Abstract

We designed and fabricated an achromatic infrared wave plate. To examine its phase retardation characteristics, the birefringence was calculated using the effective medium theory. A wave plate with a subwavelength grating was fabricated by direct imprint lithography on a low toxic chalcogenide glass (Sb–Ge–Sn–S system) based on calculated results. As a result of imprinting onto chalcogenide glass by a glassy carbon mold, a grating with 1.63 μm depth, a fill factor of 0.7, and a 3 μm period was obtained. The phase retardation of the elements reached around 30° in the 8.5–10.5 μm wavelength range. The fabrication of the infrared wave plate is less costly compared with conventional crystalline wave plates.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16, 1168–1174 (1999).
    [CrossRef]
  2. C. S. L. Chun, “Microscale waveplates for polarimetric infrared imaging,” Proc. SPIE 5074, 286–297 (2003).
    [CrossRef]
  3. C. A. Hill, G. N. Pearson, P. Tapster, J. M. Vaughan, and G. M. Miller, “Polarization states and output powers of a CO2laser with an electro-optic phase retarder,” Appl. Opt. 35, 5381–5385 (1996).
    [CrossRef]
  4. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Subwavelength transmission grating retarders for use at 10.6 μm,” Appl. Opt. 35, 6195–6202 (1996).
    [CrossRef]
  5. Http://www.clevelandcrystals.com/waveplates.htm .
  6. H. Kikuta, Y. Ohira, and K. Iwata, “Achromatic quarter-wave plates using the dispersion of form birefringence,” Appl. Opt. 36, 1566–1572 (1997).
    [CrossRef]
  7. G. P. Nordin and P. C. Deguzman, “Broadband form birefringent quarter-wave plate for the mid-infrared wave region,” Opt. Express 5, 163–168 (1999).
    [CrossRef]
  8. W. Yu, A. Mizutani, H. Kikuta, and T. Konishi, “Reduced wavelength-dependent quarter-wave plate fabricated by a multilayered subwavelength structure,” Appl. Opt. 45, 2601–2606 (2006).
    [CrossRef]
  9. B. Päivänranta, N. Passilly, J. Pietarinen, P. Laakkonen, M. Kuittinen, and J. Tervo, “Low-cost fabrication of form-birefringent quarter-wave plates,” Opt. Express 16, 16334–16342 (2008).
    [CrossRef]
  10. S. C. Saha, Y. Ma, J. P. Grant, A. Khalid, and D. R. S. Cumming, “Imprinted terahertz artificial dielectric quarter wave plates,” Opt. Express 18, 12168–12175 (2010).
    [CrossRef]
  11. G. Kang, Q. Tan, X. Wang, and G. Jin, “Achromatic phase retarder applied to MWIR & LWIR dual-band,” Opt. Express 18, 1695–1703 (2010).
    [CrossRef]
  12. M. Scheller, C. Jördens, and M. Koch, “Terahertz form birefringence,” Opt. Express 18, 10137–10142 (2010).
    [CrossRef]
  13. S. Chou, P. Krauss, and P. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129–4133 (1996).
    [CrossRef]
  14. T. Yoshikawa, T. Konishi, M. Nakajima, H. Kikuta, H. Kawata, and Y. Hirai, “Fabrication of 1/4 wave plate by nanocasting lithography,” J. Vac. Sci. Technol. B 23, 2939–2943 (2005).
    [CrossRef]
  15. J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30 nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105 (2006).
    [CrossRef]
  16. L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90, 063111 (2007).
    [CrossRef]
  17. H. Takebe, M. Kuwabata, M. Komori, N. Fukugami, M. Soma, and T. Kusuura, “Imprinted optical pattern of low-softening phosphate glass,” Opt. Lett. 32, 2750–2752 (2007).
    [CrossRef]
  18. T. Mori, Y. Kimoto, H. Kasa, K. Kintaka, N. Hotou, J. Nishii, and Y. Hirai, “Mold design and fabrication for surface relief gratings by glass nanoimprint,” Jpn. J. Appl. Phys. 48, 06FH20 (2009).
    [CrossRef]
  19. D. Vandormael, S. Habraken, J. Loicq, C. Lenaerts, and D. Mawet, “Anti-reflective sub-wavelength patterning of IR optics,” Proc. SPIE 6395, 63950L (2006).
    [CrossRef]
  20. M. Solmaz, H. Park, C. K. Madsen, and X. Cheng, “Patterning chalcogenide glass by direct resist-free thermal nanoimprint,” J. Vac. Sci. Technol. B 26, 606–610 (2008).
    [CrossRef]
  21. T. Han, S. Madden, D. Bulla, and B. Luther-Davies, “Low loss chalcogenide glass waveguides by thermal nano-imprint lithography,” Opt. Express 18, 19286–19291 (2010).
    [CrossRef]
  22. Http://www.isuzuglass.com/development/iir.html .
  23. Y. Ono, Y. Kimura, Y. Ohta, and N. Nishida, “Antireflection effect in ultrahigh spatial-frequency holographic relief gratings,” Appl. Opt. 26, 1142–1146 (1987).
    [CrossRef]
  24. M. G. Moharam and T. K. Gaylord, “Rigorous couple-wave analysis of grating diffraction-E-mode polarization and losses,” J. Opt. Soc. Am. 73, 451–455 (1983).
    [CrossRef]
  25. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986).
    [CrossRef]

