Abstract

We design two microwave photonic filters (notch filter and bandpass filter) based on silicon on insulator (SOI) photonic crystal waveguides for a 60 GHz single-sideband signal radio-over-fiber (ROF) system. By perturbing the radii of the first two rows of holes adjacent to the photonic crystal waveguide, we obtained a broad negligible dispersion bandwidth and a corresponding constant low group velocity. With the slow light effect, the delay line of filters can be significantly reduced while providing the same delay time as fiber based delay lines. The simulation results show that the delay-line length of the notch filter is only about 25.9 μm, and it has a free spectral range of 130 GHz, a baseband width (BW) of 4.12 GHz, and a notch depth of 22 dB. The length of the bandpass filter is 62.4 μm, with a 19.6 dB extinction ratio and a 4.02 GHz BW, and the signal-to-noise ratio requirement of received data can be reduced by 9 dB for the 107 bit-error ratio. Demonstrated microwave photonic crystal filters could be used in a future high-frequency millimeter ROF system.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulated wired/wireless access using reflective semiconductor optical amplifier with wireless signal broadcast,” IEEE Photon. Technol. Lett. 21, 1459–1461 (2009).
    [CrossRef]
  2. V. Sharma, A. Singh, and A. K. Sharma, “Challenges to radio over fiber (RoF) technology and its mitigation schemes–a review,” Optik 123, 338–342 (2012).
    [CrossRef]
  3. C. W. Chow, C. H. Yeh, M. G. Stanley, Lo. C. Li, and H. K. Tsang, “Long-reach radio-over-fiber signal distribution using single-sideband signal generated by a silicon modulator,” Opt. Express 19, 11312–11317 (2011).
    [CrossRef]
  4. J. Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, and K. Kitayama, “Reconfigurable 2.5  Gb/s baseband and 60 GHz (155  Mb/s) millimeter-waveband radio-over-fiber access network,” J. Lightwave Technol. 26, 2506–2512 (2008).
    [CrossRef]
  5. S. Weber, J. G. Andrews, and N. Jindal, “The effect of fading, channel inversion, and threshold scheduling on ad hoc networks,” IEEE Trans. Inf. Theory 53, 4127–4149(2007).
    [CrossRef]
  6. C. Lin, C. Wei, and M. Chao, “Phase noise suppression of optical OFDM signals in 60 GHz RoF transmission system,” Opt. Express 19, 10423–10428 (2011).
    [CrossRef]
  7. K. Zhu, H. Ou, Y. Hu, and H. Fu, “Tunable single-bandpass microwave photonic filters with high Q factor or flat-top shape based on cascaded optical structures,” in Proceedings of Optical Fiber Communication & Optoelectronic Exposition & Conference (IEEE, 2008), pp. 1–3.
  8. G. Ning, S. Aditya, P. Shum, L. Cheng, and H. Dong, “All optical microwave photonic filters with a round-trip configuration,” Appl. Phys. B 90, 137–140 (2008).
    [CrossRef]
  9. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
    [CrossRef]
  10. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201–229 (2006).
    [CrossRef]
  11. D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13, 9398–9408 (2005).
    [CrossRef]
  12. M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express 19, 21475–21484 (2011).
    [CrossRef]
  13. W. Xue, S. Sales, J. Mørk, and J. Capmany, “Widely tunable microwave photonic notch filter based on slow and fast light effects,” IEEE Photon. Technol. Lett. 21, 167–169 (2009).
    [CrossRef]
  14. X. Wang, H. Tian, and Y. Ji, “Photonic crystal slow light Mach–Zehnder interferometer modulator for optical interconnects,” J. Opt. 12, 065501 (2010).
    [CrossRef]
  15. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
    [CrossRef]
  16. A. Falco, L. O’Faolain, and T. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009).
    [CrossRef]
  17. E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18, 15859–15869 (2010).
    [CrossRef]
  18. T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17, 22505–22513 (2009).
    [CrossRef]
  19. S. Matsuo, A. Shinya, C. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20  Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19, 2242–2250 (2011).
    [CrossRef]
  20. W. Zheng, M. Xing, G. Ren, and S. G. Johnson, “Integration of a photonic crystal polarization beam splitter and waveguide bend,” Opt. Express 17, 8657–8668 (2009).
    [CrossRef]
  21. Z. Wang, K. Chiang, and Q. Liu, “Microwave photonic filter based on circulating a cladding mode in a fiber ring resonator,” Opt. Lett. 35, 769–771 (2010).
    [CrossRef]
  22. M. S. Rasras, K. Tu, and D. M. Gill, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightwave Technol. 27, 2105–2110 (2009).
    [CrossRef]
  23. L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-single-mode fiber resonator,” Opt. Lett. 7, 288–290 (1982).
    [CrossRef]
  24. D. Beggs, T. White, L. O’Faolain, and T. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett. 33, 147–149 (2008).
    [CrossRef]
  25. D. Yang, H. Tian, and Y. Ji, “Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays,” Opt. Express 19, 20023–20034 (2011).
    [CrossRef]
  26. D. Yang, H. Tian, and Y. Ji, “The study of electro-optical sensor based on slotted photonic crystal waveguide,” Opt. Commun. 284, 4986–4990 (2011).
    [CrossRef]
  27. X. Zhang, H. Tian, and Y. Ji, “Group index and dispersion properties of photonic crystal waveguides with circular and square air-holes,” Opt. Commun. 283, 1768–1772 (2010).
    [CrossRef]
  28. N. Matsuda, T. Kato, K. Harada, H. Takesue, E. Kuramochi, H. Taniyama, and M. Notomi, “Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide,” Opt. Express 19, 19861–19874 (2011).
    [CrossRef]
  29. A. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
    [CrossRef]
  30. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
    [CrossRef]
  31. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72, 161318 (2005).
    [CrossRef]
  32. L. O’Faolain, S. Schulz, D. Beggs, T. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. Hugonin, P. Lalanne, and T. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
    [CrossRef]
  33. L. Frandsen, J. Fage-Pedersen, A. Lavrinenko, and P. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006).
    [CrossRef]
  34. S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
    [CrossRef]

