchurin, I. L. Maksimova, and V. V. Tuchin, “Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy,” J. Biomed. Opt. 14, 021016 (2009).
[CrossRef]

J. Chem. Am. Soc.

N. Zheng and G. D. Stucky, “A general synthetic strategy for oxide-supported metal nanoparticle catalysts,” J. Chem. Am. Soc. 128, 14278–14280 (2006).
[CrossRef]

J. Chem. Phys.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[CrossRef]

S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606–12612 (2004).
[CrossRef]

J. Colloid Interface Sci.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26, 62–69 (1968).
[CrossRef]

J. Magn. Magn. Mater.

B. Lu, X. L. Dong, H. Huang, X. F. Zhang, X. G. Zhu, J. P. Lei, and J. P. Sun, “Microwave absorption properties of the core/shell-type iron and nickel nanoparticles,” J. Magn. Magn. Mater. 320, 1106–1111 (2008).
[CrossRef]

J. Mater. Chem.

L. Lu, G. Sun, H. Zhang, H. Wang, S. Xi, J. Hu, Z. Tian, and R. Chen, “Fabrication of core-shell Au-Pt nanoparticle film and its potential application as catalysis and SERS substrate,” J. Mater. Chem. 14, 1005 (2004).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. B

L. K. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

J. B. Jackson and N. J. Halas, “Silver nanoshells: variations in morphologies and optical properties,” J. Phys. Chem. B 105, 2743–2746 (2001).
[CrossRef]

J. Phys. IV

J. Kaluza, K.-H. Funken, U. Groer, A. Neumann, and K.-J. Riffelmann, “Properties of an optical fluid filter: theoretical evaluations and measurement results,” J. Phys. IV 09, Pr3-655–Pr3-660 (1999).
[CrossRef]

J. Renewable Sustainable Energy

T. P. Otanicar, P. E. Phelan, R. S. Prasher, G. Rosengarten, and R. A. Taylor, “Nanofluid-based direct absorption solar collector,” J. Renewable Sustainable Energy 2, 033102 (2010).
[CrossRef]

R. A. Taylor, P. E. Phelan, T. P. Otanicar, C. A. Walker, M. Nguyen, S. Trimble, and R. Prasher, “Applicability of nanofluids in high flux solar collectors,” J. Renewable Sustainable Energy 3, 023104 (2011).
[CrossRef]

J. Sol. Energy Eng.

T. P. Otanicar, I. Chowdhury, R. Prasher, and P. E. Phelan, “Band-gap tuned direct absorption for a hybrid concentrating solar photovoltaic/thermal system,” J. Sol. Energy Eng. 133, 041014 (2011).
[CrossRef]

T. P. Otanicar, P. E. Phelan, R. A. Taylor, and H. Tyagi, “Spatially varying extinction coefficient for direct absorption solar thermal collector optimization,” J. Sol. Energy Eng. 133, 024501 (2011).
[CrossRef]

W. Lv, P. E. Phelan, R. Swaminathan, T. P. Otanicar, and R. A. Taylor, “Multifunctional core-shell nanoparticle suspensions for efficient absorption,” J. Sol. Energy Eng. 135, 021005(2013).
[CrossRef]

J. Vac. Sci. Technol. A

L. Martinu and D. Poitras, “Plasma deposition of optical films and coatings: a review,” J. Vac. Sci. Technol. A 18, 2619–2645 (2000).
[CrossRef]

Langmuir

D. G. Duff, A. Baiker, and P. P. Edwards, “A new hydrosol of gold clusters. 1. Formation and particle size variation,” Langmuir 9, 2301–2309 (1993).
[CrossRef]

T. Pham, J. B. Jackson, N. J. Halas, and T. R. Lee, “Preparation and characterization of gold nanoshells coated with self-assembled monolayers,” Langmuir 18, 4915–4920 (2002).
[CrossRef]

N. Phonthammachai, J. C. Y. Kah, G. Jun, C. J. R. Sheppard, M. C. Olivo, S. G. Mhaisalkar, and T. J. White, “Synthesis of contiguous silica-gold core-shell structures: critical parameters and processes,” Langmuir 24, 5109–5112 (2008).
[CrossRef]

B. E. Brinson, J. B. Lassiter, C. S. Levin, R. Bardhan, N. Mirin, and N. J. Halas, “Nanoshells made easy: improving Au layer growth on nanoparticle surfaces,” Langmuir 24, 14166–14171 (2008).
[CrossRef]

T. C. Wang, M. F. Rubner, and R. E. Cohen, “Polyelectrolyte multilayer nanoreactors for preparing silver nanoparticle composites: controlling metal concentration and nanoparticle size,” Langmuir 18, 3370–3375 (2002).
[CrossRef]

K.-S. Kim, D. Demberelnyamba, and H. Lee, “Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquids,” Langmuir 20, 556–560 (2004).
[CrossRef]

Light Sci. Appl.