2010 (4)

2009 (1)

T. Mori, Y. Kimoto, H. Kasa, K. Kintaka, N. Hotou, J. Nishii, and Y. Hirai, “Mold design and fabrication for surface relief gratings by glass nanoimprint,” Jpn. J. Appl. Phys. 48, 06FH20 (2009).
[CrossRef]

2008 (2)

M. Solmaz, H. Park, C. K. Madsen, and X. Cheng, “Patterning chalcogenide glass by direct resist-free thermal nanoimprint,” J. Vac. Sci. Technol. B 26, 606–610 (2008).
[CrossRef]

B. Päivänranta, N. Passilly, J. Pietarinen, P. Laakkonen, M. Kuittinen, and J. Tervo, “Low-cost fabrication of form-birefringent quarter-wave plates,” Opt. Express 16, 16334–16342 (2008).
[CrossRef]

2007 (2)

L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90, 063111 (2007).
[CrossRef]

H. Takebe, M. Kuwabata, M. Komori, N. Fukugami, M. Soma, and T. Kusuura, “Imprinted optical pattern of low-softening phosphate glass,” Opt. Lett. 32, 2750–2752 (2007).
[CrossRef]

2006 (3)

W. Yu, A. Mizutani, H. Kikuta, and T. Konishi, “Reduced wavelength-dependent quarter-wave plate fabricated by a multilayered subwavelength structure,” Appl. Opt. 45, 2601–2606 (2006).
[CrossRef]

D. Vandormael, S. Habraken, J. Loicq, C. Lenaerts, and D. Mawet, “Anti-reflective sub-wavelength patterning of IR optics,” Proc. SPIE 6395, 63950L (2006).
[CrossRef]

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30 nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

2005 (1)

T. Yoshikawa, T. Konishi, M. Nakajima, H. Kikuta, H. Kawata, and Y. Hirai, “Fabrication of 1/4 wave plate by nanocasting lithography,” J. Vac. Sci. Technol. B 23, 2939–2943 (2005).
[CrossRef]

2003 (1)

C. S. L. Chun, “Microscale waveplates for polarimetric infrared imaging,” Proc. SPIE 5074, 286–297 (2003).
[CrossRef]

1999 (2)

1997 (1)

1996 (3)

1987 (1)

1986 (1)

1983 (1)

Brundrett, D. L.

Bulla, D.

Buonanno, M.

L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90, 063111 (2007).
[CrossRef]

Chen, L.

L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90, 063111 (2007).
[CrossRef]

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30 nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

Cheng, X.

