Abstract

We report a laser-diode-pumped 2 μm single-frequency Tm:LuAG laser at room temperature. Two fused-silica etalons were used as mode selectors for the single-frequency operation. The maximum single-frequency output power was 616 mW at wavelength of 2021 nm, with a relative power stability of 0.61%. The wavelength tuning range of the single-frequency Tm:LuAG laser was 11 nm from 2018.714 to 2029.876 nm. The M2 factors were measured to be 1.38 and 1.36 in the x and y directions, respectively.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Koch, A. N. Dharamsi, C. M. Fitzgerald, and J. C. Mccarthy, “Frequency stabilization of Ho:Tm:YLF laser to absorption lines of carbon dioxide,” Appl. Opt. 39, 3664–3669 (2000).
    [CrossRef]
  2. D. Gatti, G. Galzerano, A. Toncelli, M. Tonelli, and P. Laporta, “Actively mode-locked Tm-Ho:LiYF4 and Tm-Ho:BaY2F8lasers,” Appl. Phys. B 86, 269–273 (2007).
    [CrossRef]
  3. E. Beyatl, S. Naghizadeh, A. Kurt, and A. Sennaroglu, “Low-cost low-threshold diode end-pumped Tm:YAG laser at 2.016 μm,” Appl. Phys. B 109, 221–225 (2012).
    [CrossRef]
  4. T. Bilici, H. O. Tabakoglu, N. Topaloglu, H. Kalaycioglu, A. Kurt, A. Sennaroglu, and M. Gulsoy, “Modulated and continuous-wave operations of low-power thulium (Tm:YAP) laser in tissue welding,” J. Biomed. Opt. 15, 038001 (2010).
    [CrossRef]
  5. C. Gao, R. Wang, Z. Lin, M. Gao, L. Zhu, Y. Zheng, and Y. Zhang, “2 μm single-frequency Tm:YAG laser generated from a diode-pumped L-shaped twisted mode cavity,” Appl. Phys. B 107, 67–70 (2012).
    [CrossRef]
  6. V. Kushawaha, Y. Chen, Y. Yan, and L. Major, “High-efficiency continuous-wave diode-pumped Tm:Ho:LuAG laser at 2.1 μm,” Appl. Phys. B 62, 109–111 (1996).
    [CrossRef]
  7. E. Lippert, H. Fonnum, G. Arisholm, and K. Stenersen, “A 22 watt mid-infrared optical parametric oscillator with V-shaped 3-mirror ring resonator,” Opt. Express 18, 26475–26483 (2010).
    [CrossRef]
  8. C. Gao, M. Gao, Y. Zhang, Z. Lin, and L. Zhu, “Stable single-frequency output at 2.01 μm from a diode-pumped monolithic double diffusion-bonded Tm:YAG nonplanar ring oscillator at room temperature,” Opt. Lett. 34, 3029–3031 (2009).
    [CrossRef]
  9. Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm:YAG laser using twisted-mode technique,” Laser Phys. Lett. 7, 17–20 (2010).
    [CrossRef]
  10. J. D. Kmetec, T. S. Kubo, T. J. Kane, and C. J. Grund, “Laser performance of diode-pumped thulium-doped Y3Al5O12, (Y,Lu)3Al5O12, and Lu3Al5O12 crystals,” Opt. Lett. 19, 186–188 (1994).
    [CrossRef]
  11. K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm, Ho:LuAG lasers for LIDAR applications,” Laser Phys. Lett. 1, 285–290 (2004).
    [CrossRef]
  12. C. T. Wu, Y. L. Ju, Z. G. Wang, Q. Wang, C. W. Song, and Y. Z. Wang, “Diode-pumped single frequency Tm:YAG laser at room temperature,” Laser Phys. Lett. 5, 793–796 (2008).
    [CrossRef]
  13. C. T. Wu, Y. L. Ju, Q. Wang, Z. G. Wang, F. Chen, R. L. Zhou, and Y. Z. Wang, “Room temperature operation of single frequency Tm:LuAG laser end-pumped by laser-diode,” Laser Phys. Lett. 6, 707–710 (2009).
    [CrossRef]
  14. J. Li, S. Yang, H. Zhang, D. Hu, and C. Zhao, “Diode-pumped room temperature single frequency Tm:YAP laser,” Laser Phys. Lett. 7, 203–205 (2010).
    [CrossRef]

