Abstract

The space camera with variable focal length is capable of capturing images with variable resolution and variable field of view. This is useful for space-borne reconnaissance because the camera can switch between coarse and fine reconnaissance flexibly. However, the traditional optical zooming relies on moving elements which might influence the momentum balance of the satellite platform. Therefore, we present a prototype design using the piezo deformable mirror (PDM) to realize an all-reflective optical bifocal zooming system. By changing the curvature radius of the PDM, the focal length can be switched between 48 and 192 mm without moving elements involved. With the focal length experiencing 4× magnification, the system performance is still approaching diffraction-limited performance, and the maximum stroke of the PDM is also within its physical limits. Experiments demonstrate that the principle is correct and the design is successful.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kuiper and B. H. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130(2004).
    [CrossRef]
  2. D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
    [CrossRef]
  3. B. E. Bagwell, D. V. Wick, W. D. Cowan, O. Blum Spahn, W. C. Sweatt, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active zoom imaging for operationally responsive space,” Proc. SPIE 6467, 64670D (2007).
    [CrossRef]
  4. K. Seidl, J. Knobbe, and H. Gruger, “Design of an all-reflective unobscured optical-power zoom objective,” Appl. Opt. 48, 4097–4107 (2009).
    [CrossRef]
  5. K. Seidl, K. Richter, J. Knobbe, and H.-G. Maas, “Wide field-of-view all-reflective objectives designed for multispectral image acquisition in photogrammetric applications,” Proc. SPIE 8172, 817210 (2011).
    [CrossRef]
  6. J.-L. Wang, T.-Y. Chen, Y.-H. Chien, and G.-D. J. Su, “Miniature optical autofocus camera by micromachined fluoropolymer deformable mirror,” Opt. Express 17, 6268–6274 (2009).
    [CrossRef]
  7. Y.-H. Lin, Y.-L. Liu, and G.-D. J. Su, “Optical zoom module based on two deformable mirrors for mobile device application,” Appl. Opt. 51, 1804–1810 (2012).
    [CrossRef]
  8. D. Wick and T. Martinez, “Adaptive optical zoom,” Opt. Eng. 43, 8–9 (2004).
    [CrossRef]
  9. H. Kinoshita, K. Hoshino, K. Matsumoto, and I. Shimoyama, “A thin camera with a zoom function using reflective optics,” Sens. Actuators A 128, 191–196 (2006).
    [CrossRef]
  10. J. M. Rodgers, “Four-mirror compact afocal telescope with dual exit pupil,” Proc. SPIE 6342, 63421J-1 (2006).
    [CrossRef]

2012 (1)

2011 (1)

K. Seidl, K. Richter, J. Knobbe, and H.-G. Maas, “Wide field-of-view all-reflective objectives designed for multispectral image acquisition in photogrammetric applications,” Proc. SPIE 8172, 817210 (2011).
[CrossRef]

2009 (2)

2007 (1)

B. E. Bagwell, D. V. Wick, W. D. Cowan, O. Blum Spahn, W. C. Sweatt, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active zoom imaging for operationally responsive space,” Proc. SPIE 6467, 64670D (2007).
[CrossRef]

2006 (2)

H. Kinoshita, K. Hoshino, K. Matsumoto, and I. Shimoyama, “A thin camera with a zoom function using reflective optics,” Sens. Actuators A 128, 191–196 (2006).
[CrossRef]

J. M. Rodgers, “Four-mirror compact afocal telescope with dual exit pupil,” Proc. SPIE 6342, 63421J-1 (2006).
[CrossRef]

2005 (1)

D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[CrossRef]

2004 (2)

S. Kuiper and B. H. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130(2004).
[CrossRef]

D. Wick and T. Martinez, “Adaptive optical zoom,” Opt. Eng. 43, 8–9 (2004).
[CrossRef]

Andrews, J. R.

B. E. Bagwell, D. V. Wick, W. D. Cowan, O. Blum Spahn, W. C. Sweatt, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active zoom imaging for operationally responsive space,” Proc. SPIE 6467, 64670D (2007).
[CrossRef]

Bagwell, B. E.

B. E. Bagwell, D. V. Wick, W. D. Cowan, O. Blum Spahn, W. C. Sweatt, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active zoom imaging for operationally responsive space,” Proc. SPIE 6467, 64670D (2007).
[CrossRef]

Chen, T.-Y.

Chien, Y.-H.

Cowan, W. D.

B. E. Bagwell, D. V. Wick, W. D. Cowan, O. Blum Spahn, W. C. Sweatt, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active zoom imaging for operationally responsive space,” Proc. SPIE 6467, 64670D (2007).
[CrossRef]

Gruger, H.

Hendriks, B. H.

S. Kuiper and B. H. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130(2004).
[CrossRef]

Hoshino, K.