M. Solmaz, H. Park, C. K. Madsen, and X. Cheng, “Patterning chalcogenide glass by direct resist-free thermal nanoimprint,” J. Vac. Sci. Technol. B 26, 606–610 (2008).
[CrossRef]

Chou, S.

S. Chou, P. Krauss, and P. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129–4133 (1996).
[CrossRef]

Chun, C. S. L.

C. S. L. Chun, “Microscale waveplates for polarimetric infrared imaging,” Proc. SPIE 5074, 286–297 (2003).
[CrossRef]

Cumming, D. R. S.

Deguzman, P. C.

Deng, X.

L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90, 063111 (2007).
[CrossRef]

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30 nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

Fukugami, N.

Gaylord, T. K.

Glytsis, E. N.

Grant, J. P.

Habraken, S.

D. Vandormael, S. Habraken, J. Loicq, C. Lenaerts, and D. Mawet, “Anti-reflective sub-wavelength patterning of IR optics,” Proc. SPIE 6395, 63950L (2006).
[CrossRef]

Han, T.

Hill, C. A.

Hirai, Y.

T. Mori, Y. Kimoto, H. Kasa, K. Kintaka, N. Hotou, J. Nishii, and Y. Hirai, “Mold design and fabrication for surface relief gratings by glass nanoimprint,” Jpn. J. Appl. Phys. 48, 06FH20 (2009).
[CrossRef]

T. Yoshikawa, T. Konishi, M. Nakajima, H. Kikuta, H. Kawata, and Y. Hirai, “Fabrication of 1/4 wave plate by nanocasting lithography,” J. Vac. Sci. Technol. B 23, 2939–2943 (2005).
[CrossRef]

Hotou, N.

T. Mori, Y. Kimoto, H. Kasa, K. Kintaka, N. Hotou, J. Nishii, and Y. Hirai, “Mold design and fabrication for surface relief gratings by glass nanoimprint,” Jpn. J. Appl. Phys. 48, 06FH20 (2009).
[CrossRef]

Iwata, K.

Jin, G.

Jones, M. W.

Jördens, C.

Kang, G.

Kasa, H.

T. Mori, Y. Kimoto, H. Kasa, K. Kintaka, N. Hotou, J. Nishii, and Y. Hirai, “Mold design and fabrication for surface relief gratings by glass nanoimprint,” Jpn. J. Appl. Phys. 48, 06FH20 (2009).
[CrossRef]

Kawata, H.

T. Yoshikawa, T. Konishi, M. Nakajima, H. Kikuta, H. Kawata, and Y. Hirai, “Fabrication of 1/4 wave plate by nanocasting lithography,” J. Vac. Sci. Technol. B 23, 2939–2943 (2005).
[CrossRef]

Khalid, A.

Kikuta, H.

Kimoto, Y.

T. Mori, Y. Kimoto, H. Kasa, K. Kintaka, N. Hotou, J. Nishii, and Y. Hirai, “Mold design and fabrication for surface relief gratings by glass nanoimprint,” Jpn. J. Appl. Phys. 48, 06FH20 (2009).
[CrossRef]

Kimura, Y.

Kintaka, K.

T. Mori, Y. Kimoto, H. Kasa, K. Kintaka, N. Hotou, J. Nishii, and Y. Hirai, “Mold design and fabrication for surface relief gratings by glass nanoimprint,” Jpn. J. Appl. Phys. 48, 06FH20 (2009).
[CrossRef]

Koch, M.

Komori, M.

Konishi, T.

W. Yu, A. Mizutani, H. Kikuta, and T. Konishi, “Reduced wavelength-dependent quarter-wave plate fabricated by a multilayered subwavelength structure,” Appl. Opt. 45, 2601–2606 (2006).
[CrossRef]

T. Yoshikawa, T. Konishi, M. Nakajima, H. Kikuta, H. Kawata, and Y. Hirai, “Fabrication of 1/4 wave plate by nanocasting lithography,” J. Vac. Sci. Technol. B 23, 2939–2943 (2005).
[CrossRef]

Krauss, P.

