Abstract

Focusing properties of anomalous hollow beams (AHBs) are theoretically and numerically investigated. The radiation forces acting upon a Rayleigh dielectric sphere produced by focused AHBs are also studied. Results show that focused AHBs can be used to trap and manipulate microsized dielectric spheres with high-refractive index at the focal point. Finally, the stability conditions for effective trapping particles are analyzed in detail. The results presented here are of interest in some possible applications by making use of AHBs.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
    [CrossRef]
  2. Y. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface trap for Cs atoms based on evanescent-wave cooling,” Phys. Rev. Lett. 79, 2225–2228 (1997).
    [CrossRef]
  3. H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996).
    [CrossRef]
  4. F. E. S. Vetelino and L. C. Andrews, “Annular Gaussian beams in turbulent media,” Proc. SPIE 5160, 86–97 (2004).
    [CrossRef]
  5. X. Wang and M. G. Littman, “Laser cavity for generation of variable-radius rings of light,” Opt. Lett. 18, 767–768 (1993).
    [CrossRef]
  6. R. M. Herman and T. A. Wiggins, “Production and uses of diffractionless beams,” J. Opt. Soc. Am. A 8, 932–942 (1991).
    [CrossRef]
  7. H. S. Lee, B. W. Stewart, K. Choi, and H. Fenichel, “Holographic nondiverging hollow beam,” Phys. Rev. A 49, 4922–4927(1994).
    [CrossRef]
  8. C. Paterson and R. Smith, “Higher-order Bessel waves produced by axicon-type computer-generated holograms,” Opt. Commun. 124, 121–130 (1996).
    [CrossRef]
  9. S. Marksteiner, C. M. Savage, P. Zoller, and S. L. Rolston, “Coherent atomic waveguides from hollow optical fibers: quantized atomic motion,” Phys. Rev. A 50, 2680–2690 (1994).
    [CrossRef]
  10. C. Yan, D. H. Zhang, D. Li, H. Bian, Z. Xu, and Y. Wang, “Metal nanorod-based metamaterials for beam splitting and a subdiffraction-limited dark hollow light cone,” J. Opt. 13, 085102 (2011).
    [CrossRef]
  11. Z. Xu, D. H. Zhang, C. Yan, D. Li, and Y. Wang, “Concentric cylindrical metamaterials for subwavelength dark hollow light cones,” J. Opt. 14, 114014 (2012).
    [CrossRef]
  12. V. I. Balykin and V. S. Letokhov, “The possibility of deep laser focusing of an atomic beam into the A-region,” Opt. Commun. 64, 151–156 (1987).
    [CrossRef]
  13. J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
    [CrossRef]
  14. Y. J. Cai, X. H. Lu, and Q. Lin, “Hollow Gaussian beams and their propagation properties,” Opt. Lett. 28, 1084–1086 (2003).
    [CrossRef]
  15. Z. R. Mei and D. M. Zhao, “Controllable dark-hollow beams and their propagation characteristics,” J. Opt. Soc. Am. A 22, 1898–1902 (2005).
    [CrossRef]
  16. Y. K. Wu, J. Li, and J. Wu, “Anomalous hollow electron beams in a storage ring,” Phys. Rev. Lett. 94, 134802 (2005).
    [CrossRef]
  17. Y. J. Cai, “Model for an anomalous hollow beam and its paraxial propagation,” Opt. Lett. 32, 3179–3181 (2007).
    [CrossRef]
  18. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
    [CrossRef]
  19. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [CrossRef]
  20. S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986).
    [CrossRef]
  21. A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283, 1689–1695 (1999).
    [CrossRef]
  22. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
    [CrossRef]
  23. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
    [CrossRef]
  24. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
    [CrossRef]
  25. A. J. Hunt, F. Gittes, and J. Howard, “The force exerted by a single kinesin molecule against a viscous load,” Biophys. J. 67, 766–781 (1994).
    [CrossRef]
  26. J. W. Dai and M. P. Sheetz, “Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers,” Biophys. J. 68, 988–996 (1995).
    [CrossRef]
  27. M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Force and velocity measured for single molecules of RNA polymerase,” Science 282, 902–907 (1998).
    [CrossRef]
  28. Q. W. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12, 3377–3382 (2004).
    [CrossRef]
  29. M. Dienerowitz, M. Mazilu, P. J. Reece, T. F. Krauss, and K. Dholakia, “Optical vortex trap for resonant confinement of metal nanoparticles,” Opt. Express 16, 4991–4999 (2008).