2012 (1)

V. Sharma, A. Singh, and A. K. Sharma, “Challenges to radio over fiber (RoF) technology and its mitigation schemes–a review,” Optik 123, 338–342 (2012).
[CrossRef]

2011 (7)

D. Yang, H. Tian, and Y. Ji, “The study of electro-optical sensor based on slotted photonic crystal waveguide,” Opt. Commun. 284, 4986–4990 (2011).
[CrossRef]

S. Matsuo, A. Shinya, C. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20  Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19, 2242–2250 (2011).
[CrossRef]

C. Lin, C. Wei, and M. Chao, “Phase noise suppression of optical OFDM signals in 60 GHz RoF transmission system,” Opt. Express 19, 10423–10428 (2011).
[CrossRef]

C. W. Chow, C. H. Yeh, M. G. Stanley, Lo. C. Li, and H. K. Tsang, “Long-reach radio-over-fiber signal distribution using single-sideband signal generated by a silicon modulator,” Opt. Express 19, 11312–11317 (2011).
[CrossRef]

N. Matsuda, T. Kato, K. Harada, H. Takesue, E. Kuramochi, H. Taniyama, and M. Notomi, “Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide,” Opt. Express 19, 19861–19874 (2011).
[CrossRef]

D. Yang, H. Tian, and Y. Ji, “Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays,” Opt. Express 19, 20023–20034 (2011).
[CrossRef]

M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express 19, 21475–21484 (2011).
[CrossRef]

2010 (6)

Z. Wang, K. Chiang, and Q. Liu, “Microwave photonic filter based on circulating a cladding mode in a fiber ring resonator,” Opt. Lett. 35, 769–771 (2010).
[CrossRef]

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18, 15859–15869 (2010).
[CrossRef]