2012

E. Beyatl, S. Naghizadeh, A. Kurt, and A. Sennaroglu, “Low-cost low-threshold diode end-pumped Tm:YAG laser at 2.016 μm,” Appl. Phys. B 109, 221–225 (2012).
[CrossRef]

C. Gao, R. Wang, Z. Lin, M. Gao, L. Zhu, Y. Zheng, and Y. Zhang, “2 μm single-frequency Tm:YAG laser generated from a diode-pumped L-shaped twisted mode cavity,” Appl. Phys. B 107, 67–70 (2012).
[CrossRef]

2010

E. Lippert, H. Fonnum, G. Arisholm, and K. Stenersen, “A 22 watt mid-infrared optical parametric oscillator with V-shaped 3-mirror ring resonator,” Opt. Express 18, 26475–26483 (2010).
[CrossRef]

T. Bilici, H. O. Tabakoglu, N. Topaloglu, H. Kalaycioglu, A. Kurt, A. Sennaroglu, and M. Gulsoy, “Modulated and continuous-wave operations of low-power thulium (Tm:YAP) laser in tissue welding,” J. Biomed. Opt. 15, 038001 (2010).
[CrossRef]

Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm:YAG laser using twisted-mode technique,” Laser Phys. Lett. 7, 17–20 (2010).
[CrossRef]

J. Li, S. Yang, H. Zhang, D. Hu, and C. Zhao, “Diode-pumped room temperature single frequency Tm:YAP laser,” Laser Phys. Lett. 7, 203–205 (2010).
[CrossRef]

2009

C. T. Wu, Y. L. Ju, Q. Wang, Z. G. Wang, F. Chen, R. L. Zhou, and Y. Z. Wang, “Room temperature operation of single frequency Tm:LuAG laser end-pumped by laser-diode,” Laser Phys. Lett. 6, 707–710 (2009).
[CrossRef]

C. Gao, M. Gao, Y. Zhang, Z. Lin, and L. Zhu, “Stable single-frequency output at 2.01 μm from a diode-pumped monolithic double diffusion-bonded Tm:YAG nonplanar ring oscillator at room temperature,” Opt. Lett. 34, 3029–3031 (2009).
[CrossRef]

2008

C. T. Wu, Y. L. Ju, Z. G. Wang, Q. Wang, C. W. Song, and Y. Z. Wang, “Diode-pumped single frequency Tm:YAG laser at room temperature,” Laser Phys. Lett. 5, 793–796 (2008).
[CrossRef]

2007

D. Gatti, G. Galzerano, A. Toncelli, M. Tonelli, and P. Laporta, “Actively mode-locked Tm-Ho:LiYF4 and Tm-Ho:BaY2F8lasers,” Appl. Phys. B 86, 269–273 (2007).
[CrossRef]

2004

K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm, Ho:LuAG lasers for LIDAR applications,” Laser Phys. Lett. 1, 285–290 (2004).
[CrossRef]

2000

1996

V. Kushawaha, Y. Chen, Y. Yan, and L. Major, “High-efficiency continuous-wave diode-pumped Tm:Ho:LuAG laser at 2.1 μm,” Appl. Phys. B 62, 109–111 (1996).
[CrossRef]

1994

Arisholm, G.

Beyatl, E.

E. Beyatl, S. Naghizadeh, A. Kurt, and A. Sennaroglu, “Low-cost low-threshold diode end-pumped Tm:YAG laser at 2.016 μm,” Appl. Phys. B 109, 221–225 (2012).
[CrossRef]

Bilici, T.