    [CrossRef]
  30. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969).
  31. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
    [CrossRef]
  32. T. P. Meyrath, F. Schreck, J. L. Hanssen, C. S. Chuu, and M. G. Raizen, “A high frequency optical trap for atoms using Hermite–Gaussian beams,” Opt. Express 13, 2843–2851 (2005).
    [CrossRef]
  33. M. Bhattacharya and P. Meystre, “Using a Laguerre–Gaussian beam to trap and cool the rotational motion of a mirror,” Phys. Rev. Lett. 99, 153603 (2007).
    [CrossRef]
  34. V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85, 4001–4003 (2004).
    [CrossRef]
  35. H. Little, C. T. A. Brown, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical guiding of microscopic particles in femtosecond and continuous wave Bessel light beams,” Opt. Express 12, 2560–2565 (2004).
    [CrossRef]
  36. A. A. Ambardekar and Y. Q. Li, “Optical levitation and manipulation of stuck particles with pulsed optical tweezers,” Opt. Lett. 30, 1797–1799 (2005).
    [CrossRef]
  37. J. L. Deng, Q. Wei, Y. Z. Wang, and Y. Q. Li, “Numerical modeling of optical levitation and trapping of the “stuck” particles with a pulsed optical tweezers,” Opt. Express 13, 3673–3680 (2005).
    [CrossRef]
  38. L. G. Wang and H. S. Chai, “Revisit on dynamic radiation forces induced by pulsed Gaussian beams,” Opt. Express 19, 14389–14402 (2011).
    [CrossRef]
  39. S. Yan and B. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76, 053836 (2007).
    [CrossRef]
  40. Y. J. Zhang, B. F. Ding, and T. Suyama, “Trapping two types of particles using a double-ring-shaped radially polarized beam,” Phys. Rev. A 81, 023831 (2010).
    [CrossRef]
  41. P. Zhang, Z. Zhang, J. Prakash, S. Huang, D. Hernandez, M. Salazar, D. N. Christodoulides, and Z. Chen, “Trapping and transporting aerosols with a single optical bottle beam generated by moiré techniques,” Opt. Lett. 36, 1491–1493 (2011).
    [CrossRef]
  42. I. Chremmos, P. Zhang, J. Prakash, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Fourier-space generation of abruptly autofocusing beams and optical bottle beams,” Opt. Lett. 36, 3675–3677 (2011).
    [CrossRef]
  43. Z. Zhang, D. Cannan, J. Liu, P. Zhang, D. N. Christodoulides, and Z. Chen, “Observation of trapping and transporting air-borne absorbing particles with a single optical beam,” Opt. Express 20, 16212–16217 (2012).
    [CrossRef]
  44. J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2, 675–678 (2008).
    [CrossRef]
  45. Z. Zheng, B. F. Zhang, H. Chen, J. P. Ding, and H. T. Wang, “Optical trapping with focused Airy beams,” Appl. Opt. 50, 43–49 (2011).
    [CrossRef]
  46. N. K. Efremidis and D. N. Christodoulides, “Abruptly autofocusing waves,” Opt. Lett. 35, 4045–4057 (2010).
    [CrossRef]
  47. P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping and guiding microparticles with morphing autofocusing Airy beams,” Opt. Lett. 36, 2883–2885 (2011).
    [CrossRef]
  48. J. Ng, Z. Lin, and C. T. Chan, “Theory of optical trapping by an optical vortex beam,” Phys. Rev. Lett. 104, 103601 (2010).
    [CrossRef]
  49. K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12, 2645–3649 (2012).
    [CrossRef]
  50. L. G. Wang, “Optical forces on submicron particles induced by full Poincaré beams,” Opt. Express 20, 20814–20826 (2012).
    [CrossRef]
  51. L. G. Wang, C. L. Zhao, L. Q. Wang, X. H. Lu, and S. Y. Zhu, “Effect of spatial coherence on radiation forces acting on a Rayleigh dielectric sphere,” Opt. Lett. 32, 1393–1395 (2007).
    [CrossRef]
  52. C. L. Zhao and Y. J. Cai, “Trapping two types of particles using a focused partially coherent elegant Laguerre–Gaussian beam,” Opt. Lett. 36, 2251–2253 (2011).
    [CrossRef]
  53. J. M. Auñón and M. Nieto-Vesperinas, “Optical forces on small particles from partially coherent light,” J. Opt. Soc. Am. A 29, 1389–1398 (2012).
    [CrossRef]
  54. K. Visscher and G. J. Brakenhoff, “A theoretical study of optically induced forces on spherical particles in a single beam trap I: Rayleigh scatterers,” Optik 89, 174–180 (1992).
  55. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).