L. O’Faolain, S. Schulz, D. Beggs, T. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. Hugonin, P. Lalanne, and T. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
[CrossRef]

X. Zhang, H. Tian, and Y. Ji, “Group index and dispersion properties of photonic crystal waveguides with circular and square air-holes,” Opt. Commun. 283, 1768–1772 (2010).
[CrossRef]

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

X. Wang, H. Tian, and Y. Ji, “Photonic crystal slow light Mach–Zehnder interferometer modulator for optical interconnects,” J. Opt. 12, 065501 (2010).
[CrossRef]

2009 (7)

A. Falco, L. O’Faolain, and T. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009).
[CrossRef]

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulated wired/wireless access using reflective semiconductor optical amplifier with wireless signal broadcast,” IEEE Photon. Technol. Lett. 21, 1459–1461 (2009).
[CrossRef]

W. Xue, S. Sales, J. Mørk, and J. Capmany, “Widely tunable microwave photonic notch filter based on slow and fast light effects,” IEEE Photon. Technol. Lett. 21, 167–169 (2009).
[CrossRef]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
[CrossRef]

W. Zheng, M. Xing, G. Ren, and S. G. Johnson, “Integration of a photonic crystal polarization beam splitter and waveguide bend,” Opt. Express 17, 8657–8668 (2009).
[CrossRef]

M. S. Rasras, K. Tu, and D. M. Gill, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightwave Technol. 27, 2105–2110 (2009).
[CrossRef]

T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17, 22505–22513 (2009).
[CrossRef]

2008 (4)

2007 (1)

S. Weber, J. G. Andrews, and N. Jindal, “The effect of fading, channel inversion, and threshold scheduling on ad hoc networks,” IEEE Trans. Inf. Theory 53, 4127–4149(2007).
[CrossRef]

2006 (2)

2005 (2)

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72, 161318 (2005).
[CrossRef]

D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13, 9398–9408 (2005).
[CrossRef]

2004 (1)

A. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

2001 (1)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

1982 (1)

Aditya, S.

G. Ning, S. Aditya, P. Shum, L. Cheng, and H. Dong, “All optical microwave photonic filters with a round-trip configuration,” Appl. Phys. B 90, 137–140 (2008).
[CrossRef]

Andrews, J. G.

S. Weber, J. G. Andrews, and N. Jindal, “The effect of fading, channel inversion, and threshold scheduling on ad hoc networks,” IEEE Trans. Inf. Theory 53, 4127–4149(2007).
[CrossRef]

Baba, T.

Beggs, D.

Beggs, D. M.

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

Borel, P.

Burla, M.

Capmany, J.

W. Xue, S. Sales, J. Mørk, and J. Capmany, “Widely tunable microwave photonic notch filter based on slow and fast light effects,” IEEE Photon. Technol. Lett. 21, 167–169 (2009).
[CrossRef]

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201–229 (2006).
[CrossRef]

Chao, M.

Chen, C.

Cheng, L.

G. Ning, S. Aditya, P. Shum, L. Cheng, and H. Dong, “All optical microwave photonic filters with a round-trip configuration,” Appl. Phys. B 90, 137–140 (2008).
[CrossRef]

Chi, S.

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulated wired/wireless access using reflective semiconductor optical amplifier with wireless signal broadcast,” IEEE Photon. Technol. Lett. 21, 1459–1461 (2009).
[CrossRef]

Chiang, K.

Chodorow, M.

Chow, C. W.

C. W. Chow, C. H. Yeh, M. G. Stanley, Lo. C. Li, and H. K. Tsang, “Long-reach radio-over-fiber signal distribution using single-sideband signal generated by a silicon modulator,” Opt. Express 19, 11312–11317 (2011).
[CrossRef]

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulated wired/wireless access using reflective semiconductor optical amplifier with wireless signal broadcast,” IEEE Photon. Technol. Lett. 21, 1459–1461 (2009).
[CrossRef]

Dong, H.

