Abstract

Although ion beam figuring (IBF) provides a highly deterministic method for the precision figuring of optical components, several problems still need to be addressed, such as the limited correcting capability for mid-to-high spatial frequency surface errors and low machining efficiency for pit defects on surfaces. We propose a figuring method named deterministic ion beam material adding (IBA) technology to solve those problems in IBF. The current deterministic optical figuring mechanism, which is dedicated to removing local protuberances on optical surfaces, is enriched and developed by the IBA technology. Compared with IBF, this method can realize the uniform convergence of surface errors, where the particle transferring effect generated in the IBA process can effectively correct the mid-to-high spatial frequency errors. In addition, IBA can rapidly correct the pit defects on the surface and greatly improve the machining efficiency of the figuring process. The verification experiments are accomplished on our experimental installation to validate the feasibility of the IBA method. First, a fused silica sample with a rectangular pit defect is figured by using IBA. Through two iterations within only 47.5 min, this highly steep pit is effectively corrected, and the surface error is improved from the original 24.69 nm root mean square (RMS) to the final 3.68 nm RMS. Then another experiment is carried out to demonstrate the correcting capability of IBA for mid-to-high spatial frequency surface errors, and the final results indicate that the surface accuracy and surface quality can be simultaneously improved.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Drueding, T. G. Bifano, and S. C. Fawcett, “Contouring algorithm for ion figuring,” Precis. Eng. 17, 10–21 (1995).
    [CrossRef]
  2. L. N. Allen and H. W. Romig, “Demonstration of an ion figuring process,” Proc. SPIE 1333, 22–23 (1990).
    [CrossRef]
  3. L. N. Allen, “Progress in ion figuring large optics,” Proc. SPIE 2428, 237–247 (1995).
    [CrossRef]
  4. T. Arnold, G. Böhm, R. Fechner, J. Meister, A. Nickel, F. Frost, T. Hänsel, and A. Schindler, “Ultra-precision surface finishing by ion beam and plasma jet techniques-status and outlook,” Nucl. Instrum. Methods Phys. Res. A 616, 147–156 (2010).
    [CrossRef]
  5. M. Weiser, “Ion beam figuring for lithography optics,” Nucl. Instrum. Methods Phys. Res. B 267, 1390–1393 (2009).
    [CrossRef]
  6. W. L. Liao, Y. F. Dai, X. H. Xie, L. Zhou, and Zh. Yuan, “Corrective capability analysis and machining error control in ion beam figuring of high-precision optical mirrors,” Opt. Eng. 51, 033402 (2012).
    [CrossRef]
  7. T. Haensel, A. Nickel, and A. Schindler, “Ion beam figuring of strongly curved surfaces with a (X,Y,Z) linear three-axes system,” in Plasmonics and Metamaterials, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JWD6.
  8. M. Ghigo, R. Canestrari, D. Spiga, and A. Novi, “Correction of high spatial frequency errors on optical surfaces by means of ion beam figuring,” Proc. SPIE 6671, 667114 (2007).
    [CrossRef]
  9. X. Xie, W. Gu, and L. Zhou, “Study on machining small precision optical component using thin ion beam,” J. Natl. Univ. Def. Technol. 31, 10–14 (2009) (in Chinese).
  10. Y. Kurashima, K. Miyachi, I. Miyamoto, M. Ando, and A. Numata, “Evaluation of surface roughness of ULE substrates,” Microelectron. Eng. 85, 1193–1196 (2008).
    [CrossRef]
  11. J. S. Liu, Ion Beam Deposition Film Technology and Application (National Defense Industry, 2003) (in Chinese).
  12. E. M. Paul, T. M. James, and P. C. Thomas, “Fabrication of EUV components with MRF,” Proc. SPIE 5193, 29–38 (2004).
    [CrossRef]
  13. L. Zhou, Y. F. Dai, X. H. Xie, and S. Y. Li, “Frequency-domain analysis of computer controlled optical surfacing processes,” Sci. China Ser. E 52, 2061–2068 (2009).
  14. P. Sigmund, “Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets,” Phys. Rev. 184, 383–416 (1969).
    [CrossRef]
  15. R. M. Bradley and J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6, 2390–2395 (1988).
    [CrossRef]

2012 (1)

W. L. Liao, Y. F. Dai, X. H. Xie, L. Zhou, and Zh. Yuan, “Corrective capability analysis and machining error control in ion beam figuring of high-precision optical mirrors,” Opt. Eng. 51, 033402 (2012).
[CrossRef]

2010 (1)

T. Arnold, G. Böhm, R. Fechner, J. Meister, A. Nickel, F. Frost, T. Hänsel, and A. Schindler, “Ultra-precision surface finishing by ion beam and plasma jet techniques-status and outlook,” Nucl. Instrum. Methods Phys. Res. A 616, 147–156 (2010).
[CrossRef]

2009 (3)

M. Weiser, “Ion beam figuring for lithography optics,” Nucl. Instrum. Methods Phys. Res. B 267, 1390–1393 (2009).
[CrossRef]

X. Xie, W. Gu, and L. Zhou, “Study on machining small precision optical component using thin ion beam,” J. Natl. Univ. Def. Technol. 31, 10–14 (2009) (in Chinese).