2012 (5)

2011 (7)

2010 (3)

Y. J. Zhang, B. F. Ding, and T. Suyama, “Trapping two types of particles using a double-ring-shaped radially polarized beam,” Phys. Rev. A 81, 023831 (2010).
[CrossRef]

J. Ng, Z. Lin, and C. T. Chan, “Theory of optical trapping by an optical vortex beam,” Phys. Rev. Lett. 104, 103601 (2010).
[CrossRef]

N. K. Efremidis and D. N. Christodoulides, “Abruptly autofocusing waves,” Opt. Lett. 35, 4045–4057 (2010).
[CrossRef]

2008 (2)

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2, 675–678 (2008).
[CrossRef]

M. Dienerowitz, M. Mazilu, P. J. Reece, T. F. Krauss, and K. Dholakia, “Optical vortex trap for resonant confinement of metal nanoparticles,” Opt. Express 16, 4991–4999 (2008).
[CrossRef]

2007 (4)

M. Bhattacharya and P. Meystre, “Using a Laguerre–Gaussian beam to trap and cool the rotational motion of a mirror,” Phys. Rev. Lett. 99, 153603 (2007).
[CrossRef]

Y. J. Cai, “Model for an anomalous hollow beam and its paraxial propagation,” Opt. Lett. 32, 3179–3181 (2007).
[CrossRef]

S. Yan and B. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76, 053836 (2007).
[CrossRef]

L. G. Wang, C. L. Zhao, L. Q. Wang, X. H. Lu, and S. Y. Zhu, “Effect of spatial coherence on radiation forces acting on a Rayleigh dielectric sphere,” Opt. Lett. 32, 1393–1395 (2007).
[CrossRef]

2005 (5)

2004 (5)

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85, 4001–4003 (2004).
[CrossRef]

H. Little, C. T. A. Brown, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical guiding of microscopic particles in femtosecond and continuous wave Bessel light beams,” Opt. Express 12, 2560–2565 (2004).
[CrossRef]

Q. W. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12, 3377–3382 (2004).
[CrossRef]

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[CrossRef]

F. E. S. Vetelino and L. C. Andrews, “Annular Gaussian beams in turbulent media,” Proc. SPIE 5160, 86–97 (2004).
[CrossRef]

2003 (1)

2000 (1)

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
[CrossRef]

1999 (1)

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283, 1689–1695 (1999).
[CrossRef]

1998 (1)

M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Force and velocity measured for single molecules of RNA polymerase,” Science 282, 902–907 (1998).
[CrossRef]

1997 (2)

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Y. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface trap for Cs atoms based on evanescent-wave cooling,” Phys. Rev. Lett. 79, 2225–2228 (1997).
[CrossRef]

1996 (3)

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996).
[CrossRef]

C. Paterson and R. Smith, “Higher-order Bessel waves produced by axicon-type computer-generated holograms,” Opt. Commun. 124, 121–130 (1996).
[CrossRef]

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
[CrossRef]

1995 (1)

J. W. Dai and M. P. Sheetz, “Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers,” Biophys. J. 68, 988–996 (1995).
[CrossRef]

1994 (3)

A. J. Hunt, F. Gittes, and J. Howard, “The force exerted by a single kinesin molecule against a viscous load,” Biophys. J. 67, 766–781 (1994).
[CrossRef]

S. Marksteiner, C. M. Savage, P. Zoller, and S. L. Rolston, “Coherent atomic waveguides from hollow optical fibers: quantized atomic motion,” Phys. Rev. A 50, 2680–2690 (1994).
[CrossRef]

H. S. Lee, B. W. Stewart, K. Choi, and H. Fenichel, “Holographic nondiverging hollow beam,” Phys. Rev. A 49, 4922–4927(1994).
[CrossRef]

1993 (1)

1992 (2)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[CrossRef]

K. Visscher and G. J. Brakenhoff, “A theoretical study of optically induced forces on spherical particles in a single beam trap I: Rayleigh scatterers,” Optik 89, 174–180 (1992).

1991 (1)

1987 (2)

V. I. Balykin and V. S. Letokhov, “The possibility of deep laser focusing of an atomic beam into the A-region,” Opt. Commun. 64, 151–156 (1987).
[CrossRef]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[CrossRef]

1986 (2)

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef]

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986).
[CrossRef]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Ambardekar, A. A.

Andrews, L. C.

F. E. S. Vetelino and L. C. Andrews, “Annular Gaussian beams in turbulent media,” Proc. SPIE 5160, 86–97 (2004).
[CrossRef]

Aoki, N.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12, 2645–3649 (2012).
[CrossRef]

Arlt, J.

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
[CrossRef]

Asakura, T.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
[CrossRef]

Ashkin, A.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[CrossRef]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[CrossRef]

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986).
[CrossRef]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Auñón, J. M.

Balykin, V. I.

V. I. Balykin and V. S. Letokhov, “The possibility of deep laser focusing of an atomic beam into the A-region,” Opt. Commun. 64, 151–156 (1987).
[CrossRef]

Baumgartl, J.

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2, 675–678 (2008).
[CrossRef]

Bhattacharya, M.

