Abstract

We developed a baffle design method based on a combination of the results of optical design software and analytical relations formulated herein. The method finds the exact solution for baffle parameters of a modified Ritchey–Chretien telescope by iteratively solving the analytical relations using the actual ray coordinates of the telescope computed with the aid of optical design software. The baffle system so designed not only blocks the direct rays of stray light reaching the image plane but also provides minimum obscuration to imaging light. Based on the iterative method, we proposed a baffle design approach for a rectangular-image-format telescope.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Simonetti, A. Romol, P. Mazzinghi, and V. Bratina, “Telescopes for an orbiting high-resolution camera for Earth observation,” Opt. Eng. 45, 053001 (2006).
    [CrossRef]
  2. R. Kingslake and R. B. Johnson, Lens Design Fundamentals (Elsevier, 2010).
  3. W. J. Smith, Modern Lens Design: A Resource Manual (McGraw-Hill, 1992).
  4. R. R. Shannon, The Art and Science of Optical Design(Cambridge University, 1997).
  5. M. Laikin, Lens Design (Marcel Dekker, 2001).
  6. H. W. Epps and D. Fabricant, “Field corrector for wide-field CCD imaging with Ritchey–Chretien telescope,” Astronom. J. 113, 439–445 (1997).
    [CrossRef]
  7. T. Treibitz and Y. Y. Schechner, “Resolution loss without imaging blur,” J. Opt. Soc. Am. A 29, 1516–1528 (2012).
    [CrossRef]
  8. G. H. Smith, Practical Computer-Aided Lens Design(Willmann-Bell, 1998), Chap. B.5.
  9. A. T. Young, “Design of Cassegrain light shields,” Appl. Opt. 6, 1063–1067 (1967).
    [CrossRef]
  10. R. Prescott, “Cassegrain baffle design,” Appl. Opt. 7, 479–481 (1968).
    [CrossRef]
  11. W. L. Hales, “Optimum Cassegrain baffle systems,” Appl. Opt. 31, 5341–5344 (1992).
    [CrossRef]
  12. P. Y. Bely, The Design and Construction of Large Optical Telescope (Springer, 2003), Chap. 5.
  13. D. Malacara and Z. Malacara, Handbook of Lens Design(Marcel Dekker, 2004), Chap. 14.
  14. J. M. Geary, Introduction to Lens Design with Practical Zemax Examples (Willmann-Bell, 2002).
  15. N. Song, Z. Yin, and F. Hu, “Baffles design of an axial two-mirror telescope,” Opt. Eng. 41, 2353–2356 (2002).
    [CrossRef]
  16. Zemax: Optical Design Program User’s Guide (Version-9), Focus Software Incorporated, USA.

2012

2006

F. Simonetti, A. Romol, P. Mazzinghi, and V. Bratina, “Telescopes for an orbiting high-resolution camera for Earth observation,” Opt. Eng. 45, 053001 (2006).
[CrossRef]

2002

N. Song, Z. Yin, and F. Hu, “Baffles design of an axial two-mirror telescope,” Opt. Eng. 41, 2353–2356 (2002).
[CrossRef]

1997

H. W. Epps and D. Fabricant, “Field corrector for wide-field CCD imaging with Ritchey–Chretien telescope,” Astronom. J. 113, 439–445 (1997).
[CrossRef]

1992

1968

1967

Bely, P. Y.

P. Y. Bely, The Design and Construction of Large Optical Telescope (Springer, 2003), Chap. 5.

Bratina, V.

F. Simonetti, A. Romol, P. Mazzinghi, and V. Bratina, “Telescopes for an orbiting high-resolution camera for Earth observation,” Opt. Eng. 45, 053001 (2006).
[CrossRef]

Epps, H. W.

H. W. Epps and D. Fabricant, “Field corrector for wide-field CCD imaging with Ritchey–Chretien telescope,” Astronom. J. 113, 439–445 (1997).
[CrossRef]

Fabricant, D.

H. W. Epps and D. Fabricant, “Field corrector for wide-field CCD imaging with Ritchey–Chretien telescope,” Astronom. J. 113, 439–445 (1997).
[CrossRef]

Geary, J. M.

J. M. Geary, Introduction to Lens Design with Practical Zemax Examples (Willmann-Bell, 2002).

Hales, W. L.

Hu, F.

N. Song, Z. Yin, and F. Hu, “Baffles design of an axial two-mirror telescope,” Opt. Eng. 41, 2353–2356 (2002).
[CrossRef]

Johnson, R. B.

R. Kingslake and R. B. Johnson, Lens Design Fundamentals (Elsevier, 2010).

Kingslake, R.

R. Kingslake and R. B. Johnson, Lens Design Fundamentals (Elsevier, 2010).

Laikin, M.

M. Laikin, Lens Design (Marcel Dekker, 2001).

Malacara, D.

D. Malacara and Z. Malacara, Handbook of Lens Design(Marcel Dekker, 2004), Chap. 14.

Malacara, Z.

D. Malacara and Z. Malacara, Handbook of Lens Design(Marcel Dekker, 2004), Chap. 14.

Mazzinghi, P.

F. Simonetti, A. Romol, P. Mazzinghi, and V. Bratina, “Telescopes for an orbiting high-resolution camera for Earth observation,” Opt. Eng. 45, 053001 (2006).
[CrossRef]

Prescott, R.

