Abstract

Gold nanoshells, consisting of a nanoscale dielectric core coated with an ultrathin gold shell, have wide biomedical applications due to their strong optical absorption properties. Gold nanoshells with high absorption efficiencies can help to improve these applications. We investigate the effects of the core material, surrounding medium, core radius, and shell thickness on the absorption spectra of gold nanoshells by using the light-scattering theory of a coated sphere. Our results show that the position and intensity of the absorption peak can be tuned over a wide range by manipulating the above-mentioned parameters. We also obtain the optimal absorption efficiencies and structures of hollow gold nanoshells and gold-coated SiO2 nanoshells embedded in water at wavelengths of 800, 820, and 1064 nm. The results show that hollow gold nanoshells possess the maximum absorption efficiency (5.42) at a wavelength of 800 nm; the corresponding shell thickness and core radius are 4.8 and 38.9 nm, respectively. They can be used as the ideal photothermal conversation particles for biomedical applications.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16, 1824–1832 (1999).
    [CrossRef]
  2. S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75, 2897–2899 (1999).
    [CrossRef]
  3. C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett. 4, 2355–2359 (2004).
    [CrossRef]
  4. E. Hao, S. Li, R. C. Bailey, S. Zou, G. C. Schatz, and J. T. Hupp, “Optical properties of metal nanoshells,” J. Phys. Chem. B 108, 1224–1229 (2004).
    [CrossRef]
  5. O. Peña, U. Pal, L. Rodríguez-Fernández, and A. Crespo-Sosa, “Linear optical response of metallic nanoshells in different dielectric media,” J. Opt. Soc. Am. B 25, 1371–1379 (2008).
    [CrossRef]
  6. D. Wu, X. Xu, and X. Liu, “Influence of dielectric core, embedding medium and size on the optical properties of gold nanoshells,” Solid State Commun. 146, 7–11 (2008).
    [CrossRef]
  7. S. R. Sershen, S. L. Westcott, N. J. Halas, and J. L. West, “Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery,” J. Biomed. Mater. Res. 51, 293–298 (2000).
    [CrossRef]
  8. L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, “A whole blood immunoassay using gold nanoshells,” Anal. Chem. 75, 2377–2381 (2003).
    [CrossRef]
  9. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
    [CrossRef]
  10. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
    [CrossRef]
  11. A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
    [CrossRef]
  12. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  13. U. Keribig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  14. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [CrossRef]
  15. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  16. M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46, 3811–3820 (2007).
    [CrossRef]
  17. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965).
    [CrossRef]
  18. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
    [CrossRef]
  19. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23, 217–228 (2008).
    [CrossRef]

2008

D. Wu, X. Xu, and X. Liu, “Influence of dielectric core, embedding medium and size on the optical properties of gold nanoshells,” Solid State Commun. 146, 7–11 (2008).
[CrossRef]

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23, 217–228 (2008).
[CrossRef]

O. Peña, U. Pal, L. Rodríguez-Fernández, and A. Crespo-Sosa, “Linear optical response of metallic nanoshells in different dielectric media,” J. Opt. Soc. Am. B 25, 1371–1379 (2008).
[CrossRef]

2007

M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46, 3811–3820 (2007).
[CrossRef]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[CrossRef]

2004

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett. 4, 2355–2359 (2004).
[CrossRef]

E. Hao, S. Li, R. C. Bailey, S. Zou, G. C. Schatz, and J. T. Hupp, “Optical properties of metal nanoshells,” J. Phys. Chem. B 108, 1224–1229 (2004).
[CrossRef]

2003

L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, “A whole blood immunoassay using gold nanoshells,” Anal. Chem. 75, 2377–2381 (2003).
[CrossRef]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

2000

S. R. Sershen, S. L. Westcott, N. J. Halas, and J. L. West, “Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery,” J. Biomed. Mater. Res. 51, 293–298 (2000).
[CrossRef]

1999

R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16, 1824–1832 (1999).
[CrossRef]

S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75, 2897–2899 (1999).
[CrossRef]

1998

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1965

1951

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
[CrossRef]

Aden, A. L.

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
[CrossRef]

Averitt, R. D.

Bailey, R. C.

E. Hao, S. Li, R. C. Bailey, S. Zou, G. C. Schatz, and J. T. Hupp, “Optical properties of metal nanoshells,” J. Phys. Chem. B 108, 1224–1229 (2004).
[CrossRef]

Bankson, J. A.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Crespo-Sosa, A.

Daimon, M.

Djurisic, A. B.

Drezek, R. A.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[CrossRef]

Elazar, J. M.

El-Sayed, I. H.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23, 217–228 (2008).
[CrossRef]

El-Sayed, M. A.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23, 217–228 (2008).
[CrossRef]

Gobin, A. M.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[CrossRef]

Goodrich, G. P.