M. Bhattacharya and P. Meystre, “Using a Laguerre–Gaussian beam to trap and cool the rotational motion of a mirror,” Phys. Rev. Lett. 99, 153603 (2007).
[CrossRef]

Bian, H.

C. Yan, D. H. Zhang, D. Li, H. Bian, Z. Xu, and Y. Wang, “Metal nanorod-based metamaterials for beam splitting and a subdiffraction-limited dark hollow light cone,” J. Opt. 13, 085102 (2011).
[CrossRef]

Bjorkholm, J. E.

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986).
[CrossRef]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef]

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[CrossRef]

M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Force and velocity measured for single molecules of RNA polymerase,” Science 282, 902–907 (1998).
[CrossRef]

Brakenhoff, G. J.

K. Visscher and G. J. Brakenhoff, “A theoretical study of optically induced forces on spherical particles in a single beam trap I: Rayleigh scatterers,” Optik 89, 174–180 (1992).

Brown, C. T. A.

Cable, A.

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986).
[CrossRef]

Cai, Y. J.

Cannan, D.

Chai, H. S.

Chan, C. T.

J. Ng, Z. Lin, and C. T. Chan, “Theory of optical trapping by an optical vortex beam,” Phys. Rev. Lett. 104, 103601 (2010).
[CrossRef]

Chen, H.

Chen, Z.

Choi, K.

H. S. Lee, B. W. Stewart, K. Choi, and H. Fenichel, “Holographic nondiverging hollow beam,” Phys. Rev. A 49, 4922–4927(1994).
[CrossRef]

Chremmos, I.

Christodoulides, D. N.

Chu, S.

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986).
[CrossRef]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef]

Chuu, C. S.

Dai, J. W.

J. W. Dai and M. P. Sheetz, “Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers,” Biophys. J. 68, 988–996 (1995).
[CrossRef]

Deng, J. L.

Dholakia, K.

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2, 675–678 (2008).
[CrossRef]

M. Dienerowitz, M. Mazilu, P. J. Reece, T. F. Krauss, and K. Dholakia, “Optical vortex trap for resonant confinement of metal nanoparticles,” Opt. Express 16, 4991–4999 (2008).
[CrossRef]

H. Little, C. T. A. Brown, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical guiding of microscopic particles in femtosecond and continuous wave Bessel light beams,” Opt. Express 12, 2560–2565 (2004).
[CrossRef]

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85, 4001–4003 (2004).
[CrossRef]

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
[CrossRef]

Dienerowitz, M.

Ding, B. F.

Y. J. Zhang, B. F. Ding, and T. Suyama, “Trapping two types of particles using a double-ring-shaped radially polarized beam,” Phys. Rev. A 81, 023831 (2010).
[CrossRef]

Ding, J. P.

Dziedzic, J. M.

Efremidis, N. K.

Fenichel, H.

H. S. Lee, B. W. Stewart, K. Choi, and H. Fenichel, “Holographic nondiverging hollow beam,” Phys. Rev. A 49, 4922–4927(1994).
[CrossRef]

Garcés-Chávez, V.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85, 4001–4003 (2004).
[CrossRef]

H. Little, C. T. A. Brown, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical guiding of microscopic particles in femtosecond and continuous wave Bessel light beams,” Opt. Express 12, 2560–2565 (2004).
[CrossRef]

Gelles, J.

M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Force and velocity measured for single molecules of RNA polymerase,” Science 282, 902–907 (1998).
[CrossRef]

Gittes, F.

A. J. Hunt, F. Gittes, and J. Howard, “The force exerted by a single kinesin molecule against a viscous load,” Biophys. J. 67, 766–781 (1994).
[CrossRef]

Grimm, R.

Y. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface trap for Cs atoms based on evanescent-wave cooling,” Phys. Rev. Lett. 79, 2225–2228 (1997).
[CrossRef]

Hanssen, J. L.

Harada, Y.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
[CrossRef]

Herman, R. M.

Hernandez, D.

Hirano, T.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Howard, J.

A. J. Hunt, F. Gittes, and J. Howard, “The force exerted by a single kinesin molecule against a viscous load,” Biophys. J. 67, 766–781 (1994).
[CrossRef]

Huang, S.

Hunt, A. J.

A. J. Hunt, F. Gittes, and J. Howard, “The force exerted by a single kinesin molecule against a viscous load,” Biophys. J. 67, 766–781 (1994).
[CrossRef]

Ito, H.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996).
[CrossRef]

Jhe, W.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996).
[CrossRef]

Kerker, M.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969).

Krauss, T. F.

Kuga, T.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Landick, R.

M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Force and velocity measured for single molecules of RNA polymerase,” Science 282, 902–907 (1998).
[CrossRef]

Lee, H. S.