G. Ning, S. Aditya, P. Shum, L. Cheng, and H. Dong, “All optical microwave photonic filters with a round-trip configuration,” Appl. Phys. B 90, 137–140 (2008).
[CrossRef]

Eich, M.

A. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

Fage-Pedersen, J.

Falco, A.

A. Falco, L. O’Faolain, and T. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009).
[CrossRef]

Frandsen, L.

Fu, H.

K. Zhu, H. Ou, Y. Hu, and H. Fu, “Tunable single-bandpass microwave photonic filters with high Q factor or flat-top shape based on cascaded optical structures,” in Proceedings of Optical Fiber Communication & Optoelectronic Exposition & Conference (IEEE, 2008), pp. 1–3.

Gill, D. M.

Harada, K.

Heideman, R.

Hoekman, M.

Hu, Y.

K. Zhu, H. Ou, Y. Hu, and H. Fu, “Tunable single-bandpass microwave photonic filters with high Q factor or flat-top shape based on cascaded optical structures,” in Proceedings of Optical Fiber Communication & Optoelectronic Exposition & Conference (IEEE, 2008), pp. 1–3.

Hughes, S.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72, 161318 (2005).
[CrossRef]

Hugonin, J.

Ji, Y.

D. Yang, H. Tian, and Y. Ji, “The study of electro-optical sensor based on slotted photonic crystal waveguide,” Opt. Commun. 284, 4986–4990 (2011).
[CrossRef]

D. Yang, H. Tian, and Y. Ji, “Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays,” Opt. Express 19, 20023–20034 (2011).
[CrossRef]

X. Zhang, H. Tian, and Y. Ji, “Group index and dispersion properties of photonic crystal waveguides with circular and square air-holes,” Opt. Commun. 283, 1768–1772 (2010).
[CrossRef]

X. Wang, H. Tian, and Y. Ji, “Photonic crystal slow light Mach–Zehnder interferometer modulator for optical interconnects,” J. Opt. 12, 065501 (2010).
[CrossRef]

Jindal, N.

S. Weber, J. G. Andrews, and N. Jindal, “The effect of fading, channel inversion, and threshold scheduling on ad hoc networks,” IEEE Trans. Inf. Theory 53, 4127–4149(2007).
[CrossRef]

Johnson, S. G.

Kato, T.

Kawaguchi, Y.

Kawasaki, K.

Khan, M. R.

Kitayama, K.

Krauss, T.

Krauss, T. F.

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

Kuipers, L.

Kuramochi, E.

Kuri, T.

Lalanne, P.

Lavrinenko, A.

Leinse, A.

Li, Lo. C.

Lin, C.

Liu, Q.

Marpaung, D.

Matsuda, N.

Matsuo, S.

Mazoyer, S.

Melloni, A.

L. O’Faolain, S. Schulz, D. Beggs, T. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. Hugonin, P. Lalanne, and T. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
[CrossRef]

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

Mori, D.

Morichetti, F.

Mørk, J.

W. Xue, S. Sales, J. Mørk, and J. Capmany, “Widely tunable microwave photonic notch filter based on slow and fast light effects,” IEEE Photon. Technol. Lett. 21, 167–169 (2009).
[CrossRef]

Ning, G.

G. Ning, S. Aditya, P. Shum, L. Cheng, and H. Dong, “All optical microwave photonic filters with a round-trip configuration,” Appl. Phys. B 90, 137–140 (2008).
[CrossRef]

Nishiguchi, K.

Notomi, M.

S. Matsuo, A. Shinya, C. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20  Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19, 2242–2250 (2011).
[CrossRef]

N. Matsuda, T. Kato, K. Harada, H. Takesue, E. Kuramochi, H. Taniyama, and M. Notomi, “Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide,” Opt. Express 19, 19861–19874 (2011).
[CrossRef]

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18, 15859–15869 (2010).
[CrossRef]

T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17, 22505–22513 (2009).
[CrossRef]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72, 161318 (2005).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Nozaki, K.

O’Faolain, L.