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett. 4, 2355–2359 (2004).
[CrossRef]

Grady, N. K.

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett. 4, 2355–2359 (2004).
[CrossRef]

Hafner, J. H.

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett. 4, 2355–2359 (2004).
[CrossRef]

Halas, N. J.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[CrossRef]

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett. 4, 2355–2359 (2004).
[CrossRef]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[CrossRef]

L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, “A whole blood immunoassay using gold nanoshells,” Anal. Chem. 75, 2377–2381 (2003).
[CrossRef]

S. R. Sershen, S. L. Westcott, N. J. Halas, and J. L. West, “Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery,” J. Biomed. Mater. Res. 51, 293–298 (2000).
[CrossRef]

S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75, 2897–2899 (1999).
[CrossRef]

R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16, 1824–1832 (1999).
[CrossRef]

Hao, E.

E. Hao, S. Li, R. C. Bailey, S. Zou, G. C. Schatz, and J. T. Hupp, “Optical properties of metal nanoshells,” J. Phys. Chem. B 108, 1224–1229 (2004).
[CrossRef]

Hazle, J. D.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[CrossRef]

Hirsch, L. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[CrossRef]

L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, “A whole blood immunoassay using gold nanoshells,” Anal. Chem. 75, 2377–2381 (2003).
[CrossRef]

Huang, X.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23, 217–228 (2008).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Hupp, J. T.

E. Hao, S. Li, R. C. Bailey, S. Zou, G. C. Schatz, and J. T. Hupp, “Optical properties of metal nanoshells,” J. Phys. Chem. B 108, 1224–1229 (2004).
[CrossRef]

Jackson, J. B.

L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, “A whole blood immunoassay using gold nanoshells,” Anal. Chem. 75, 2377–2381 (2003).
[CrossRef]

S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75, 2897–2899 (1999).
[CrossRef]

Jain, P. K.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23, 217–228 (2008).
[CrossRef]

James, W. D.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Keribig, U.

U. Keribig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Kerker, M.

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
[CrossRef]

Lee, A.

L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, “A whole blood immunoassay using gold nanoshells,” Anal. Chem. 75, 2377–2381 (2003).
[CrossRef]

Lee, M. H.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[CrossRef]

Li, S.

E. Hao, S. Li, R. C. Bailey, S. Zou, G. C. Schatz, and J. T. Hupp, “Optical properties of metal nanoshells,” J. Phys. Chem. B 108, 1224–1229 (2004).
[CrossRef]

Liu, X.

D. Wu, X. Xu, and X. Liu, “Influence of dielectric core, embedding medium and size on the optical properties of gold nanoshells,” Solid State Commun. 146, 7–11 (2008).
[CrossRef]

Majewski, M. L.

Malitson, I. H.

Masumura, A.

Nehl, C. L.

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett. 4, 2355–2359 (2004).
[CrossRef]

Oldenburg, S. J.

S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75, 2897–2899 (1999).
[CrossRef]

Pal, U.

Peña, O.

Price, R. E.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[CrossRef]

Rakic, A. D.

Rivera, B.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[CrossRef]

Rodríguez-Fernández, L.

Schatz, G. C.

E. Hao, S. Li, R. C. Bailey, S. Zou, G. C. Schatz, and J. T. Hupp, “Optical properties of metal nanoshells,” J. Phys. Chem. B 108, 1224–1229 (2004).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Sershen, S. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[CrossRef]

S. R. Sershen, S. L. Westcott, N. J. Halas, and J. L. West, “Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery,” J. Biomed. Mater. Res. 51, 293–298 (2000).
[CrossRef]

Stafford, R. J.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[CrossRef]

Tam, F.

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett. 4, 2355–2359 (2004).
[CrossRef]

Vollmer, M.

U. Keribig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

West, J. L.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[CrossRef]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[CrossRef]

L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, “A whole blood immunoassay using gold nanoshells,” Anal. Chem. 75, 2377–2381 (2003).
[CrossRef]

S. R. Sershen, S. L. Westcott, N. J. Halas, and J. L. West, “Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery,” J. Biomed. Mater. Res. 51, 293–298 (2000).
[CrossRef]

Westcott, S. L.

S. R. Sershen, S. L. Westcott, N. J. Halas, and J. L. West, “Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery,” J. Biomed. Mater. Res. 51, 293–298 (2000).
[CrossRef]

S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75, 2897–2899 (1999).
[CrossRef]

R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16, 1824–1832 (1999).
[CrossRef]

Wu, D.

D. Wu, X. Xu, and X. Liu, “Influence of dielectric core, embedding medium and size on the optical properties of gold nanoshells,” Solid State Commun. 146, 7–11 (2008).
[CrossRef]

Xu, X.

