Abstract

We present an instrumentation solution for measurement of normalized spectral responsivity of digital imaging sensors and cameras. The instrument consists of multiple light-emitting diodes (LEDs), a single-grating monochromator, and a small-size integrating sphere. Wavelength tuning is achieved by a proper selection of LED in accordance with the monochromator setting in a range from 380 to 900 nm. High spectral purity with a bandwidth of 5 nm is realized without using double gratings and order-sorting filters. Experimental characteristics and calibration of the instrument are described with the related error and uncertainty sources. The performance is demonstrated by measuring a monochrome charge-coupled device and a trichromatic complementary metal–oxide–semiconductor device. The measurement uncertainty is evaluated to be less than 1% (k=2) except several wavelengths with low LED power.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. C. Holst and T. S. Lomheim, CMOS/CCD Sensors and Camera Systems (SPIE, 2007).
  2. “Spectral responsivity measurements of detectors, radiometers, and photometers,” International Commission on Illumination (CIE) Publication No. 202 (2011).
  3. H.-C. Lee, Introduction to Color Imaging Science (Cambridge University, 2005).
  4. W. A. Hovis and J. S. Knoll, “Characteristics of an internally illuminated calibration sphere,” Appl. Opt. 22, 4004–4007 (1983).
    [CrossRef]
  5. A. Ferrero, J. Campos, and A. Pons, “Low-uncertainty absolute radiometric calibration of a CCD,” Metrologia 43, S17–S21 (2006).
    [CrossRef]
  6. V. E. Anderson, N. P. Fox, and D. H. Nettleton, “Highly stable, monochromatic and tunable optical radiation source and its application to high accuracy spectrophotometry,” Appl. Opt. 31, 536–545 (1992).
    [CrossRef]
  7. S. W. Brown, G. P. Eppeldauer, and K. R. Lykke, “Facility for spectral irradiance and radiance responsivity calibrations using uniform sources,” Appl. Opt. 45, 8218–8237 (2006).
    [CrossRef]
  8. M. Schuster, S. Nevas, A. Sperling, and S. Voelker, “Spectral calibration of radiometric detectors using tunable laser sources,” Appl. Opt. 51, 1950–1961 (2012).
    [CrossRef]
  9. K. Mahmoud, S. Park, S.-N. Park, and D.-H. Lee, “LED-based tunable monochromatic uniform source for calibration of imaging sensors and cameras,” in Proceedings of the 11th International Conference on New Developments and Applications in Optical Radiometry (NEWRAD, 2011), pp. 118–119.
  10. K. Mahmoud, S. Park, S.-N. Park, and D.-H. Lee, “Measurement of normalized spectral response of digital imaging sensors using a LED-based tunable uniform source,” in Proceedings of the XX IMEKO World Congress (IMEKO, 2012), paper TC7-O-14.
  11. I. Fryc, S. W. Brown, G. P. Eppeldauer, and Y. Ohno, “LED-based spectrally tunable source for radiometric, photometric, and colorimetric applications,” Opt. Eng. 44, 111309 (2005).
    [CrossRef]
  12. G. Zaid, S.-N. Park, S. Park, and D.-H. Lee, “Differential spectra responsivity measurement of photovoltaic detectors with a LED-based integrating sphere source,” Appl. Opt. 49, 6772–6783 (2010).
    [CrossRef]
  13. B. H. Hamadani, J. Roller, B. Dougherty, and H. W. Yoon, “Versatile light-emitting-diode-based spectral response measurement system for photovoltaic device characterization,” Appl. Opt. 51, 4469–4476 (2012).
    [CrossRef]
  14. S. Park, Y.-W. Kim, D.-H. Lee, and S.-N. Park, “Preparation of a standard light-emitting diode (LED) for photometric measurements by functional seasoning,” Metrologia 43, 299–305 (2006).
    [CrossRef]
  15. Evaluation of measurement data—guide to the expression of uncertainty in measurement (JCGM, 2008).
  16. R. Goebel and M. Stock, “Report on the comparison CCPR-K2.b of spectral responsivity measurements in the range 300 nm to 1000 nm,” Metrologia 41, 02004 (2004).
    [CrossRef]
  17. S. Park, D.-H. Lee, Y.-W. Kim, and S.-N. Park, “Uncertainty evaluation for the spectroradiometric measurement of the averaged light-emitting diode intensity,” Appl. Opt. 46, 2851–2858 (2007).
    [CrossRef]

2012 (2)

2010 (1)

2007 (1)

2006 (3)

S. Park, Y.-W. Kim, D.-H. Lee, and S.-N. Park, “Preparation of a standard light-emitting diode (LED) for photometric measurements by functional seasoning,” Metrologia 43, 299–305 (2006).
[CrossRef]