L. O’Faolain, S. Schulz, D. Beggs, T. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. Hugonin, P. Lalanne, and T. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
[CrossRef]

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

A. Falco, L. O’Faolain, and T. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009).
[CrossRef]

D. Beggs, T. White, L. O’Faolain, and T. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett. 33, 147–149 (2008).
[CrossRef]

Olmos, J.

Ortega, B.

Ou, H.

K. Zhu, H. Ou, Y. Hu, and H. Fu, “Tunable single-bandpass microwave photonic filters with high Q factor or flat-top shape based on cascaded optical structures,” in Proceedings of Optical Fiber Communication & Optoelectronic Exposition & Conference (IEEE, 2008), pp. 1–3.

Pastor, D.

Petrov, A.

A. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

Ramunno, L.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72, 161318 (2005).
[CrossRef]

Rasras, M. S.

Ren, G.

Roeloffzen, C.

Roh, Y.

Sales, S.

W. Xue, S. Sales, J. Mørk, and J. Capmany, “Widely tunable microwave photonic notch filter based on slow and fast light effects,” IEEE Photon. Technol. Lett. 21, 167–169 (2009).
[CrossRef]

Sato, T.

Schulz, S.

Schulz, S. A.

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

Sharma, A. K.

V. Sharma, A. Singh, and A. K. Sharma, “Challenges to radio over fiber (RoF) technology and its mitigation schemes–a review,” Optik 123, 338–342 (2012).
[CrossRef]

Sharma, V.

V. Sharma, A. Singh, and A. K. Sharma, “Challenges to radio over fiber (RoF) technology and its mitigation schemes–a review,” Optik 123, 338–342 (2012).
[CrossRef]

Shaw, H. J.

Shih, F. Y.

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulated wired/wireless access using reflective semiconductor optical amplifier with wireless signal broadcast,” IEEE Photon. Technol. Lett. 21, 1459–1461 (2009).
[CrossRef]

Shinya, A.

S. Matsuo, A. Shinya, C. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20  Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19, 2242–2250 (2011).
[CrossRef]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72, 161318 (2005).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Shum, P.

G. Ning, S. Aditya, P. Shum, L. Cheng, and H. Dong, “All optical microwave photonic filters with a round-trip configuration,” Appl. Phys. B 90, 137–140 (2008).
[CrossRef]

Singh, A.

V. Sharma, A. Singh, and A. K. Sharma, “Challenges to radio over fiber (RoF) technology and its mitigation schemes–a review,” Optik 123, 338–342 (2012).
[CrossRef]

Sono, T.

Spasenovic, M.

Stanley, M. G.

Stokes, L. F.

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Takesue, H.

Tamura, K.

Tanabe, T.

Taniyama, H.

Tian, H.

D. Yang, H. Tian, and Y. Ji, “The study of electro-optical sensor based on slotted photonic crystal waveguide,” Opt. Commun. 284, 4986–4990 (2011).
[CrossRef]

D. Yang, H. Tian, and Y. Ji, “Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays,” Opt. Express 19, 20023–20034 (2011).
[CrossRef]

X. Zhang, H. Tian, and Y. Ji, “Group index and dispersion properties of photonic crystal waveguides with circular and square air-holes,” Opt. Commun. 283, 1768–1772 (2010).
[CrossRef]

X. Wang, H. Tian, and Y. Ji, “Photonic crystal slow light Mach–Zehnder interferometer modulator for optical interconnects,” J. Opt. 12, 065501 (2010).
[CrossRef]

Toda, H.

Tsang, H. K.

Tu, K.

Wang, C. H.

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulated wired/wireless access using reflective semiconductor optical amplifier with wireless signal broadcast,” IEEE Photon. Technol. Lett. 21, 1459–1461 (2009).
[CrossRef]

Wang, X.

X. Wang, H. Tian, and Y. Ji, “Photonic crystal slow light Mach–Zehnder interferometer modulator for optical interconnects,” J. Opt. 12, 065501 (2010).
[CrossRef]

Wang, Z.