H. S. Lee, B. W. Stewart, K. Choi, and H. Fenichel, “Holographic nondiverging hollow beam,” Phys. Rev. A 49, 4922–4927(1994).
[CrossRef]

Lee, K. I.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996).
[CrossRef]

Letokhov, V. S.

V. I. Balykin and V. S. Letokhov, “The possibility of deep laser focusing of an atomic beam into the A-region,” Opt. Commun. 64, 151–156 (1987).
[CrossRef]

Li, D.

Z. Xu, D. H. Zhang, C. Yan, D. Li, and Y. Wang, “Concentric cylindrical metamaterials for subwavelength dark hollow light cones,” J. Opt. 14, 114014 (2012).
[CrossRef]

C. Yan, D. H. Zhang, D. Li, H. Bian, Z. Xu, and Y. Wang, “Metal nanorod-based metamaterials for beam splitting and a subdiffraction-limited dark hollow light cone,” J. Opt. 13, 085102 (2011).
[CrossRef]

Li, J.

Y. K. Wu, J. Li, and J. Wu, “Anomalous hollow electron beams in a storage ring,” Phys. Rev. Lett. 94, 134802 (2005).
[CrossRef]

Li, Y. Q.

Lin, Q.

Lin, Z.

J. Ng, Z. Lin, and C. T. Chan, “Theory of optical trapping by an optical vortex beam,” Phys. Rev. Lett. 104, 103601 (2010).
[CrossRef]

Little, H.

Littman, M. G.

Liu, J.

Lu, X. H.

Manek, I.

Y. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface trap for Cs atoms based on evanescent-wave cooling,” Phys. Rev. Lett. 79, 2225–2228 (1997).
[CrossRef]

Marksteiner, S.

S. Marksteiner, C. M. Savage, P. Zoller, and S. L. Rolston, “Coherent atomic waveguides from hollow optical fibers: quantized atomic motion,” Phys. Rev. A 50, 2680–2690 (1994).
[CrossRef]

Mazilu, M.

M. Dienerowitz, M. Mazilu, P. J. Reece, T. F. Krauss, and K. Dholakia, “Optical vortex trap for resonant confinement of metal nanoparticles,” Opt. Express 16, 4991–4999 (2008).
[CrossRef]

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2, 675–678 (2008).
[CrossRef]

McGloin, D.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85, 4001–4003 (2004).
[CrossRef]

Mehta, A. D.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283, 1689–1695 (1999).
[CrossRef]

Mei, Z. R.

Melville, H.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85, 4001–4003 (2004).
[CrossRef]

Meyrath, T. P.

Meystre, P.

M. Bhattacharya and P. Meystre, “Using a Laguerre–Gaussian beam to trap and cool the rotational motion of a mirror,” Phys. Rev. Lett. 99, 153603 (2007).
[CrossRef]

Mills, M. S.

Miyamoto, K.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12, 2645–3649 (2012).
[CrossRef]

Morita, R.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12, 2645–3649 (2012).
[CrossRef]

Nakata, T.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996).
[CrossRef]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[CrossRef]

Ng, J.

J. Ng, Z. Lin, and C. T. Chan, “Theory of optical trapping by an optical vortex beam,” Phys. Rev. Lett. 104, 103601 (2010).
[CrossRef]

Nieto-Vesperinas, M.

Ohtsu, M.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996).
[CrossRef]

Omatsu, T.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12, 2645–3649 (2012).
[CrossRef]

Ovchinnikov, Y. B.

Y. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface trap for Cs atoms based on evanescent-wave cooling,” Phys. Rev. Lett. 79, 2225–2228 (1997).
[CrossRef]

Paterson, C.

C. Paterson and R. Smith, “Higher-order Bessel waves produced by axicon-type computer-generated holograms,” Opt. Commun. 124, 121–130 (1996).
[CrossRef]

Prakash, J.

Raizen, M. G.

Reece, P. J.

Rief, M.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283, 1689–1695 (1999).
[CrossRef]

Rolston, S. L.

S. Marksteiner, C. M. Savage, P. Zoller, and S. L. Rolston, “Coherent atomic waveguides from hollow optical fibers: quantized atomic motion,” Phys. Rev. A 50, 2680–2690 (1994).
[CrossRef]

Roskey, D.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85, 4001–4003 (2004).
[CrossRef]

Sakaki, K.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996).
[CrossRef]

Salazar, M.

Sasada, H.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Savage, C. M.

S. Marksteiner, C. M. Savage, P. Zoller, and S. L. Rolston, “Coherent atomic waveguides from hollow optical fibers: quantized atomic motion,” Phys. Rev. A 50, 2680–2690 (1994).
[CrossRef]

Schnitzer, M. J.

M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Force and velocity measured for single molecules of RNA polymerase,” Science 282, 902–907 (1998).
[CrossRef]

Schreck, F.