Romol, A.

F. Simonetti, A. Romol, P. Mazzinghi, and V. Bratina, “Telescopes for an orbiting high-resolution camera for Earth observation,” Opt. Eng. 45, 053001 (2006).
[CrossRef]

Schechner, Y. Y.

Shannon, R. R.

R. R. Shannon, The Art and Science of Optical Design(Cambridge University, 1997).

Simonetti, F.

F. Simonetti, A. Romol, P. Mazzinghi, and V. Bratina, “Telescopes for an orbiting high-resolution camera for Earth observation,” Opt. Eng. 45, 053001 (2006).
[CrossRef]

Smith, G. H.

G. H. Smith, Practical Computer-Aided Lens Design(Willmann-Bell, 1998), Chap. B.5.

Smith, W. J.

W. J. Smith, Modern Lens Design: A Resource Manual (McGraw-Hill, 1992).

Song, N.

N. Song, Z. Yin, and F. Hu, “Baffles design of an axial two-mirror telescope,” Opt. Eng. 41, 2353–2356 (2002).
[CrossRef]

Treibitz, T.

Yin, Z.

N. Song, Z. Yin, and F. Hu, “Baffles design of an axial two-mirror telescope,” Opt. Eng. 41, 2353–2356 (2002).
[CrossRef]

Young, A. T.

Appl. Opt.

Astronom. J.

H. W. Epps and D. Fabricant, “Field corrector for wide-field CCD imaging with Ritchey–Chretien telescope,” Astronom. J. 113, 439–445 (1997).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Eng.

N. Song, Z. Yin, and F. Hu, “Baffles design of an axial two-mirror telescope,” Opt. Eng. 41, 2353–2356 (2002).
[CrossRef]

F. Simonetti, A. Romol, P. Mazzinghi, and V. Bratina, “Telescopes for an orbiting high-resolution camera for Earth observation,” Opt. Eng. 45, 053001 (2006).
[CrossRef]

Other

R. Kingslake and R. B. Johnson, Lens Design Fundamentals (Elsevier, 2010).

W. J. Smith, Modern Lens Design: A Resource Manual (McGraw-Hill, 1992).

R. R. Shannon, The Art and Science of Optical Design(Cambridge University, 1997).

M. Laikin, Lens Design (Marcel Dekker, 2001).

P. Y. Bely, The Design and Construction of Large Optical Telescope (Springer, 2003), Chap. 5.

D. Malacara and Z. Malacara, Handbook of Lens Design(Marcel Dekker, 2004), Chap. 14.

J. M. Geary, Introduction to Lens Design with Practical Zemax Examples (Willmann-Bell, 2002).

Zemax: Optical Design Program User’s Guide (Version-9), Focus Software Incorporated, USA.

G. H. Smith, Practical Computer-Aided Lens Design(Willmann-Bell, 1998), Chap. B.5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Optical layout of modified RC telescope.

Fig. 2.
Fig. 2.

Optical layout defining primary mirror baffle parameters.

Fig. 3.
Fig. 3.

Optical layout defining secondary mirror baffle parameters.

Fig. 4.
Fig. 4.

Optical layout for determination of ray c parameters.

Fig. 5.
Fig. 5.

Definition of skew ray at pupil.

Fig. 6.
Fig. 6.

Front view of primary mirror baffle.

Fig. 7.
Fig. 7.

Front view of secondary mirror baffle.

Fig. 8.
Fig. 8.

Side view of secondary mirror baffle.

Fig. 9.
Fig. 9.

Isometric view of secondary mirror baffle.

Fig. 10.
Fig. 10.

Convergence of iteration.

Fig. 11.
Fig. 11.

Comparison of MTF (tangential) for various cases.

Fig. 12.
Fig. 12.

Comparison of MTF (sagittal) for various cases.

Tables (2)

Tables Icon

Table 1. Comparison of Parameters of Baffles

Tables Icon

Table 2. Comparison of Parameters of Secondary Mirror Baffle

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Y=(m1×Z)+c1,
Y=(m2×Z)+c2,
Zp=(c1c2)(m1+m2).
Yp=(m1×Zp)+c1.
Y=(m3×Z)+c3,
Y=(m4×Z)+c4,
Zs=(c4c3)(m3+m4).
Ys=(m4×Zs)+c4.
c4=Yp+(m4×Zp).
Yen=β(1α),
α=(Ysn1Yen1)(Yen1Yen2),
β=[Yen12(Yen2×Ysn1)](Yen1Yen2),
m4={(Ypn+h)[(ZsmaftZpn)+Zc]},
m4={(Ypn+h)[(ZsmaftZpn)+Zc]}×(1r),
Rp=(Ypc2+Xpc2)IfRp>YpthenYYp=2×(Rp2Xp2)XXp=2×(Rp2Yp2)IfRp<YpthenRp=YpXXp=0YYp=2×(Rp2Xp2).}
Rs=(Ysc2+Xsc2)IfRs>YsthenYYs=2×(Rs2Xs2)XXs=2×(Rs2Ys2)IfRs<Ys,thenRs=YsXXs=0YYs=2×(Rs2Xs2).}

Metrics