T. Bilici, H. O. Tabakoglu, N. Topaloglu, H. Kalaycioglu, A. Kurt, A. Sennaroglu, and M. Gulsoy, “Modulated and continuous-wave operations of low-power thulium (Tm:YAP) laser in tissue welding,” J. Biomed. Opt. 15, 038001 (2010).
[CrossRef]

Chen, F.

C. T. Wu, Y. L. Ju, Q. Wang, Z. G. Wang, F. Chen, R. L. Zhou, and Y. Z. Wang, “Room temperature operation of single frequency Tm:LuAG laser end-pumped by laser-diode,” Laser Phys. Lett. 6, 707–710 (2009).
[CrossRef]

Chen, Y.

V. Kushawaha, Y. Chen, Y. Yan, and L. Major, “High-efficiency continuous-wave diode-pumped Tm:Ho:LuAG laser at 2.1 μm,” Appl. Phys. B 62, 109–111 (1996).
[CrossRef]

Dharamsi, A. N.

Fitzgerald, C. M.

Fonnum, H.

Galzerano, G.

D. Gatti, G. Galzerano, A. Toncelli, M. Tonelli, and P. Laporta, “Actively mode-locked Tm-Ho:LiYF4 and Tm-Ho:BaY2F8lasers,” Appl. Phys. B 86, 269–273 (2007).
[CrossRef]

Gao, C.

C. Gao, R. Wang, Z. Lin, M. Gao, L. Zhu, Y. Zheng, and Y. Zhang, “2 μm single-frequency Tm:YAG laser generated from a diode-pumped L-shaped twisted mode cavity,” Appl. Phys. B 107, 67–70 (2012).
[CrossRef]

Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm:YAG laser using twisted-mode technique,” Laser Phys. Lett. 7, 17–20 (2010).
[CrossRef]

C. Gao, M. Gao, Y. Zhang, Z. Lin, and L. Zhu, “Stable single-frequency output at 2.01 μm from a diode-pumped monolithic double diffusion-bonded Tm:YAG nonplanar ring oscillator at room temperature,” Opt. Lett. 34, 3029–3031 (2009).
[CrossRef]

Gao, M.

C. Gao, R. Wang, Z. Lin, M. Gao, L. Zhu, Y. Zheng, and Y. Zhang, “2 μm single-frequency Tm:YAG laser generated from a diode-pumped L-shaped twisted mode cavity,” Appl. Phys. B 107, 67–70 (2012).
[CrossRef]

Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm:YAG laser using twisted-mode technique,” Laser Phys. Lett. 7, 17–20 (2010).
[CrossRef]

C. Gao, M. Gao, Y. Zhang, Z. Lin, and L. Zhu, “Stable single-frequency output at 2.01 μm from a diode-pumped monolithic double diffusion-bonded Tm:YAG nonplanar ring oscillator at room temperature,” Opt. Lett. 34, 3029–3031 (2009).
[CrossRef]

Gatti, D.

D. Gatti, G. Galzerano, A. Toncelli, M. Tonelli, and P. Laporta, “Actively mode-locked Tm-Ho:LiYF4 and Tm-Ho:BaY2F8lasers,” Appl. Phys. B 86, 269–273 (2007).
[CrossRef]

Grund, C. J.

Gulsoy, M.

T. Bilici, H. O. Tabakoglu, N. Topaloglu, H. Kalaycioglu, A. Kurt, A. Sennaroglu, and M. Gulsoy, “Modulated and continuous-wave operations of low-power thulium (Tm:YAP) laser in tissue welding,” J. Biomed. Opt. 15, 038001 (2010).
[CrossRef]

Heumann, E.

K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm, Ho:LuAG lasers for LIDAR applications,” Laser Phys. Lett. 1, 285–290 (2004).
[CrossRef]

Hu, D.

J. Li, S. Yang, H. Zhang, D. Hu, and C. Zhao, “Diode-pumped room temperature single frequency Tm:YAP laser,” Laser Phys. Lett. 7, 203–205 (2010).
[CrossRef]

Huber, G.

K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm, Ho:LuAG lasers for LIDAR applications,” Laser Phys. Lett. 1, 285–290 (2004).
[CrossRef]

Ju, Y. L.