A. Ferrero, J. Campos, and A. Pons, “Low-uncertainty absolute radiometric calibration of a CCD,” Metrologia 43, S17–S21 (2006).
[CrossRef]

S. W. Brown, G. P. Eppeldauer, and K. R. Lykke, “Facility for spectral irradiance and radiance responsivity calibrations using uniform sources,” Appl. Opt. 45, 8218–8237 (2006).
[CrossRef]

2005 (1)

I. Fryc, S. W. Brown, G. P. Eppeldauer, and Y. Ohno, “LED-based spectrally tunable source for radiometric, photometric, and colorimetric applications,” Opt. Eng. 44, 111309 (2005).
[CrossRef]

2004 (1)

R. Goebel and M. Stock, “Report on the comparison CCPR-K2.b of spectral responsivity measurements in the range 300 nm to 1000 nm,” Metrologia 41, 02004 (2004).
[CrossRef]

1992 (1)

1983 (1)

Anderson, V. E.

Brown, S. W.

S. W. Brown, G. P. Eppeldauer, and K. R. Lykke, “Facility for spectral irradiance and radiance responsivity calibrations using uniform sources,” Appl. Opt. 45, 8218–8237 (2006).
[CrossRef]

I. Fryc, S. W. Brown, G. P. Eppeldauer, and Y. Ohno, “LED-based spectrally tunable source for radiometric, photometric, and colorimetric applications,” Opt. Eng. 44, 111309 (2005).
[CrossRef]

Campos, J.

A. Ferrero, J. Campos, and A. Pons, “Low-uncertainty absolute radiometric calibration of a CCD,” Metrologia 43, S17–S21 (2006).
[CrossRef]

Dougherty, B.

Eppeldauer, G. P.

S. W. Brown, G. P. Eppeldauer, and K. R. Lykke, “Facility for spectral irradiance and radiance responsivity calibrations using uniform sources,” Appl. Opt. 45, 8218–8237 (2006).
[CrossRef]

I. Fryc, S. W. Brown, G. P. Eppeldauer, and Y. Ohno, “LED-based spectrally tunable source for radiometric, photometric, and colorimetric applications,” Opt. Eng. 44, 111309 (2005).
[CrossRef]

Ferrero, A.

A. Ferrero, J. Campos, and A. Pons, “Low-uncertainty absolute radiometric calibration of a CCD,” Metrologia 43, S17–S21 (2006).
[CrossRef]

Fox, N. P.

Fryc, I.

I. Fryc, S. W. Brown, G. P. Eppeldauer, and Y. Ohno, “LED-based spectrally tunable source for radiometric, photometric, and colorimetric applications,” Opt. Eng. 44, 111309 (2005).
[CrossRef]

Goebel, R.

R. Goebel and M. Stock, “Report on the comparison CCPR-K2.b of spectral responsivity measurements in the range 300 nm to 1000 nm,” Metrologia 41, 02004 (2004).
[CrossRef]

Hamadani, B. H.

Holst, G. C.

G. C. Holst and T. S. Lomheim, CMOS/CCD Sensors and Camera Systems (SPIE, 2007).

Hovis, W. A.

Kim, Y.-W.

S. Park, D.-H. Lee, Y.-W. Kim, and S.-N. Park, “Uncertainty evaluation for the spectroradiometric measurement of the averaged light-emitting diode intensity,” Appl. Opt. 46, 2851–2858 (2007).
[CrossRef]

S. Park, Y.-W. Kim, D.-H. Lee, and S.-N. Park, “Preparation of a standard light-emitting diode (LED) for photometric measurements by functional seasoning,” Metrologia 43, 299–305 (2006).
[CrossRef]

Knoll, J. S.

Lee, D.-H.

G. Zaid, S.-N. Park, S. Park, and D.-H. Lee, “Differential spectra responsivity measurement of photovoltaic detectors with a LED-based integrating sphere source,” Appl. Opt. 49, 6772–6783 (2010).
[CrossRef]

S. Park, D.-H. Lee, Y.-W. Kim, and S.-N. Park, “Uncertainty evaluation for the spectroradiometric measurement of the averaged light-emitting diode intensity,” Appl. Opt. 46, 2851–2858 (2007).
[CrossRef]

S. Park, Y.-W. Kim, D.-H. Lee, and S.-N. Park, “Preparation of a standard light-emitting diode (LED) for photometric measurements by functional seasoning,” Metrologia 43, 299–305 (2006).
[CrossRef]

K. Mahmoud, S. Park, S.-N. Park, and D.-H. Lee, “Measurement of normalized spectral response of digital imaging sensors using a LED-based tunable uniform source,” in Proceedings of the XX IMEKO World Congress (IMEKO, 2012), paper TC7-O-14.