Watanabe, T.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72, 161318 (2005).
[CrossRef]

Weber, S.

S. Weber, J. G. Andrews, and N. Jindal, “The effect of fading, channel inversion, and threshold scheduling on ad hoc networks,” IEEE Trans. Inf. Theory 53, 4127–4149(2007).
[CrossRef]

Wei, C.

White, T.

White, T. P.

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

Xing, M.

Xue, W.

W. Xue, S. Sales, J. Mørk, and J. Capmany, “Widely tunable microwave photonic notch filter based on slow and fast light effects,” IEEE Photon. Technol. Lett. 21, 167–169 (2009).
[CrossRef]

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Yang, D.

D. Yang, H. Tian, and Y. Ji, “The study of electro-optical sensor based on slotted photonic crystal waveguide,” Opt. Commun. 284, 4986–4990 (2011).
[CrossRef]

D. Yang, H. Tian, and Y. Ji, “Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays,” Opt. Express 19, 20023–20034 (2011).
[CrossRef]

Yao, J.

Yeh, C. H.

C. W. Chow, C. H. Yeh, M. G. Stanley, Lo. C. Li, and H. K. Tsang, “Long-reach radio-over-fiber signal distribution using single-sideband signal generated by a silicon modulator,” Opt. Express 19, 11312–11317 (2011).
[CrossRef]

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulated wired/wireless access using reflective semiconductor optical amplifier with wireless signal broadcast,” IEEE Photon. Technol. Lett. 21, 1459–1461 (2009).
[CrossRef]

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Zhang, X.

X. Zhang, H. Tian, and Y. Ji, “Group index and dispersion properties of photonic crystal waveguides with circular and square air-holes,” Opt. Commun. 283, 1768–1772 (2010).
[CrossRef]

Zheng, W.

Zhu, K.

K. Zhu, H. Ou, Y. Hu, and H. Fu, “Tunable single-bandpass microwave photonic filters with high Q factor or flat-top shape based on cascaded optical structures,” in Proceedings of Optical Fiber Communication & Optoelectronic Exposition & Conference (IEEE, 2008), pp. 1–3.

Zhuang, L.

Appl. Phys. B (1)

G. Ning, S. Aditya, P. Shum, L. Cheng, and H. Dong, “All optical microwave photonic filters with a round-trip configuration,” Appl. Phys. B 90, 137–140 (2008).
[CrossRef]

Appl. Phys. Lett. (2)

A. Falco, L. O’Faolain, and T. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009).
[CrossRef]

A. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

W. Xue, S. Sales, J. Mørk, and J. Capmany, “Widely tunable microwave photonic notch filter based on slow and fast light effects,” IEEE Photon. Technol. Lett. 21, 167–169 (2009).
[CrossRef]

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulated wired/wireless access using reflective semiconductor optical amplifier with wireless signal broadcast,” IEEE Photon. Technol. Lett. 21, 1459–1461 (2009).
[CrossRef]

IEEE Trans. Inf. Theory (1)

S. Weber, J. G. Andrews, and N. Jindal, “The effect of fading, channel inversion, and threshold scheduling on ad hoc networks,” IEEE Trans. Inf. Theory 53, 4127–4149(2007).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. (2)

X. Wang, H. Tian, and Y. Ji, “Photonic crystal slow light Mach–Zehnder interferometer modulator for optical interconnects,” J. Opt. 12, 065501 (2010).
[CrossRef]

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

Nat. Photonics (1)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[CrossRef]

Opt. Commun. (2)

D. Yang, H. Tian, and Y. Ji, “The study of electro-optical sensor based on slotted photonic crystal waveguide,” Opt. Commun. 284, 4986–4990 (2011).
[CrossRef]

X. Zhang, H. Tian, and Y. Ji, “Group index and dispersion properties of photonic crystal waveguides with circular and square air-holes,” Opt. Commun. 283, 1768–1772 (2010).
[CrossRef]

Opt. Express (12)

D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13, 9398–9408 (2005).
[CrossRef]