S. Chou, P. Krauss, and P. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129–4133 (1996).
[CrossRef]

Kuittinen, M.

Kusuura, T.

Kuwabata, M.

Laakkonen, P.

Lenaerts, C.

D. Vandormael, S. Habraken, J. Loicq, C. Lenaerts, and D. Mawet, “Anti-reflective sub-wavelength patterning of IR optics,” Proc. SPIE 6395, 63950L (2006).
[CrossRef]

Liu, F.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30 nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

Liu, X.

L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90, 063111 (2007).
[CrossRef]

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30 nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

Loicq, J.

D. Vandormael, S. Habraken, J. Loicq, C. Lenaerts, and D. Mawet, “Anti-reflective sub-wavelength patterning of IR optics,” Proc. SPIE 6395, 63950L (2006).
[CrossRef]

Luther-Davies, B.

Ma, Y.

Madden, S.

Madsen, C. K.

M. Solmaz, H. Park, C. K. Madsen, and X. Cheng, “Patterning chalcogenide glass by direct resist-free thermal nanoimprint,” J. Vac. Sci. Technol. B 26, 606–610 (2008).
[CrossRef]

Mawet, D.

D. Vandormael, S. Habraken, J. Loicq, C. Lenaerts, and D. Mawet, “Anti-reflective sub-wavelength patterning of IR optics,” Proc. SPIE 6395, 63950L (2006).
[CrossRef]

Meier, J. T.

Miller, G. M.

Mizutani, A.

Moharam, M. G.

Mori, T.

T. Mori, Y. Kimoto, H. Kasa, K. Kintaka, N. Hotou, J. Nishii, and Y. Hirai, “Mold design and fabrication for surface relief gratings by glass nanoimprint,” Jpn. J. Appl. Phys. 48, 06FH20 (2009).
[CrossRef]

Nakajima, M.

T. Yoshikawa, T. Konishi, M. Nakajima, H. Kikuta, H. Kawata, and Y. Hirai, “Fabrication of 1/4 wave plate by nanocasting lithography,” J. Vac. Sci. Technol. B 23, 2939–2943 (2005).
[CrossRef]

Nishida, N.

Nishii, J.

T. Mori, Y. Kimoto, H. Kasa, K. Kintaka, N. Hotou, J. Nishii, and Y. Hirai, “Mold design and fabrication for surface relief gratings by glass nanoimprint,” Jpn. J. Appl. Phys. 48, 06FH20 (2009).
[CrossRef]

Nordin, G. P.

Ohira, Y.

Ohta, Y.

Ono, Y.

Päivänranta, B.

Park, H.

M. Solmaz, H. Park, C. K. Madsen, and X. Cheng, “Patterning chalcogenide glass by direct resist-free thermal nanoimprint,” J. Vac. Sci. Technol. B 26, 606–610 (2008).
[CrossRef]

Passilly, N.

Pearson, G. N.

Pietarinen, J.

Renstrom, P.

S. Chou, P. Krauss, and P. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129–4133 (1996).
[CrossRef]

Saha, S. C.

Scheller, M.

Sciortino, P.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30 nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

Solmaz, M.

M. Solmaz, H. Park, C. K. Madsen, and X. Cheng, “Patterning chalcogenide glass by direct resist-free thermal nanoimprint,” J. Vac. Sci. Technol. B 26, 606–610 (2008).
[CrossRef]

Soma, M.

Tai, S.

L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90, 063111 (2007).
[CrossRef]

Takebe, H.

Tan, Q.

Tapster, P.

Tervo, J.

Vandormael, D.

D. Vandormael, S. Habraken, J. Loicq, C. Lenaerts, and D. Mawet, “Anti-reflective sub-wavelength patterning of IR optics,” Proc. SPIE 6395, 63950L (2006).
[CrossRef]

Vaughan, J. M.