K. Mahmoud, S. Park, S.-N. Park, and D.-H. Lee, “LED-based tunable monochromatic uniform source for calibration of imaging sensors and cameras,” in Proceedings of the 11th International Conference on New Developments and Applications in Optical Radiometry (NEWRAD, 2011), pp. 118–119.

Lee, H.-C.

H.-C. Lee, Introduction to Color Imaging Science (Cambridge University, 2005).

Lomheim, T. S.

G. C. Holst and T. S. Lomheim, CMOS/CCD Sensors and Camera Systems (SPIE, 2007).

Lykke, K. R.

Mahmoud, K.

K. Mahmoud, S. Park, S.-N. Park, and D.-H. Lee, “Measurement of normalized spectral response of digital imaging sensors using a LED-based tunable uniform source,” in Proceedings of the XX IMEKO World Congress (IMEKO, 2012), paper TC7-O-14.

K. Mahmoud, S. Park, S.-N. Park, and D.-H. Lee, “LED-based tunable monochromatic uniform source for calibration of imaging sensors and cameras,” in Proceedings of the 11th International Conference on New Developments and Applications in Optical Radiometry (NEWRAD, 2011), pp. 118–119.

Nettleton, D. H.

Nevas, S.

Ohno, Y.

I. Fryc, S. W. Brown, G. P. Eppeldauer, and Y. Ohno, “LED-based spectrally tunable source for radiometric, photometric, and colorimetric applications,” Opt. Eng. 44, 111309 (2005).
[CrossRef]

Park, S.

G. Zaid, S.-N. Park, S. Park, and D.-H. Lee, “Differential spectra responsivity measurement of photovoltaic detectors with a LED-based integrating sphere source,” Appl. Opt. 49, 6772–6783 (2010).
[CrossRef]

S. Park, D.-H. Lee, Y.-W. Kim, and S.-N. Park, “Uncertainty evaluation for the spectroradiometric measurement of the averaged light-emitting diode intensity,” Appl. Opt. 46, 2851–2858 (2007).
[CrossRef]

S. Park, Y.-W. Kim, D.-H. Lee, and S.-N. Park, “Preparation of a standard light-emitting diode (LED) for photometric measurements by functional seasoning,” Metrologia 43, 299–305 (2006).
[CrossRef]

K. Mahmoud, S. Park, S.-N. Park, and D.-H. Lee, “LED-based tunable monochromatic uniform source for calibration of imaging sensors and cameras,” in Proceedings of the 11th International Conference on New Developments and Applications in Optical Radiometry (NEWRAD, 2011), pp. 118–119.

K. Mahmoud, S. Park, S.-N. Park, and D.-H. Lee, “Measurement of normalized spectral response of digital imaging sensors using a LED-based tunable uniform source,” in Proceedings of the XX IMEKO World Congress (IMEKO, 2012), paper TC7-O-14.

Park, S.-N.

G. Zaid, S.-N. Park, S. Park, and D.-H. Lee, “Differential spectra responsivity measurement of photovoltaic detectors with a LED-based integrating sphere source,” Appl. Opt. 49, 6772–6783 (2010).
[CrossRef]

S. Park, D.-H. Lee, Y.-W. Kim, and S.-N. Park, “Uncertainty evaluation for the spectroradiometric measurement of the averaged light-emitting diode intensity,” Appl. Opt. 46, 2851–2858 (2007).
[CrossRef]

S. Park, Y.-W. Kim, D.-H. Lee, and S.-N. Park, “Preparation of a standard light-emitting diode (LED) for photometric measurements by functional seasoning,” Metrologia 43, 299–305 (2006).
[CrossRef]

K. Mahmoud, S. Park, S.-N. Park, and D.-H. Lee, “Measurement of normalized spectral response of digital imaging sensors using a LED-based tunable uniform source,” in Proceedings of the XX IMEKO World Congress (IMEKO, 2012), paper TC7-O-14.

K. Mahmoud, S. Park, S.-N. Park, and D.-H. Lee, “LED-based tunable monochromatic uniform source for calibration of imaging sensors and cameras,” in Proceedings of the 11th International Conference on New Developments and Applications in Optical Radiometry (NEWRAD, 2011), pp. 118–119.

Pons, A.

A. Ferrero, J. Campos, and A. Pons, “Low-uncertainty absolute radiometric calibration of a CCD,” Metrologia 43, S17–S21 (2006).
[CrossRef]

Roller, J.

Schuster, M.

Sperling, A.

Stock, M.

R. Goebel and M. Stock, “Report on the comparison CCPR-K2.b of spectral responsivity measurements in the range 300 nm to 1000 nm,” Metrologia 41, 02004 (2004).
[CrossRef]

Voelker, S.

Yoon, H. W.

Zaid, G.