R. A. Taylor, T. P. Otanicar, and G. Rosengarten, “Nanofluid-based optical filter optimization for PV/T systems,” Light Sci. Appl. 1, 1–7 (2012).
[CrossRef]

Mater. Sci. Eng. A

K. K. Fung, B. Qin, and X. X. Zhang, “Passivation of a-Fe nanoparticle by epitaxial g-Fe2O3 shell,” Mater. Sci. Eng. A 286, 135–138 (2010).
[CrossRef]

Molecules

K. Kaneda, T. Mitsudome, T. Mizugaki, and K. Jitsukawa, “Development of heterogeneous olympic medal metal nanoparticle catalysts for environmentally benign molecular transformations based on the surface properties of hydrotalcite,” Molecules 15, 8988–9007 (2010).
[CrossRef]

Nano Lett.

K. R. Gopidas, J. K. Whitesell, M. A. Fox, and N. Carolina, “Catalytic applications of a palladium-nanoparticle-cored dendrimer,” Nano Lett. 3, 1–4 (2003).
[CrossRef]

M. A. Nash, J. J. Lai, A. S. Hoffman, P. Yager, and P. S. Stayton, ““Smart” diblock copolymers as templates for magnetic-core gold-shell nanoparticle synthesis,” Nano Lett. 10, 85–91 (2010).
[CrossRef]

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420(2011).
[CrossRef]

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9, 2825–2831 (2009).
[CrossRef]

Nanoscale Res. Lett.

R. A. Taylor, P. E. Phelan, T. P. Otanicar, R. Adrian, and R. Prasher, “Nanofluid optical property characterization: towards efficient direct absorption solar collectors,” Nanoscale Res. Lett. 6, 225 (2011).
[CrossRef]

Opt. Spectrosc.

S. G. Moiseev, “Nanocomposite-based ultrathin polarization beamsplitter,” Opt. Spectrosc. 111, 233–240 (2011).
[CrossRef]

Phys. Rev.

C. N. Berglund and W. E. Spicer, “Photoemission studies of copper and silver: theory,” Phys. Rev. 136, A1030–A1044(1964).
[CrossRef]

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

F. Le, N. Lwin, N. Halas, and P. Nordlander, “Plasmonic interactions between a metallic nanoshell and a thin metallic film,” Phys. Rev. B 76, 165410 (2007).
[CrossRef]

Phys. Rev. Lett.

R. Averitt, D. Sarkar, and N. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78, 4217–4220(1997).
[CrossRef]

Plasma Processes Polym.

J. Tavares, E. J. Swanson, and S. Coulombe, “Plasma synthesis of coated metal nanoparticles with surface properties tailored for dispersion,” Plasma Processes Polym. 5, 759–769 (2008).
[CrossRef]

Powder Technol.

J. Tavares and S. Coulombe, “Dual plasma synthesis and characterization of a stable copper-ethylene glycol nanofluid,” Powder Technol. 210, 132–142 (2011).
[CrossRef]

Small

B. G. Prevo, S. A. Esakoff, A. Mikhailovsky, and J. A. Zasadzinski, “Scalable routes to gold nanoshells with tunable sizes and response to near-infrared pulsed-laser irradiation,” Small 4, 1183–1195 (2008).
[CrossRef]

Sol. Energy

T. P. Otanicar, P. E. Phelan, and J. S. Golden, “Optical properties of liquids for direct absorption solar thermal energy systems,” Sol. Energy 83, 969–977 (2009).
[CrossRef]

Sol. Energy Mater. Sol. Cells

A. G. Imenes, and D. R. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review,” Sol. Energy Mater. Sol. Cells 84, 19–69 (2004).
[CrossRef]

Solar Wind Technol.

M. A. Chendo, M. R. Jacobson, and D. E. Osborn, “Liquid and thin-film filters for hybrid solar energy conversion systems,” Solar Wind Technol. 4, 131–1381987).
[CrossRef]

Surf. Sci.

M. A. G. Soler, S. W. da Silva, V. K. Garg, A. C. Oliveira, R. B. Azevedo, A. C. M. Pimenta, E. C. D. Lima, and P. C. Morais, “Surface passivation and characterization of cobalt-ferrite nanoparticles,” Surf. Sci. 575, 12–16 (2005).
[CrossRef]

Thermochim. Acta

Y. Hwang, J. Lee, C. Lee, Y. Jung, S. Cheong, B. Ku, and S. Jang, “Stability and thermal conductivity characteristics of nanofluids,” Thermochim. Acta 455, 70–74 (2007).
[CrossRef]

Other

NanoComposix, “NanoComposix products” (2012), retrieved 22 November 2012, http://nanocomposix.com/products .