D. Wu, X. Xu, and X. Liu, “Influence of dielectric core, embedding medium and size on the optical properties of gold nanoshells,” Solid State Commun. 146, 7–11 (2008).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Zou, S.

E. Hao, S. Li, R. C. Bailey, S. Zou, G. C. Schatz, and J. T. Hupp, “Optical properties of metal nanoshells,” J. Phys. Chem. B 108, 1224–1229 (2004).
[CrossRef]

Anal. Chem.

L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, “A whole blood immunoassay using gold nanoshells,” Anal. Chem. 75, 2377–2381 (2003).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75, 2897–2899 (1999).
[CrossRef]

J. Appl. Phys.

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
[CrossRef]

J. Biomed. Mater. Res.

S. R. Sershen, S. L. Westcott, N. J. Halas, and J. L. West, “Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery,” J. Biomed. Mater. Res. 51, 293–298 (2000).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

J. Phys. Chem. B

E. Hao, S. Li, R. C. Bailey, S. Zou, G. C. Schatz, and J. T. Hupp, “Optical properties of metal nanoshells,” J. Phys. Chem. B 108, 1224–1229 (2004).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Lasers Med. Sci.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23, 217–228 (2008).
[CrossRef]

Nano Lett.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[CrossRef]

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett. 4, 2355–2359 (2004).
[CrossRef]

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Proc. Natl. Acad. Sci. USA

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[CrossRef]

Solid State Commun.

D. Wu, X. Xu, and X. Liu, “Influence of dielectric core, embedding medium and size on the optical properties of gold nanoshells,” Solid State Commun. 146, 7–11 (2008).
[CrossRef]

Other

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

U. Keribig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of light scattering by a coated sphere.

Fig. 2.
Fig. 2.

Absorption spectrum of Au at vacuum nanoshells embedded in water. The core radius and shell thickness are 50 and 10 nm, respectively.

Fig. 3.
Fig. 3.

Absorption spectra of Au at vacuum and Au at SiO2 nanoshells embedded in water. The core radius and shell thickness are 50 and 10 nm, respectively.

Fig. 4.
Fig. 4.

Absorption spectra of Au at vacuum nanoshells embedded in three different media (vacuum, water, and silica). The core radius and shell thickness are 50 and 10 nm, respectively.

Fig. 5.
Fig. 5.

Absorption spectra of Au at vacuum nanoshells embedded in water. The shell thickness gradually increases from 2 to 20 nm, and the core radii are (a) 30, (b) 40, and (c) 50 nm.

Fig. 6.
Fig. 6.

Absorption efficiency of Au at vacuum nanoshells embedded in water. The wavelength of incident light is 800 nm, the core radius increases from 20 to 100 nm, and the shell thickness increases from 2 to 20 nm.

Tables (1)

Tables Icon

Table 1. Optimal Absorption Efficiencies and Structures of Au at Vacuum and Au at SiO2 Nanoshells Embedded in Water at Three Typical Wavelengths (800, 820, and 1064 nm)

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Qabs=2x22n=1(2n+1)[Re(an+bn)|an|2|bn|2],
an=ψn(x2)[ψn(m2x2)Anχn(m2x2)]m2ψn(x2)[ψn(m2x2)Anχn(m2x2)]ξn(x2)[ψn(m2x2)Anχn(m2x2)]m2ξn(x2)[ψn(m2x2)Anχn(m2x2)],
bn=m2ψn(x2)[ψn(m2x2)Bnχn(m2x2)]ψn(x2)[ψn(m2x2)Bnχn(m2x2)]m2ξn(x2)[ψn(m2x2)Bnχn(m2x2)]ξn(x2)[ψn(m2x2)Bnχn(m2x2)].
An=m2ψn(m2x1)ψn(m1x1)m1ψn(m2x1)ψn(m1x1)m2χn(m2x1)ψn(m1x1)m1χn(m2x1)ψn(m1x1),
Bn=m2ψn(m1x1)ψn(m2x1)m1ψn(m1x1)ψn(m2x1)m2χn(m2x1)ψn(m1x1)m1χn(m2x1)ψn(m1x1),
m1=n1/nm,m2=n2/nm,
x1=2πR1nm/λ,x2=2πR2nm/λ,
ψn(ρ)=ρjn(ρ),χn(ρ)=ρyn(ρ),ξn(ρ)=ρhn(1)(ρ),
ε(ω,Leff)=εbulk(ω)+ωp2ω2+iωvf/lωp2ω2+iω(vf/l+Avf/Leff),
nH2O21=0.5684027565λ2λ20.005101829712+0.1726177391λ2λ20.01821153936+0.02086189578λ2λ20.02620722293+0.1130748688λ2λ210.69792721,
nSiO221=0.6961663λ2λ2(0.0684043)2+0.4079426λ2λ2(0.1162414)2+0.8974794λ2λ2(9.896161)2,

Metrics