Sheetz, M. P.

J. W. Dai and M. P. Sheetz, “Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers,” Biophys. J. 68, 988–996 (1995).
[CrossRef]

Shimizu, Y.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Shiokawa, N.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Sibbett, W.

Simmons, R. M.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283, 1689–1695 (1999).
[CrossRef]

Smith, D. A.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283, 1689–1695 (1999).
[CrossRef]

Smith, R.

C. Paterson and R. Smith, “Higher-order Bessel waves produced by axicon-type computer-generated holograms,” Opt. Commun. 124, 121–130 (1996).
[CrossRef]

Spudich, J. A.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283, 1689–1695 (1999).
[CrossRef]

Stewart, B. W.

H. S. Lee, B. W. Stewart, K. Choi, and H. Fenichel, “Holographic nondiverging hollow beam,” Phys. Rev. A 49, 4922–4927(1994).
[CrossRef]

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).

Summers, M. D.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85, 4001–4003 (2004).
[CrossRef]

Suyama, T.

Y. J. Zhang, B. F. Ding, and T. Suyama, “Trapping two types of particles using a double-ring-shaped radially polarized beam,” Phys. Rev. A 81, 023831 (2010).
[CrossRef]

Torii, Y.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Toyoda, K.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12, 2645–3649 (2012).
[CrossRef]

Vetelino, F. E. S.

F. E. S. Vetelino and L. C. Andrews, “Annular Gaussian beams in turbulent media,” Proc. SPIE 5160, 86–97 (2004).
[CrossRef]

Visscher, K.

K. Visscher and G. J. Brakenhoff, “A theoretical study of optically induced forces on spherical particles in a single beam trap I: Rayleigh scatterers,” Optik 89, 174–180 (1992).

Wang, H. T.

Wang, L. G.

Wang, L. Q.

Wang, M. D.

M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Force and velocity measured for single molecules of RNA polymerase,” Science 282, 902–907 (1998).
[CrossRef]

Wang, X.

Wang, Y.

Z. Xu, D. H. Zhang, C. Yan, D. Li, and Y. Wang, “Concentric cylindrical metamaterials for subwavelength dark hollow light cones,” J. Opt. 14, 114014 (2012).
[CrossRef]

C. Yan, D. H. Zhang, D. Li, H. Bian, Z. Xu, and Y. Wang, “Metal nanorod-based metamaterials for beam splitting and a subdiffraction-limited dark hollow light cone,” J. Opt. 13, 085102 (2011).
[CrossRef]

Wang, Y. Z.

Wei, Q.

Wiggins, T. A.

Wright, E. M.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85, 4001–4003 (2004).
[CrossRef]

Wu, J.

Y. K. Wu, J. Li, and J. Wu, “Anomalous hollow electron beams in a storage ring,” Phys. Rev. Lett. 94, 134802 (2005).
[CrossRef]

Wu, Y. K.

Y. K. Wu, J. Li, and J. Wu, “Anomalous hollow electron beams in a storage ring,” Phys. Rev. Lett. 94, 134802 (2005).
[CrossRef]

Xu, Z.

Z. Xu, D. H. Zhang, C. Yan, D. Li, and Y. Wang, “Concentric cylindrical metamaterials for subwavelength dark hollow light cones,” J. Opt. 14, 114014 (2012).
[CrossRef]

C. Yan, D. H. Zhang, D. Li, H. Bian, Z. Xu, and Y. Wang, “Metal nanorod-based metamaterials for beam splitting and a subdiffraction-limited dark hollow light cone,” J. Opt. 13, 085102 (2011).
[CrossRef]

Yan, C.

Z. Xu, D. H. Zhang, C. Yan, D. Li, and Y. Wang, “Concentric cylindrical metamaterials for subwavelength dark hollow light cones,” J. Opt. 14, 114014 (2012).
[CrossRef]

C. Yan, D. H. Zhang, D. Li, H. Bian, Z. Xu, and Y. Wang, “Metal nanorod-based metamaterials for beam splitting and a subdiffraction-limited dark hollow light cone,” J. Opt. 13, 085102 (2011).
[CrossRef]

Yan, S.

S. Yan and B. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76, 053836 (2007).
[CrossRef]

Yao, B.

S. Yan and B. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76, 053836 (2007).
[CrossRef]

Yin, H.

M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Force and velocity measured for single molecules of RNA polymerase,” Science 282, 902–907 (1998).
[CrossRef]

Zhan, Q. W.

Zhang, B. F.

Zhang, D. H.

Z. Xu, D. H. Zhang, C. Yan, D. Li, and Y. Wang, “Concentric cylindrical metamaterials for subwavelength dark hollow light cones,” J. Opt. 14, 114014 (2012).
[CrossRef]

C. Yan, D. H. Zhang, D. Li, H. Bian, Z. Xu, and Y. Wang, “Metal nanorod-based metamaterials for beam splitting and a subdiffraction-limited dark hollow light cone,” J. Opt. 13, 085102 (2011).
[CrossRef]

Zhang, P.