NanoComposix, “NanoComposix: gold metal nanoshells” (2012), retrieved 9 September 2012, http://nanocomposix.com/products/gold/nanoshells .

NanoSight, “Nanoparticle size analysis, particle size software, LM10-HS—Products—NanoSight” (2012), retrieved 9 September 2012, http://www.nanosight.com/products/lm10-hs .

U. Kreibig and V. Vollmer, Optical Properties of Metal Clusters, 1st ed. (Springer, 2010).

M. Fox, Optical Properties of Solids, 2nd ed. (Oxford University, 2010), Chap. 7, pp. 180–210.

W. Lv, T. P. Otanicar, P. E. Phelan, L. Dai, R. A. Taylor, and R. Swaminathan, “Surface plasmon resonance shifts of a dispersion of core-shell nanoparticles for efficient solar absorption,” in Proceedings of Micro/Nanoscale Heat & Mass Transfer International Conference (American Society of Mechanical Engineers (ASME), 2012), pp. 1–9.

C. Kittel, Introduction to Solid State Physics, 8th ed. (Wiley, 2004), pp. 221–252.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998), p. 544.

UQG, “Schott colour glass stock optical filters, order online” 2012, retrieved 17 December 2012, http://www.optical-filters.com/Schott_Filters.aspx .

Schott, “Optical filters” (2012), retrieved 10 March 2012, http://www.schott.com/advanced_optics/english/filter/index.html?PHPSESSID=ra0uavqiou413sfj003ublirj4 .

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1997), Vol. 575, p. 999.

T. P. Otanicar, R. A. Taylor, P. E. Phelan, and R. S. Prasher, “Impact of size and scattering mode on the optimal solar absorbing nanofluid,” in Proceedings of the ASME 2009 3rd International Conference of Energy Sustainability (American Society of Mechanical Engineers (ASME), 2009), pp. 1–6.

N. Palombo and K. Park, “Investigation of dynamic near-field radiation between quantum dots and plasmonic nanoparticles for effective tailoring of the solar spectrum,” in Proceedings of ASME 2011 International Mechanical Engineering Congress and Exposition (American Society of Mechanical Engineers (ASME), 2011), pp. 1–5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Selection of conventional filters to be matched in this study; data from Schott [18].

Fig. 2.
Fig. 2.

Small selection of the library of nanoparticle options available. Extinction efficiency (which includes both absorption and scattering) is plotted as a function of wavelength.

Fig. 3.
Fig. 3.

Comparison of a conventional thin film long-pass filter (Schott’s RG1000 [18]) to a nanofluid long-pass filter (Therminol VP-1 as the base fluid). Solid curves represent filter transmittance and correspond to the left axis, while dashed and dotted curves correspond to the right axis.

Fig. 4.
Fig. 4.

Comparison of a conventional thin film bandpass filter (Schott’s S8021 [18]) to a nanofluid bandpass filter (Therminol VP-1 as the base fluid). Solid curves represent filter transmittance and correspond to the left axis, while dashed and dotted curves correspond to the right axis.

Fig. 5.
Fig. 5.

Comparison of a conventional thin film short-pass filter (Schott’s KG1 [18]) to a nanofluid short-pass filter (water as the base fluid). Solid and long dashed–dotted curves represent filter transmittance and correspond to the left axis, while dashed and dotted curves correspond to the right axis.

Fig. 6.
Fig. 6.

TEM of (A) 10 nm (mean diameter) gold nanoparticles and (B) 120 nm (mean outer diameter) gold/silica nanoparticles. Experiments (circles) versus modeling (solid lines) results of extinction coefficients, σtotal from Eq. (5), for (C) a PVP stabilized aqueous suspension of gold nanoparticles of image (A) at 2.7×1012particles/mL and (D) a PVP stabilized aqueous suspension of gold/silica nanoparticles of image (B) at 5.9×109particles/mL. Note that particles were purchased from NanoComposix [68].

Fig. 7.
Fig. 7.

Thermal cycling experimental study of gold nanofluids.

Tables (2)

Tables Icon

Table 1. Selected Core/Shell Nanoparticle Fabrication Approaches

Tables Icon

Table 2. Summary of This Study’s Designed Liquid Nanofluid Optical Filters as Compared to Conventional Solid Filtersa

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)=ε(ω)exp+ωp21ω2+iωγbulkωp21ω2+iωγ(leff),
γ(leff)=1τo+AVfD.
σparticle_i=32fvQext_iD.
σparticles=1Nσparticle_i.
σtotal=σparticles+σfluid.
T=IIo=eLσtotal,
ζnano-conv=1λshortλlong(TnanoTconv)2dλλlongλshort,

Metrics