H. Kinoshita, K. Hoshino, K. Matsumoto, and I. Shimoyama, “A thin camera with a zoom function using reflective optics,” Sens. Actuators A 128, 191–196 (2006).
[CrossRef]

Kinoshita, H.

H. Kinoshita, K. Hoshino, K. Matsumoto, and I. Shimoyama, “A thin camera with a zoom function using reflective optics,” Sens. Actuators A 128, 191–196 (2006).
[CrossRef]

Knobbe, J.

K. Seidl, K. Richter, J. Knobbe, and H.-G. Maas, “Wide field-of-view all-reflective objectives designed for multispectral image acquisition in photogrammetric applications,” Proc. SPIE 8172, 817210 (2011).
[CrossRef]

K. Seidl, J. Knobbe, and H. Gruger, “Design of an all-reflective unobscured optical-power zoom objective,” Appl. Opt. 48, 4097–4107 (2009).
[CrossRef]

Kuiper, S.

S. Kuiper and B. H. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130(2004).
[CrossRef]

Lin, Y.-H.

Liu, Y.-L.

Maas, H.-G.

K. Seidl, K. Richter, J. Knobbe, and H.-G. Maas, “Wide field-of-view all-reflective objectives designed for multispectral image acquisition in photogrammetric applications,” Proc. SPIE 8172, 817210 (2011).
[CrossRef]

Martinez, T.

B. E. Bagwell, D. V. Wick, W. D. Cowan, O. Blum Spahn, W. C. Sweatt, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active zoom imaging for operationally responsive space,” Proc. SPIE 6467, 64670D (2007).
[CrossRef]

D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[CrossRef]

D. Wick and T. Martinez, “Adaptive optical zoom,” Opt. Eng. 43, 8–9 (2004).
[CrossRef]

Matsumoto, K.

H. Kinoshita, K. Hoshino, K. Matsumoto, and I. Shimoyama, “A thin camera with a zoom function using reflective optics,” Sens. Actuators A 128, 191–196 (2006).
[CrossRef]

Payne, D. M.

B. E. Bagwell, D. V. Wick, W. D. Cowan, O. Blum Spahn, W. C. Sweatt, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active zoom imaging for operationally responsive space,” Proc. SPIE 6467, 64670D (2007).
[CrossRef]

D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[CrossRef]

Restaino, S. R.

B. E. Bagwell, D. V. Wick, W. D. Cowan, O. Blum Spahn, W. C. Sweatt, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active zoom imaging for operationally responsive space,” Proc. SPIE 6467, 64670D (2007).
[CrossRef]

D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[CrossRef]

Richter, K.

K. Seidl, K. Richter, J. Knobbe, and H.-G. Maas, “Wide field-of-view all-reflective objectives designed for multispectral image acquisition in photogrammetric applications,” Proc. SPIE 8172, 817210 (2011).
[CrossRef]

Rodgers, J. M.

J. M. Rodgers, “Four-mirror compact afocal telescope with dual exit pupil,” Proc. SPIE 6342, 63421J-1 (2006).
[CrossRef]

Romeo, R.

B. E. Bagwell, D. V. Wick, W. D. Cowan, O. Blum Spahn, W. C. Sweatt, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active zoom imaging for operationally responsive space,” Proc. SPIE 6467, 64670D (2007).
[CrossRef]

Seidl, K.

K. Seidl, K. Richter, J. Knobbe, and H.-G. Maas, “Wide field-of-view all-reflective objectives designed for multispectral image acquisition in photogrammetric applications,” Proc. SPIE 8172, 817210 (2011).
[CrossRef]

K. Seidl, J. Knobbe, and H. Gruger, “Design of an all-reflective unobscured optical-power zoom objective,” Appl. Opt. 48, 4097–4107 (2009).
[CrossRef]

Shimoyama, I.

H. Kinoshita, K. Hoshino, K. Matsumoto, and I. Shimoyama, “A thin camera with a zoom function using reflective optics,” Sens. Actuators A 128, 191–196 (2006).
[CrossRef]

Spahn, O. Blum

B. E. Bagwell, D. V. Wick, W. D. Cowan, O. Blum Spahn, W. C. Sweatt, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active zoom imaging for operationally responsive space,” Proc. SPIE 6467, 64670D (2007).
[CrossRef]

Su, G.-D. J.

Sweatt, W. C.

B. E. Bagwell, D. V. Wick, W. D. Cowan, O. Blum Spahn, W. C. Sweatt, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active zoom imaging for operationally responsive space,” Proc. SPIE 6467, 64670D (2007).
[CrossRef]

D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[CrossRef]

Wang, J.-L.

Wick, D.

D. Wick and T. Martinez, “Adaptive optical zoom,” Opt. Eng. 43, 8–9 (2004).
[CrossRef]

Wick, D. V.