Zhang, Y. J.

Y. J. Zhang, B. F. Ding, and T. Suyama, “Trapping two types of particles using a double-ring-shaped radially polarized beam,” Phys. Rev. A 81, 023831 (2010).
[CrossRef]

Zhang, Z.

Zhao, C. L.

Zhao, D. M.

Zheng, Z.

Zhu, S. Y.

Zoller, P.

S. Marksteiner, C. M. Savage, P. Zoller, and S. L. Rolston, “Coherent atomic waveguides from hollow optical fibers: quantized atomic motion,” Phys. Rev. A 50, 2680–2690 (1994).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85, 4001–4003 (2004).
[CrossRef]

Biophys. J. (3)

A. J. Hunt, F. Gittes, and J. Howard, “The force exerted by a single kinesin molecule against a viscous load,” Biophys. J. 67, 766–781 (1994).
[CrossRef]

J. W. Dai and M. P. Sheetz, “Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers,” Biophys. J. 68, 988–996 (1995).
[CrossRef]

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[CrossRef]

J. Opt. (2)

C. Yan, D. H. Zhang, D. Li, H. Bian, Z. Xu, and Y. Wang, “Metal nanorod-based metamaterials for beam splitting and a subdiffraction-limited dark hollow light cone,” J. Opt. 13, 085102 (2011).
[CrossRef]

Z. Xu, D. H. Zhang, C. Yan, D. Li, and Y. Wang, “Concentric cylindrical metamaterials for subwavelength dark hollow light cones,” J. Opt. 14, 114014 (2012).
[CrossRef]

J. Opt. Soc. Am. A (3)

Nano Lett. (1)

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12, 2645–3649 (2012).
[CrossRef]

Nat. Photonics (1)

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2, 675–678 (2008).
[CrossRef]

Opt. Commun. (4)

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
[CrossRef]

V. I. Balykin and V. S. Letokhov, “The possibility of deep laser focusing of an atomic beam into the A-region,” Opt. Commun. 64, 151–156 (1987).
[CrossRef]

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
[CrossRef]

C. Paterson and R. Smith, “Higher-order Bessel waves produced by axicon-type computer-generated holograms,” Opt. Commun. 124, 121–130 (1996).
[CrossRef]

Opt. Express (8)

Opt. Lett. (11)

P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping and guiding microparticles with morphing autofocusing Airy beams,” Opt. Lett. 36, 2883–2885 (2011).
[CrossRef]

I. Chremmos, P. Zhang, J. Prakash, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Fourier-space generation of abruptly autofocusing beams and optical bottle beams,” Opt. Lett. 36, 3675–3677 (2011).
[CrossRef]

P. Zhang, Z. Zhang, J. Prakash, S. Huang, D. Hernandez, M. Salazar, D. N. Christodoulides, and Z. Chen, “Trapping and transporting aerosols with a single optical bottle beam generated by moiré techniques,” Opt. Lett. 36, 1491–1493 (2011).
[CrossRef]

C. L. Zhao and Y. J. Cai, “Trapping two types of particles using a focused partially coherent elegant Laguerre–Gaussian beam,” Opt. Lett. 36, 2251–2253 (2011).
[CrossRef]

A. A. Ambardekar and Y. Q. Li, “Optical levitation and manipulation of stuck particles with pulsed optical tweezers,” Opt. Lett. 30, 1797–1799 (2005).
[CrossRef]

N. K. Efremidis and D. N. Christodoulides, “Abruptly autofocusing waves,” Opt. Lett. 35, 4045–4057 (2010).
[CrossRef]

L. G. Wang, C. L. Zhao, L. Q. Wang, X. H. Lu, and S. Y. Zhu, “Effect of spatial coherence on radiation forces acting on a Rayleigh dielectric sphere,” Opt. Lett. 32, 1393–1395 (2007).
[CrossRef]

Y. J. Cai, “Model for an anomalous hollow beam and its paraxial propagation,” Opt. Lett. 32, 3179–3181 (2007).
[CrossRef]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef]

X. Wang and M. G. Littman, “Laser cavity for generation of variable-radius rings of light,” Opt. Lett. 18, 767–768 (1993).
[CrossRef]

Y. J. Cai, X. H. Lu, and Q. Lin, “Hollow Gaussian beams and their propagation properties,” Opt. Lett. 28, 1084–1086 (2003).
[CrossRef]

Optik (1)

K. Visscher and G. J. Brakenhoff, “A theoretical study of optically induced forces on spherical particles in a single beam trap I: Rayleigh scatterers,” Optik 89, 174–180 (1992).