C. T. Wu, Y. L. Ju, Q. Wang, Z. G. Wang, F. Chen, R. L. Zhou, and Y. Z. Wang, “Room temperature operation of single frequency Tm:LuAG laser end-pumped by laser-diode,” Laser Phys. Lett. 6, 707–710 (2009).
[CrossRef]

C. T. Wu, Y. L. Ju, Z. G. Wang, Q. Wang, C. W. Song, and Y. Z. Wang, “Diode-pumped single frequency Tm:YAG laser at room temperature,” Laser Phys. Lett. 5, 793–796 (2008).
[CrossRef]

Kalaycioglu, H.

T. Bilici, H. O. Tabakoglu, N. Topaloglu, H. Kalaycioglu, A. Kurt, A. Sennaroglu, and M. Gulsoy, “Modulated and continuous-wave operations of low-power thulium (Tm:YAP) laser in tissue welding,” J. Biomed. Opt. 15, 038001 (2010).
[CrossRef]

Kane, T. J.

Kmetec, J. D.

Koch, G. J.

Kubo, T. S.

Kurt, A.

E. Beyatl, S. Naghizadeh, A. Kurt, and A. Sennaroglu, “Low-cost low-threshold diode end-pumped Tm:YAG laser at 2.016 μm,” Appl. Phys. B 109, 221–225 (2012).
[CrossRef]

T. Bilici, H. O. Tabakoglu, N. Topaloglu, H. Kalaycioglu, A. Kurt, A. Sennaroglu, and M. Gulsoy, “Modulated and continuous-wave operations of low-power thulium (Tm:YAP) laser in tissue welding,” J. Biomed. Opt. 15, 038001 (2010).
[CrossRef]

Kushawaha, V.

V. Kushawaha, Y. Chen, Y. Yan, and L. Major, “High-efficiency continuous-wave diode-pumped Tm:Ho:LuAG laser at 2.1 μm,” Appl. Phys. B 62, 109–111 (1996).
[CrossRef]

Laporta, P.

D. Gatti, G. Galzerano, A. Toncelli, M. Tonelli, and P. Laporta, “Actively mode-locked Tm-Ho:LiYF4 and Tm-Ho:BaY2F8lasers,” Appl. Phys. B 86, 269–273 (2007).
[CrossRef]

Li, J.

J. Li, S. Yang, H. Zhang, D. Hu, and C. Zhao, “Diode-pumped room temperature single frequency Tm:YAP laser,” Laser Phys. Lett. 7, 203–205 (2010).
[CrossRef]

Lin, Z.

C. Gao, R. Wang, Z. Lin, M. Gao, L. Zhu, Y. Zheng, and Y. Zhang, “2 μm single-frequency Tm:YAG laser generated from a diode-pumped L-shaped twisted mode cavity,” Appl. Phys. B 107, 67–70 (2012).
[CrossRef]

Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm:YAG laser using twisted-mode technique,” Laser Phys. Lett. 7, 17–20 (2010).
[CrossRef]

C. Gao, M. Gao, Y. Zhang, Z. Lin, and L. Zhu, “Stable single-frequency output at 2.01 μm from a diode-pumped monolithic double diffusion-bonded Tm:YAG nonplanar ring oscillator at room temperature,” Opt. Lett. 34, 3029–3031 (2009).
[CrossRef]

Lippert, E.

Major, L.

V. Kushawaha, Y. Chen, Y. Yan, and L. Major, “High-efficiency continuous-wave diode-pumped Tm:Ho:LuAG laser at 2.1 μm,” Appl. Phys. B 62, 109–111 (1996).
[CrossRef]

Mccarthy, J. C.

Naghizadeh, S.

E. Beyatl, S. Naghizadeh, A. Kurt, and A. Sennaroglu, “Low-cost low-threshold diode end-pumped Tm:YAG laser at 2.016 μm,” Appl. Phys. B 109, 221–225 (2012).
[CrossRef]

Scholle, K.