L. Zhou, Y. F. Dai, X. H. Xie, and S. Y. Li, “Frequency-domain analysis of computer controlled optical surfacing processes,” Sci. China Ser. E 52, 2061–2068 (2009).

2008 (1)

Y. Kurashima, K. Miyachi, I. Miyamoto, M. Ando, and A. Numata, “Evaluation of surface roughness of ULE substrates,” Microelectron. Eng. 85, 1193–1196 (2008).
[CrossRef]

2007 (1)

M. Ghigo, R. Canestrari, D. Spiga, and A. Novi, “Correction of high spatial frequency errors on optical surfaces by means of ion beam figuring,” Proc. SPIE 6671, 667114 (2007).
[CrossRef]

2004 (1)

E. M. Paul, T. M. James, and P. C. Thomas, “Fabrication of EUV components with MRF,” Proc. SPIE 5193, 29–38 (2004).
[CrossRef]

1995 (2)

T. W. Drueding, T. G. Bifano, and S. C. Fawcett, “Contouring algorithm for ion figuring,” Precis. Eng. 17, 10–21 (1995).
[CrossRef]

L. N. Allen, “Progress in ion figuring large optics,” Proc. SPIE 2428, 237–247 (1995).
[CrossRef]

1990 (1)

L. N. Allen and H. W. Romig, “Demonstration of an ion figuring process,” Proc. SPIE 1333, 22–23 (1990).
[CrossRef]

1988 (1)

R. M. Bradley and J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6, 2390–2395 (1988).
[CrossRef]

1969 (1)

P. Sigmund, “Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets,” Phys. Rev. 184, 383–416 (1969).
[CrossRef]

Allen, L. N.

L. N. Allen, “Progress in ion figuring large optics,” Proc. SPIE 2428, 237–247 (1995).
[CrossRef]

L. N. Allen and H. W. Romig, “Demonstration of an ion figuring process,” Proc. SPIE 1333, 22–23 (1990).
[CrossRef]

Ando, M.

Y. Kurashima, K. Miyachi, I. Miyamoto, M. Ando, and A. Numata, “Evaluation of surface roughness of ULE substrates,” Microelectron. Eng. 85, 1193–1196 (2008).
[CrossRef]

Arnold, T.

T. Arnold, G. Böhm, R. Fechner, J. Meister, A. Nickel, F. Frost, T. Hänsel, and A. Schindler, “Ultra-precision surface finishing by ion beam and plasma jet techniques-status and outlook,” Nucl. Instrum. Methods Phys. Res. A 616, 147–156 (2010).
[CrossRef]

Bifano, T. G.

T. W. Drueding, T. G. Bifano, and S. C. Fawcett, “Contouring algorithm for ion figuring,” Precis. Eng. 17, 10–21 (1995).
[CrossRef]

Böhm, G.

T. Arnold, G. Böhm, R. Fechner, J. Meister, A. Nickel, F. Frost, T. Hänsel, and A. Schindler, “Ultra-precision surface finishing by ion beam and plasma jet techniques-status and outlook,” Nucl. Instrum. Methods Phys. Res. A 616, 147–156 (2010).
[CrossRef]

Bradley, R. M.

R. M. Bradley and J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6, 2390–2395 (1988).
[CrossRef]

Canestrari, R.

M. Ghigo, R. Canestrari, D. Spiga, and A. Novi, “Correction of high spatial frequency errors on optical surfaces by means of ion beam figuring,” Proc. SPIE 6671, 667114 (2007).
[CrossRef]

Dai, Y. F.

W. L. Liao, Y. F. Dai, X. H. Xie, L. Zhou, and Zh. Yuan, “Corrective capability analysis and machining error control in ion beam figuring of high-precision optical mirrors,” Opt. Eng. 51, 033402 (2012).
[CrossRef]

L. Zhou, Y. F. Dai, X. H. Xie, and S. Y. Li, “Frequency-domain analysis of computer controlled optical surfacing processes,” Sci. China Ser. E 52, 2061–2068 (2009).