L. Frandsen, J. Fage-Pedersen, A. Lavrinenko, and P. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006).
[CrossRef]

T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17, 22505–22513 (2009).
[CrossRef]

W. Zheng, M. Xing, G. Ren, and S. G. Johnson, “Integration of a photonic crystal polarization beam splitter and waveguide bend,” Opt. Express 17, 8657–8668 (2009).
[CrossRef]

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18, 15859–15869 (2010).
[CrossRef]

L. O’Faolain, S. Schulz, D. Beggs, T. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. Hugonin, P. Lalanne, and T. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
[CrossRef]

S. Matsuo, A. Shinya, C. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20  Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19, 2242–2250 (2011).
[CrossRef]

C. Lin, C. Wei, and M. Chao, “Phase noise suppression of optical OFDM signals in 60 GHz RoF transmission system,” Opt. Express 19, 10423–10428 (2011).
[CrossRef]

C. W. Chow, C. H. Yeh, M. G. Stanley, Lo. C. Li, and H. K. Tsang, “Long-reach radio-over-fiber signal distribution using single-sideband signal generated by a silicon modulator,” Opt. Express 19, 11312–11317 (2011).
[CrossRef]

N. Matsuda, T. Kato, K. Harada, H. Takesue, E. Kuramochi, H. Taniyama, and M. Notomi, “Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide,” Opt. Express 19, 19861–19874 (2011).
[CrossRef]

D. Yang, H. Tian, and Y. Ji, “Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays,” Opt. Express 19, 20023–20034 (2011).
[CrossRef]

M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express 19, 21475–21484 (2011).
[CrossRef]

Opt. Lett. (3)

Optik (1)

V. Sharma, A. Singh, and A. K. Sharma, “Challenges to radio over fiber (RoF) technology and its mitigation schemes–a review,” Optik 123, 338–342 (2012).
[CrossRef]

Phys. Rev. B (1)

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72, 161318 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Other (1)

K. Zhu, H. Ou, Y. Hu, and H. Fu, “Tunable single-bandpass microwave photonic filters with high Q factor or flat-top shape based on cascaded optical structures,” in Proceedings of Optical Fiber Communication & Optoelectronic Exposition & Conference (IEEE, 2008), pp. 1–3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of the filters. (a) MPF1 and (b) MPF2. PC, photonic crystal.

Fig. 2.
Fig. 2.

Configuration of delay-line photonic crystal.

Fig. 3.
Fig. 3.

Band diagram of the optimized photonic crystal structure. The inset is the group index of mode.

Fig. 4.
Fig. 4.

Group refractive indexes of the even mode (a) ng with different structural parameters and (b) ng of the optimized structure with a flat region.

Fig. 5.
Fig. 5.

(a) Photonic band structures of the coupler. (b) Transmission of the coupler. The inset is the calculated y component of coupler electric field (Ey) distributions in the xy plane.

Fig. 6.
Fig. 6.

Architecture of the 60 GHz SSB ROF system. PD, photodiode; NRZ, non-return-to-zero; SMF, single-mode fiber; BERT, bit error rate tester.

Fig. 7.
Fig. 7.

Filtering performance of MPF1. (a) Simulation of DSB signal. (b) SSB signal. The dotted curve is the transmission of notch filter MPF1; the solid blue curve is the output of the MPF1.

Fig. 8.
Fig. 8.

Filtering performance of MPF2. (a) Transmission of MPF2. (b) Behavior of BER versus SNR of received data using MPF2.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

|E3|2+|E4|2=(1γ)(|E1|2+|E2|2),
E3=1γ(1kE1+jkE2),E4=1γ(1kE2+jkE1),
E2=E3δejβL,β=2πngcf,
E4E1=1k[jk+1k(1γ)(1k)δejβLjkδ].
E2(t)=r=0(1k)[δ2k(1γ2)]rE1(trT),T=ngL/c,
E2(f)E1(f)=1k1δ2k(1γ)ej2πfT,
Lc=2πβevenβodd,

Metrics