B. E. Bagwell, D. V. Wick, W. D. Cowan, O. Blum Spahn, W. C. Sweatt, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active zoom imaging for operationally responsive space,” Proc. SPIE 6467, 64670D (2007).
[CrossRef]

D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[CrossRef]

Wilcox, C. C.

B. E. Bagwell, D. V. Wick, W. D. Cowan, O. Blum Spahn, W. C. Sweatt, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active zoom imaging for operationally responsive space,” Proc. SPIE 6467, 64670D (2007).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

S. Kuiper and B. H. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130(2004).
[CrossRef]

Opt. Eng. (1)

D. Wick and T. Martinez, “Adaptive optical zoom,” Opt. Eng. 43, 8–9 (2004).
[CrossRef]

Opt. Express (1)

Proc. SPIE (4)

J. M. Rodgers, “Four-mirror compact afocal telescope with dual exit pupil,” Proc. SPIE 6342, 63421J-1 (2006).
[CrossRef]

D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[CrossRef]

B. E. Bagwell, D. V. Wick, W. D. Cowan, O. Blum Spahn, W. C. Sweatt, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active zoom imaging for operationally responsive space,” Proc. SPIE 6467, 64670D (2007).
[CrossRef]

K. Seidl, K. Richter, J. Knobbe, and H.-G. Maas, “Wide field-of-view all-reflective objectives designed for multispectral image acquisition in photogrammetric applications,” Proc. SPIE 8172, 817210 (2011).
[CrossRef]

Sens. Actuators A (1)

H. Kinoshita, K. Hoshino, K. Matsumoto, and I. Shimoyama, “A thin camera with a zoom function using reflective optics,” Sens. Actuators A 128, 191–196 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (27)

Fig. 1.
Fig. 1.

DM-based optical zooming system with primary mirror divided into two parts.

Fig. 2.
Fig. 2.

Illustration of displacement data in Table 3, below.

Fig. 3.
Fig. 3.

Spot diagrams corresponding to the focal length equaling 48 mm before aberrations are corrected.

Fig. 4.
Fig. 4.

Spot diagrams corresponding to the focal length equaling 192 mm before aberrations are corrected.

Fig. 5.
Fig. 5.

Spot diagrams corresponding to the focal length of 48 mm with aberrations corrected.

Fig. 6.
Fig. 6.

Spot diagrams corresponding to the focal length of 192 mm with aberrations corrected.

Fig. 7.
Fig. 7.

MTF corresponding to the focal length of 48 mm before aberrations are corrected.

Fig. 8.
Fig. 8.

MTF corresponding to the focal length of 48 mm after aberrations are corrected.

Fig. 9.
Fig. 9.

MTF corresponding to the focal length of 192 mm before aberrations are corrected.

Fig. 10.
Fig. 10.

MTF corresponding to the focal length of 192 mm after aberrations are corrected.

Fig. 11.
Fig. 11.

OPD corresponding to the focal length of 48 mm before aberrations are corrected.

Fig. 12.
Fig. 12.

OPD corresponding to the focal length of 48 mm after aberrations are corrected.

Fig. 13.
Fig. 13.

OPD corresponding to the focal length of 192 mm before aberrations are corrected.

Fig. 14.
Fig. 14.

OPD corresponding to the focal length of 192 mm after aberrations are corrected.

Fig. 15.
Fig. 15.

System tolerance analysis corresponding to the focal length of 48 mm.

Fig. 16.
Fig. 16.

System tolerance analysis corresponding to the focal length of 192 mm.

Fig. 17.
Fig. 17.

Schematic of camera structure.

Fig. 18.
Fig. 18.

Components of the key technique camera.

Fig. 19.
Fig. 19.

Real camera that has been assembled.

Fig. 20.
Fig. 20.

Replacement of the real DM by conventional reflective mirrors.

Fig. 21.
Fig. 21.

Imaging result (1) that proves the correctness of optical leveraging effect.

Fig. 22.
Fig. 22.

Imaging result (2) that proves the correctness of optical leveraging effect.

Fig. 23.
Fig. 23.

DM surface quality test results corresponding to the case that the focal length equals 192 mm.

Fig. 24.
Fig. 24.

DM surface quality test results corresponding to the case that the focal length equals 48 mm.

Fig. 25.
Fig. 25.

Camera with the real DM installed and overall system performance test with the help of Zygo.

Fig. 26.
Fig. 26.

Simulated system performance corresonding to the focal length of 48 mm.

Fig. 27.
Fig. 27.

Real test result of system performance corresponding to the focal length of 48 mm.

Tables (5)

Tables Icon

Table 1. System Parameters

Tables Icon

Table 2. Radius of Curvature

Tables Icon

Table 3. Displacement between Components

Tables Icon

Table 4. Coma Aberrations Denoted by Zernike Coefficients Corresponding to the Focal Length of 48 mm

Tables Icon

Table 5. Coma Aberrations Denoted by Zernike Coefficients Corresponding to the Focal Length of 192 mm

Metrics