K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm, Ho:LuAG lasers for LIDAR applications,” Laser Phys. Lett. 1, 285–290 (2004).
[CrossRef]

Sennaroglu, A.

E. Beyatl, S. Naghizadeh, A. Kurt, and A. Sennaroglu, “Low-cost low-threshold diode end-pumped Tm:YAG laser at 2.016 μm,” Appl. Phys. B 109, 221–225 (2012).
[CrossRef]

T. Bilici, H. O. Tabakoglu, N. Topaloglu, H. Kalaycioglu, A. Kurt, A. Sennaroglu, and M. Gulsoy, “Modulated and continuous-wave operations of low-power thulium (Tm:YAP) laser in tissue welding,” J. Biomed. Opt. 15, 038001 (2010).
[CrossRef]

Song, C. W.

C. T. Wu, Y. L. Ju, Z. G. Wang, Q. Wang, C. W. Song, and Y. Z. Wang, “Diode-pumped single frequency Tm:YAG laser at room temperature,” Laser Phys. Lett. 5, 793–796 (2008).
[CrossRef]

Stenersen, K.

Tabakoglu, H. O.

T. Bilici, H. O. Tabakoglu, N. Topaloglu, H. Kalaycioglu, A. Kurt, A. Sennaroglu, and M. Gulsoy, “Modulated and continuous-wave operations of low-power thulium (Tm:YAP) laser in tissue welding,” J. Biomed. Opt. 15, 038001 (2010).
[CrossRef]

Toncelli, A.

D. Gatti, G. Galzerano, A. Toncelli, M. Tonelli, and P. Laporta, “Actively mode-locked Tm-Ho:LiYF4 and Tm-Ho:BaY2F8lasers,” Appl. Phys. B 86, 269–273 (2007).
[CrossRef]

Tonelli, M.

D. Gatti, G. Galzerano, A. Toncelli, M. Tonelli, and P. Laporta, “Actively mode-locked Tm-Ho:LiYF4 and Tm-Ho:BaY2F8lasers,” Appl. Phys. B 86, 269–273 (2007).
[CrossRef]

Topaloglu, N.

T. Bilici, H. O. Tabakoglu, N. Topaloglu, H. Kalaycioglu, A. Kurt, A. Sennaroglu, and M. Gulsoy, “Modulated and continuous-wave operations of low-power thulium (Tm:YAP) laser in tissue welding,” J. Biomed. Opt. 15, 038001 (2010).
[CrossRef]

Wang, Q.

C. T. Wu, Y. L. Ju, Q. Wang, Z. G. Wang, F. Chen, R. L. Zhou, and Y. Z. Wang, “Room temperature operation of single frequency Tm:LuAG laser end-pumped by laser-diode,” Laser Phys. Lett. 6, 707–710 (2009).
[CrossRef]

C. T. Wu, Y. L. Ju, Z. G. Wang, Q. Wang, C. W. Song, and Y. Z. Wang, “Diode-pumped single frequency Tm:YAG laser at room temperature,” Laser Phys. Lett. 5, 793–796 (2008).
[CrossRef]

Wang, R.

C. Gao, R. Wang, Z. Lin, M. Gao, L. Zhu, Y. Zheng, and Y. Zhang, “2 μm single-frequency Tm:YAG laser generated from a diode-pumped L-shaped twisted mode cavity,” Appl. Phys. B 107, 67–70 (2012).
[CrossRef]

Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm:YAG laser using twisted-mode technique,” Laser Phys. Lett. 7, 17–20 (2010).
[CrossRef]

Wang, Y. Z.

C. T. Wu, Y. L. Ju, Q. Wang, Z. G. Wang, F. Chen, R. L. Zhou, and Y. Z. Wang, “Room temperature operation of single frequency Tm:LuAG laser end-pumped by laser-diode,” Laser Phys. Lett. 6, 707–710 (2009).
[CrossRef]

C. T. Wu, Y. L. Ju, Z. G. Wang, Q. Wang, C. W. Song, and Y. Z. Wang, “Diode-pumped single frequency Tm:YAG laser at room temperature,” Laser Phys. Lett. 5, 793–796 (2008).
[CrossRef]

Wang, Z. G.