Appl. Opt. (7)

Metrologia (3)

R. Goebel and M. Stock, “Report on the comparison CCPR-K2.b of spectral responsivity measurements in the range 300 nm to 1000 nm,” Metrologia 41, 02004 (2004).
[CrossRef]

S. Park, Y.-W. Kim, D.-H. Lee, and S.-N. Park, “Preparation of a standard light-emitting diode (LED) for photometric measurements by functional seasoning,” Metrologia 43, 299–305 (2006).
[CrossRef]

A. Ferrero, J. Campos, and A. Pons, “Low-uncertainty absolute radiometric calibration of a CCD,” Metrologia 43, S17–S21 (2006).
[CrossRef]

Opt. Eng. (1)

I. Fryc, S. W. Brown, G. P. Eppeldauer, and Y. Ohno, “LED-based spectrally tunable source for radiometric, photometric, and colorimetric applications,” Opt. Eng. 44, 111309 (2005).
[CrossRef]

Other (6)

Evaluation of measurement data—guide to the expression of uncertainty in measurement (JCGM, 2008).

G. C. Holst and T. S. Lomheim, CMOS/CCD Sensors and Camera Systems (SPIE, 2007).

“Spectral responsivity measurements of detectors, radiometers, and photometers,” International Commission on Illumination (CIE) Publication No. 202 (2011).

H.-C. Lee, Introduction to Color Imaging Science (Cambridge University, 2005).

K. Mahmoud, S. Park, S.-N. Park, and D.-H. Lee, “LED-based tunable monochromatic uniform source for calibration of imaging sensors and cameras,” in Proceedings of the 11th International Conference on New Developments and Applications in Optical Radiometry (NEWRAD, 2011), pp. 118–119.

K. Mahmoud, S. Park, S.-N. Park, and D.-H. Lee, “Measurement of normalized spectral response of digital imaging sensors using a LED-based tunable uniform source,” in Proceedings of the XX IMEKO World Congress (IMEKO, 2012), paper TC7-O-14.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic diagram of the normalized spectral responsivity measurement setup (top view).

Fig. 2.
Fig. 2.

(a) Spectral power distribution of the individual LEDs used for the LED-based tunable uniform source. Different colors of the curves correspond to different 25 LEDs, which had been lit one by one during the wavelength scan. (b) Plot of the relative irradiance available at the output port of the integrating sphere source as a function of wavelength measured with an interval of 5 nm (dot symbols). The error bars correspond to repeatability uncertainties of each measurement points.

Fig. 3.
Fig. 3.

(a) Spatial irradiance distribution of the LED-based tunable uniform source measured at a distance of 10 mm from the output port through a horizontal scan in 1 mm steps at different wavelengths (dot symbols). The connecting curves are only for better visibility. (b) Plot of the relative difference of the spatial irradiance distribution with respect to the average values of the different wavelengths within a range of ± 15 mm at the center of the output port.

Fig. 4.
Fig. 4.

Spectral responsivity of the REF as measured against the standard photodiode mounted at a close distance to the output port. The error bars represent the associated uncertainties of this calibration.

Fig. 5.
Fig. 5.

Normalized spectral responsivity of a monochrome CCD sensor measured in the irradiance mode. The error bars represent the associated uncertainties of this measurement.

Fig. 6.
Fig. 6.

Normalized spectral responsivity of a monochrome CCD camera measured in the radiance mode (dot symbols). The error bars represent the associated uncertainties of this measurement. The dashed curve is the result of the CCD sensor in the camera, which is measured in the irradiance mode and shown in Fig. 5.

Fig. 7.
Fig. 7.

Normalized spectral responsivity of a trichromatic CMOS sensor measured in the irradiance mode. The error bars represent the associated uncertainties of this measurement.

Fig. 8.
Fig. 8.

Normalized spectral responsivity of a tri-chromatic CMOS camera measured in the radiance mode (dot symbols). The error bars represent the associated uncertainties of this measurement. The dashed curve is the result of the CMOS sensor in the camera, which is measured in the irradiance mode and shown in Fig. 7.

Tables (2)

Tables Icon

Table 1. Uncertainty Budget of the REF Responsivity Calibration at 435 nm

Tables Icon

Table 2. Uncertainty Budget of the Normalized Spectral Responsivity Measurement for a Monochrome CCD Sensor at 435 nm

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S REF ( λ ) = y REF y STD · S STD ( λ ) ,
S REF * ( λ ) = S REF ( λ ) S REF max .
u rel ( y REF y STD ) = ( 1 y REF · y REF λ 1 y STD · y STD λ ) · u ( λ ) .
S DUT ( λ ) = y DUT y REF · S REF * ( λ ) .
S DUT * ( λ ) = S DUT ( λ ) S DUT ( λ norm ) .
u rel ( y DUT y REF ) = ( 1 y DUT · y DUT λ 1 y REF · y REF λ ) · u ( λ ) .

Metrics