Drueding, T. W.

T. W. Drueding, T. G. Bifano, and S. C. Fawcett, “Contouring algorithm for ion figuring,” Precis. Eng. 17, 10–21 (1995).
[CrossRef]

Fawcett, S. C.

T. W. Drueding, T. G. Bifano, and S. C. Fawcett, “Contouring algorithm for ion figuring,” Precis. Eng. 17, 10–21 (1995).
[CrossRef]

Fechner, R.

T. Arnold, G. Böhm, R. Fechner, J. Meister, A. Nickel, F. Frost, T. Hänsel, and A. Schindler, “Ultra-precision surface finishing by ion beam and plasma jet techniques-status and outlook,” Nucl. Instrum. Methods Phys. Res. A 616, 147–156 (2010).
[CrossRef]

Frost, F.

T. Arnold, G. Böhm, R. Fechner, J. Meister, A. Nickel, F. Frost, T. Hänsel, and A. Schindler, “Ultra-precision surface finishing by ion beam and plasma jet techniques-status and outlook,” Nucl. Instrum. Methods Phys. Res. A 616, 147–156 (2010).
[CrossRef]

Ghigo, M.

M. Ghigo, R. Canestrari, D. Spiga, and A. Novi, “Correction of high spatial frequency errors on optical surfaces by means of ion beam figuring,” Proc. SPIE 6671, 667114 (2007).
[CrossRef]

Gu, W.

X. Xie, W. Gu, and L. Zhou, “Study on machining small precision optical component using thin ion beam,” J. Natl. Univ. Def. Technol. 31, 10–14 (2009) (in Chinese).

Haensel, T.

T. Haensel, A. Nickel, and A. Schindler, “Ion beam figuring of strongly curved surfaces with a (X,Y,Z) linear three-axes system,” in Plasmonics and Metamaterials, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JWD6.

Hänsel, T.

T. Arnold, G. Böhm, R. Fechner, J. Meister, A. Nickel, F. Frost, T. Hänsel, and A. Schindler, “Ultra-precision surface finishing by ion beam and plasma jet techniques-status and outlook,” Nucl. Instrum. Methods Phys. Res. A 616, 147–156 (2010).
[CrossRef]

Harper, J. M. E.

R. M. Bradley and J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6, 2390–2395 (1988).
[CrossRef]

James, T. M.

E. M. Paul, T. M. James, and P. C. Thomas, “Fabrication of EUV components with MRF,” Proc. SPIE 5193, 29–38 (2004).
[CrossRef]

Kurashima, Y.

Y. Kurashima, K. Miyachi, I. Miyamoto, M. Ando, and A. Numata, “Evaluation of surface roughness of ULE substrates,” Microelectron. Eng. 85, 1193–1196 (2008).
[CrossRef]

Li, S. Y.

L. Zhou, Y. F. Dai, X. H. Xie, and S. Y. Li, “Frequency-domain analysis of computer controlled optical surfacing processes,” Sci. China Ser. E 52, 2061–2068 (2009).

Liao, W. L.

W. L. Liao, Y. F. Dai, X. H. Xie, L. Zhou, and Zh. Yuan, “Corrective capability analysis and machining error control in ion beam figuring of high-precision optical mirrors,” Opt. Eng. 51, 033402 (2012).
[CrossRef]

Liu, J. S.

J. S. Liu, Ion Beam Deposition Film Technology and Application (National Defense Industry, 2003) (in Chinese).

Meister, J.

T. Arnold, G. Böhm, R. Fechner, J. Meister, A. Nickel, F. Frost, T. Hänsel, and A. Schindler, “Ultra-precision surface finishing by ion beam and plasma jet techniques-status and outlook,” Nucl. Instrum. Methods Phys. Res. A 616, 147–156 (2010).
[CrossRef]

Miyachi, K.

Y. Kurashima, K. Miyachi, I. Miyamoto, M. Ando, and A. Numata, “Evaluation of surface roughness of ULE substrates,” Microelectron. Eng. 85, 1193–1196 (2008).
[CrossRef]

Miyamoto, I.

Y. Kurashima, K. Miyachi, I. Miyamoto, M. Ando, and A. Numata, “Evaluation of surface roughness of ULE substrates,” Microelectron. Eng. 85, 1193–1196 (2008).
[CrossRef]

Nickel, A.