C. T. Wu, Y. L. Ju, Q. Wang, Z. G. Wang, F. Chen, R. L. Zhou, and Y. Z. Wang, “Room temperature operation of single frequency Tm:LuAG laser end-pumped by laser-diode,” Laser Phys. Lett. 6, 707–710 (2009).
[CrossRef]

C. T. Wu, Y. L. Ju, Z. G. Wang, Q. Wang, C. W. Song, and Y. Z. Wang, “Diode-pumped single frequency Tm:YAG laser at room temperature,” Laser Phys. Lett. 5, 793–796 (2008).
[CrossRef]

Wu, C. T.

C. T. Wu, Y. L. Ju, Q. Wang, Z. G. Wang, F. Chen, R. L. Zhou, and Y. Z. Wang, “Room temperature operation of single frequency Tm:LuAG laser end-pumped by laser-diode,” Laser Phys. Lett. 6, 707–710 (2009).
[CrossRef]

C. T. Wu, Y. L. Ju, Z. G. Wang, Q. Wang, C. W. Song, and Y. Z. Wang, “Diode-pumped single frequency Tm:YAG laser at room temperature,” Laser Phys. Lett. 5, 793–796 (2008).
[CrossRef]

Yan, Y.

V. Kushawaha, Y. Chen, Y. Yan, and L. Major, “High-efficiency continuous-wave diode-pumped Tm:Ho:LuAG laser at 2.1 μm,” Appl. Phys. B 62, 109–111 (1996).
[CrossRef]

Yang, S.

J. Li, S. Yang, H. Zhang, D. Hu, and C. Zhao, “Diode-pumped room temperature single frequency Tm:YAP laser,” Laser Phys. Lett. 7, 203–205 (2010).
[CrossRef]

Zhang, H.

J. Li, S. Yang, H. Zhang, D. Hu, and C. Zhao, “Diode-pumped room temperature single frequency Tm:YAP laser,” Laser Phys. Lett. 7, 203–205 (2010).
[CrossRef]

Zhang, Y.

C. Gao, R. Wang, Z. Lin, M. Gao, L. Zhu, Y. Zheng, and Y. Zhang, “2 μm single-frequency Tm:YAG laser generated from a diode-pumped L-shaped twisted mode cavity,” Appl. Phys. B 107, 67–70 (2012).
[CrossRef]

Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm:YAG laser using twisted-mode technique,” Laser Phys. Lett. 7, 17–20 (2010).
[CrossRef]

C. Gao, M. Gao, Y. Zhang, Z. Lin, and L. Zhu, “Stable single-frequency output at 2.01 μm from a diode-pumped monolithic double diffusion-bonded Tm:YAG nonplanar ring oscillator at room temperature,” Opt. Lett. 34, 3029–3031 (2009).
[CrossRef]

Zhao, C.

J. Li, S. Yang, H. Zhang, D. Hu, and C. Zhao, “Diode-pumped room temperature single frequency Tm:YAP laser,” Laser Phys. Lett. 7, 203–205 (2010).
[CrossRef]

Zheng, Y.

C. Gao, R. Wang, Z. Lin, M. Gao, L. Zhu, Y. Zheng, and Y. Zhang, “2 μm single-frequency Tm:YAG laser generated from a diode-pumped L-shaped twisted mode cavity,” Appl. Phys. B 107, 67–70 (2012).
[CrossRef]

Zhou, R. L.

C. T. Wu, Y. L. Ju, Q. Wang, Z. G. Wang, F. Chen, R. L. Zhou, and Y. Z. Wang, “Room temperature operation of single frequency Tm:LuAG laser end-pumped by laser-diode,” Laser Phys. Lett. 6, 707–710 (2009).
[CrossRef]

Zhu, L.