Walters, F.

L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90, 063111 (2007).
[CrossRef]

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30 nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

Wang, J. J.

L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90, 063111 (2007).
[CrossRef]

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30 nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

Wang, X.

Yoshikawa, T.

T. Yoshikawa, T. Konishi, M. Nakajima, H. Kikuta, H. Kawata, and Y. Hirai, “Fabrication of 1/4 wave plate by nanocasting lithography,” J. Vac. Sci. Technol. B 23, 2939–2943 (2005).
[CrossRef]

Yu, W.

Appl. Opt. (5)

Appl. Phys. Lett. (2)

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30 nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90, 063111 (2007).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

J. Vac. Sci. Technol. B (3)

M. Solmaz, H. Park, C. K. Madsen, and X. Cheng, “Patterning chalcogenide glass by direct resist-free thermal nanoimprint,” J. Vac. Sci. Technol. B 26, 606–610 (2008).
[CrossRef]

S. Chou, P. Krauss, and P. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129–4133 (1996).
[CrossRef]

T. Yoshikawa, T. Konishi, M. Nakajima, H. Kikuta, H. Kawata, and Y. Hirai, “Fabrication of 1/4 wave plate by nanocasting lithography,” J. Vac. Sci. Technol. B 23, 2939–2943 (2005).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Mori, Y. Kimoto, H. Kasa, K. Kintaka, N. Hotou, J. Nishii, and Y. Hirai, “Mold design and fabrication for surface relief gratings by glass nanoimprint,” Jpn. J. Appl. Phys. 48, 06FH20 (2009).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Proc. SPIE (2)

D. Vandormael, S. Habraken, J. Loicq, C. Lenaerts, and D. Mawet, “Anti-reflective sub-wavelength patterning of IR optics,” Proc. SPIE 6395, 63950L (2006).
[CrossRef]

C. S. L. Chun, “Microscale waveplates for polarimetric infrared imaging,” Proc. SPIE 5074, 286–297 (2003).
[CrossRef]

Other (2)

Http://www.clevelandcrystals.com/waveplates.htm .

Http://www.isuzuglass.com/development/iir.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Model of the wave plate with subwavelength grating.

Fig. 2.
Fig. 2.

(a) Birefiringence and (b) phase retardation calculated by EMT. The numerals next to the curves denote the fill factor.

Fig. 3.
Fig. 3.

Schematic illustration of the fabrication process of the wave plate. (a) After a WSi layer is deposited on a GC substrate by using the sputtering method, a photoresist is coated on the WSi layer, and the He–Cd laser beam (442 nm wavelength) is irradiated by the drawing system. (b) A photoresist grating is patterned by the development. (c) and (d) The WSi layer and a GC are etched by using the RIE. (e) The GC mold is imprinted into chalcogenide glass.

Fig. 4.
Fig. 4.

SEM images of the GC mold.

Fig. 5.
Fig. 5.

SEM images of the chalcogenide glass deformed by the imprinting process.

Fig. 6.
Fig. 6.

Schematic diagram of the measurement system. The arrow direction in the polarizer and the analyzer indicates the polarization direction.

Fig. 7.
Fig. 7.

Transmission spectra of T0, T90, TTE, TTM, and a substrate without grating.

Fig. 8.
Fig. 8.

Measured phase retardation of the fabricated element.

Fig. 9.
Fig. 9.

Phase retardation calculated by RCWA.

Tables (1)

Tables Icon

Table 1. Wavelength Dependence of Phase Retardation

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

nTE(0)=fn22+(1f)n12,
nTM(0)=1/fn22+(1f)n12.
nTE(2)=(nTE(0))2+13(Λλ)2π2f2(1f)2(n22n12)2,
nTM(2)=(nTM(0))2+13(Λλ)2π2f2(1f)2(n22n12)·(nTM(0))6(nTM(0))2,
Δn=nTE(2)nTM(2),
φ=2πΔndλ,
cosφ=T0T90TTETTM.

Metrics