T. Arnold, G. Böhm, R. Fechner, J. Meister, A. Nickel, F. Frost, T. Hänsel, and A. Schindler, “Ultra-precision surface finishing by ion beam and plasma jet techniques-status and outlook,” Nucl. Instrum. Methods Phys. Res. A 616, 147–156 (2010).
[CrossRef]

T. Haensel, A. Nickel, and A. Schindler, “Ion beam figuring of strongly curved surfaces with a (X,Y,Z) linear three-axes system,” in Plasmonics and Metamaterials, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JWD6.

Novi, A.

M. Ghigo, R. Canestrari, D. Spiga, and A. Novi, “Correction of high spatial frequency errors on optical surfaces by means of ion beam figuring,” Proc. SPIE 6671, 667114 (2007).
[CrossRef]

Numata, A.

Y. Kurashima, K. Miyachi, I. Miyamoto, M. Ando, and A. Numata, “Evaluation of surface roughness of ULE substrates,” Microelectron. Eng. 85, 1193–1196 (2008).
[CrossRef]

Paul, E. M.

E. M. Paul, T. M. James, and P. C. Thomas, “Fabrication of EUV components with MRF,” Proc. SPIE 5193, 29–38 (2004).
[CrossRef]

Romig, H. W.

L. N. Allen and H. W. Romig, “Demonstration of an ion figuring process,” Proc. SPIE 1333, 22–23 (1990).
[CrossRef]

Schindler, A.

T. Arnold, G. Böhm, R. Fechner, J. Meister, A. Nickel, F. Frost, T. Hänsel, and A. Schindler, “Ultra-precision surface finishing by ion beam and plasma jet techniques-status and outlook,” Nucl. Instrum. Methods Phys. Res. A 616, 147–156 (2010).
[CrossRef]

T. Haensel, A. Nickel, and A. Schindler, “Ion beam figuring of strongly curved surfaces with a (X,Y,Z) linear three-axes system,” in Plasmonics and Metamaterials, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JWD6.

Sigmund, P.

P. Sigmund, “Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets,” Phys. Rev. 184, 383–416 (1969).
[CrossRef]

Spiga, D.

M. Ghigo, R. Canestrari, D. Spiga, and A. Novi, “Correction of high spatial frequency errors on optical surfaces by means of ion beam figuring,” Proc. SPIE 6671, 667114 (2007).
[CrossRef]

Thomas, P. C.

E. M. Paul, T. M. James, and P. C. Thomas, “Fabrication of EUV components with MRF,” Proc. SPIE 5193, 29–38 (2004).
[CrossRef]

Weiser, M.

M. Weiser, “Ion beam figuring for lithography optics,” Nucl. Instrum. Methods Phys. Res. B 267, 1390–1393 (2009).
[CrossRef]

Xie, X.

X. Xie, W. Gu, and L. Zhou, “Study on machining small precision optical component using thin ion beam,” J. Natl. Univ. Def. Technol. 31, 10–14 (2009) (in Chinese).

Xie, X. H.

W. L. Liao, Y. F. Dai, X. H. Xie, L. Zhou, and Zh. Yuan, “Corrective capability analysis and machining error control in ion beam figuring of high-precision optical mirrors,” Opt. Eng. 51, 033402 (2012).
[CrossRef]

L. Zhou, Y. F. Dai, X. H. Xie, and S. Y. Li, “Frequency-domain analysis of computer controlled optical surfacing processes,” Sci. China Ser. E 52, 2061–2068 (2009).

Yuan, Zh.

W. L. Liao, Y. F. Dai, X. H. Xie, L. Zhou, and Zh. Yuan, “Corrective capability analysis and machining error control in ion beam figuring of high-precision optical mirrors,” Opt. Eng. 51, 033402 (2012).
[CrossRef]

Zhou, L.

W. L. Liao, Y. F. Dai, X. H. Xie, L. Zhou, and Zh. Yuan, “Corrective capability analysis and machining error control in ion beam figuring of high-precision optical mirrors,” Opt. Eng. 51, 033402 (2012).
[CrossRef]

L. Zhou, Y. F. Dai, X. H. Xie, and S. Y. Li, “Frequency-domain analysis of computer controlled optical surfacing processes,” Sci. China Ser. E 52, 2061–2068 (2009).

X. Xie, W. Gu, and L. Zhou, “Study on machining small precision optical component using thin ion beam,” J. Natl. Univ. Def. Technol. 31, 10–14 (2009) (in Chinese).

J. Natl. Univ. Def. Technol. (1)

X. Xie, W. Gu, and L. Zhou, “Study on machining small precision optical component using thin ion beam,” J. Natl. Univ. Def. Technol. 31, 10–14 (2009) (in Chinese).