C. Gao, R. Wang, Z. Lin, M. Gao, L. Zhu, Y. Zheng, and Y. Zhang, “2 μm single-frequency Tm:YAG laser generated from a diode-pumped L-shaped twisted mode cavity,” Appl. Phys. B 107, 67–70 (2012).
[CrossRef]

C. Gao, M. Gao, Y. Zhang, Z. Lin, and L. Zhu, “Stable single-frequency output at 2.01 μm from a diode-pumped monolithic double diffusion-bonded Tm:YAG nonplanar ring oscillator at room temperature,” Opt. Lett. 34, 3029–3031 (2009).
[CrossRef]

Appl. Opt.

Appl. Phys. B

D. Gatti, G. Galzerano, A. Toncelli, M. Tonelli, and P. Laporta, “Actively mode-locked Tm-Ho:LiYF4 and Tm-Ho:BaY2F8lasers,” Appl. Phys. B 86, 269–273 (2007).
[CrossRef]

E. Beyatl, S. Naghizadeh, A. Kurt, and A. Sennaroglu, “Low-cost low-threshold diode end-pumped Tm:YAG laser at 2.016 μm,” Appl. Phys. B 109, 221–225 (2012).
[CrossRef]

C. Gao, R. Wang, Z. Lin, M. Gao, L. Zhu, Y. Zheng, and Y. Zhang, “2 μm single-frequency Tm:YAG laser generated from a diode-pumped L-shaped twisted mode cavity,” Appl. Phys. B 107, 67–70 (2012).
[CrossRef]

V. Kushawaha, Y. Chen, Y. Yan, and L. Major, “High-efficiency continuous-wave diode-pumped Tm:Ho:LuAG laser at 2.1 μm,” Appl. Phys. B 62, 109–111 (1996).
[CrossRef]

J. Biomed. Opt.

T. Bilici, H. O. Tabakoglu, N. Topaloglu, H. Kalaycioglu, A. Kurt, A. Sennaroglu, and M. Gulsoy, “Modulated and continuous-wave operations of low-power thulium (Tm:YAP) laser in tissue welding,” J. Biomed. Opt. 15, 038001 (2010).
[CrossRef]

Laser Phys. Lett.

K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm, Ho:LuAG lasers for LIDAR applications,” Laser Phys. Lett. 1, 285–290 (2004).
[CrossRef]

C. T. Wu, Y. L. Ju, Z. G. Wang, Q. Wang, C. W. Song, and Y. Z. Wang, “Diode-pumped single frequency Tm:YAG laser at room temperature,” Laser Phys. Lett. 5, 793–796 (2008).
[CrossRef]

C. T. Wu, Y. L. Ju, Q. Wang, Z. G. Wang, F. Chen, R. L. Zhou, and Y. Z. Wang, “Room temperature operation of single frequency Tm:LuAG laser end-pumped by laser-diode,” Laser Phys. Lett. 6, 707–710 (2009).
[CrossRef]

J. Li, S. Yang, H. Zhang, D. Hu, and C. Zhao, “Diode-pumped room temperature single frequency Tm:YAP laser,” Laser Phys. Lett. 7, 203–205 (2010).
[CrossRef]

Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm:YAG laser using twisted-mode technique,” Laser Phys. Lett. 7, 17–20 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Atmospheric transmission at 2–2.04 μm.

Fig. 2.
Fig. 2.

Schematic diagram of single-frequency Tm:LuAG laser.

Fig. 3.
Fig. 3.

Transmission of two F–P etalons: solid curve, 1 and 0.1 mm uncoated etalons; dashed curve, 1 mm coated etalon and 0.1 mm uncoated etalon.

Fig. 4.
Fig. 4.

F–P scan of the Tm:LuAG laser: (a) free running, multimode oscillation; (b) 1 and 0.1 mm uncoated etalons; (c) 1 mm coated etalon and 0.1 mm uncoated etalon.

Fig. 5.
Fig. 5.

Output power versus pump power of free-running and single-frequency Tm:LuAG lasers.

Tables (1)

Tables Icon

Table 1. Single-Frequency Output Power at Different Wavelengths

Metrics