Phys. Rev. A (4)

S. Yan and B. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76, 053836 (2007).
[CrossRef]

Y. J. Zhang, B. F. Ding, and T. Suyama, “Trapping two types of particles using a double-ring-shaped radially polarized beam,” Phys. Rev. A 81, 023831 (2010).
[CrossRef]

H. S. Lee, B. W. Stewart, K. Choi, and H. Fenichel, “Holographic nondiverging hollow beam,” Phys. Rev. A 49, 4922–4927(1994).
[CrossRef]

S. Marksteiner, C. M. Savage, P. Zoller, and S. L. Rolston, “Coherent atomic waveguides from hollow optical fibers: quantized atomic motion,” Phys. Rev. A 50, 2680–2690 (1994).
[CrossRef]

Phys. Rev. Lett. (8)

Y. K. Wu, J. Li, and J. Wu, “Anomalous hollow electron beams in a storage ring,” Phys. Rev. Lett. 94, 134802 (2005).
[CrossRef]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986).
[CrossRef]

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Y. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface trap for Cs atoms based on evanescent-wave cooling,” Phys. Rev. Lett. 79, 2225–2228 (1997).
[CrossRef]

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996).
[CrossRef]

M. Bhattacharya and P. Meystre, “Using a Laguerre–Gaussian beam to trap and cool the rotational motion of a mirror,” Phys. Rev. Lett. 99, 153603 (2007).
[CrossRef]

J. Ng, Z. Lin, and C. T. Chan, “Theory of optical trapping by an optical vortex beam,” Phys. Rev. Lett. 104, 103601 (2010).
[CrossRef]

Proc. SPIE (1)

F. E. S. Vetelino and L. C. Andrews, “Annular Gaussian beams in turbulent media,” Proc. SPIE 5160, 86–97 (2004).
[CrossRef]

Rev. Sci. Instrum. (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[CrossRef]

Science (3)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[CrossRef]

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283, 1689–1695 (1999).
[CrossRef]

M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Force and velocity measured for single molecules of RNA polymerase,” Science 282, 902–907 (1998).
[CrossRef]

Other (2)

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969).

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Density graph for the normalized intensity of an AHB for two different sets of w0x, and w0y, (a) w0x=2mm, w0y=1mm; (b) w0x=w0y=1mm.

Fig. 2.
Fig. 2.

Schematic of the focusing optical system. Left and right plots are the intensity distribution of AHBs at the input and focal planes, respectively.

Fig. 3.
Fig. 3.

Intensity distribution of AHBs near the focal plane at different distances: (a) Δz=0, (b) Δz=2μm, (c) Δz=5μm. (d) Evolution of AHBs intensity distribution from Δz=5μm to Δz=5μm. The remaining parameters are w0x=2mm, w0y=1mm, the beam power P0=100mW, and the focal length of the lens is f=10mm.

Fig. 4.
Fig. 4.

(a)–(c) Transverse gradient forces produced by focused AHBs at different planes: (a) Δz=0, (b) Δz=2μm, and (c) Δz=5μm. (d)–(f) Axial gradient forces produced by focused AHBs at different transverse position: (d) x=0, (e) x=1μm, and (f) x=2μm. Solid curves for the particles with m=1.2(n1=1.592), dashed curves for the particles with m=0.75(n1=1.0). The remaining parameters are P0=100mW, w0x=2mm, w0y=1mm, n2=1.332, and a=30nm.

Fig. 5.
Fig. 5.

Scattering force produced by focused AHBs at different planes. (a)–(c) Δz=0, (d)–(f) Δz=2μm, (g)–(i) Δz=5μm. Solid curves for the particles with m=1.2(n1=1.592), dashed curves for the particles with m=0.75(n1=1.0). The remaining parameters are P0=100mW, w0x=2mm, w0y=1mm, n2=1.332, and a=30nm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E(x,y,0)=G0exp(x2w0x2y2w0y2)H2(2x2w0x2+2y2w0y2),
E(x,y,z)=2ikG0Bexp(ikz)exp[ikD2B(x2+y2)]×(α+βx2+γy2)exp[12k2(w0x2x22B2+iABkw0x2+w0y2y22B2+iABkw0y2)](kAw0x22iB)2(ikAw0y2+2B)2(ikAB+2w0x2)(ikAB+2w0y2),
[ABCD]=[1f+Δz01][101/f1]=[1z/fz1/f1],
Fscat(r,z)=z^n2cCprI(r,z),
I(r,z)=n2ε0c2|E(r,z)|2.
Cpr=Cscat=83π(ka)4a2(m21m2+2)2,
Fgrad(r,z)=2πn2a3c(m21m2+2)I(r,z).
Rthermal=exp(Umax/kBT)1,

Metrics