J. Vac. Sci. Technol. A (1)

R. M. Bradley and J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6, 2390–2395 (1988).
[CrossRef]

Microelectron. Eng. (1)

Y. Kurashima, K. Miyachi, I. Miyamoto, M. Ando, and A. Numata, “Evaluation of surface roughness of ULE substrates,” Microelectron. Eng. 85, 1193–1196 (2008).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A (1)

T. Arnold, G. Böhm, R. Fechner, J. Meister, A. Nickel, F. Frost, T. Hänsel, and A. Schindler, “Ultra-precision surface finishing by ion beam and plasma jet techniques-status and outlook,” Nucl. Instrum. Methods Phys. Res. A 616, 147–156 (2010).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (1)

M. Weiser, “Ion beam figuring for lithography optics,” Nucl. Instrum. Methods Phys. Res. B 267, 1390–1393 (2009).
[CrossRef]

Opt. Eng. (1)

W. L. Liao, Y. F. Dai, X. H. Xie, L. Zhou, and Zh. Yuan, “Corrective capability analysis and machining error control in ion beam figuring of high-precision optical mirrors,” Opt. Eng. 51, 033402 (2012).
[CrossRef]

Phys. Rev. (1)

P. Sigmund, “Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets,” Phys. Rev. 184, 383–416 (1969).
[CrossRef]

Precis. Eng. (1)

T. W. Drueding, T. G. Bifano, and S. C. Fawcett, “Contouring algorithm for ion figuring,” Precis. Eng. 17, 10–21 (1995).
[CrossRef]

Proc. SPIE (4)

L. N. Allen and H. W. Romig, “Demonstration of an ion figuring process,” Proc. SPIE 1333, 22–23 (1990).
[CrossRef]

L. N. Allen, “Progress in ion figuring large optics,” Proc. SPIE 2428, 237–247 (1995).
[CrossRef]

M. Ghigo, R. Canestrari, D. Spiga, and A. Novi, “Correction of high spatial frequency errors on optical surfaces by means of ion beam figuring,” Proc. SPIE 6671, 667114 (2007).
[CrossRef]

E. M. Paul, T. M. James, and P. C. Thomas, “Fabrication of EUV components with MRF,” Proc. SPIE 5193, 29–38 (2004).
[CrossRef]

Sci. China Ser. E (1)

L. Zhou, Y. F. Dai, X. H. Xie, and S. Y. Li, “Frequency-domain analysis of computer controlled optical surfacing processes,” Sci. China Ser. E 52, 2061–2068 (2009).

Other (2)

J. S. Liu, Ion Beam Deposition Film Technology and Application (National Defense Industry, 2003) (in Chinese).

T. Haensel, A. Nickel, and A. Schindler, “Ion beam figuring of strongly curved surfaces with a (X,Y,Z) linear three-axes system,” in Plasmonics and Metamaterials, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JWD6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Combined IBF and IBA figuring system.

Fig. 2.
Fig. 2.

Schematic of sputtered particles distribution.

Fig. 3.
Fig. 3.

Shape of the material adding function.

Fig. 4.
Fig. 4.

Stability of IBA adding function: (a) adding function data measured using interferometer and (b) the relative change ratios of volume adding rate and beam dimension within 45 min.

Fig. 5.
Fig. 5.

Linear behavior of IBA adding function: (a) the linear variation of added thickness and (b) added volume according to adding time within different processing parameters.

Fig. 6.
Fig. 6.

Schematic of particle transferring effect that the sputtered particles diffuse to the hollows after arriving optical surface.

Fig. 7.
Fig. 7.

Profiles of the pit defect on the experimental sample along the perpendicular diameter l1 and horizontal diameter l2. The pit defect is 12.3 mm FWHM in width and had a depth of 115.2 nm along the diameter l1.

Fig. 8.
Fig. 8.

Simulation results of correcting pit defect: (a) the change of the residual depth of the pit defect and (b) the needed processing time with the increasing of the processed material depth.

Fig. 9.
Fig. 9.

Experimental result of IBA of surface with rectangular pit defect and simulation result for IBF: (a) original surface error, (b) final surface after IBA, and (c) simulation result of IBF for this sample about 186.9 min.

Fig. 10.
Fig. 10.

Combined figuring experiment result: (a) original surface error, (b) surface error after IBA, (c) surface error after IBF, and (d) PSD for surface error in combined figuring process.

Fig. 11.
Fig. 11.

Surface roughness evolution of figuring process: (a) original surface roughness, (b) surface roughness after IBA, and (c) surface roughness after IBF.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E(x,y)=R(x,y)T(x,y).
γ=eπ218(d6σλ)2,
fc=32ln10πd6σ.

Metrics