Abstract

For Fourier transform holography, an effective random phase distribution with randomly displaced phase segments is proposed for obtaining a smooth finite optical intensity distribution in the Fourier transform plane. Since unitary phase segments are randomly distributed in-plane, the blanks give various spatial frequency components to an image, and thus smooth the spectrum. Moreover, by randomly changing the phase segment size, spike generation from the unitary phase segment size in the spectrum can be reduced significantly. As a result, a smooth spectrum including sidebands can be formed at a relatively narrow extent. The proposed phase distribution sustains the primary functions of a random phase mask for holographic-data recording and reconstruction. Therefore, this distribution is expected to find applications in high-density holographic memory systems, replacing conventional random phase mask patterns.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Coufal, D. Psaltis, and G. T. Sincerbox (Eds.), Holographic Data Storage (Springer, 2000), pp. 4–18.
  2. B. Hill, “Some aspects of a large capacity holographic memory,” Appl. Opt. 11, 182–191 (1972).
    [CrossRef]
  3. A. Pu, and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389–2398 (1996).
    [CrossRef]
  4. S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, “High-transfer-rate high-capacity holographic disk data-storage system,” Appl. Opt. 43, 4902–4914 (2004).
    [CrossRef]
  5. H. Ono, T. Kawamura, N. Kawatsuki, and H. Norisada, “Intensity filtering of a two-dimensional optical image in high-performance photorefractive mesogenic composites,” Appl. Phys. Lett. 79, 895–897 (2001).
    [CrossRef]
  6. C. B. Burckhardt, “Use of a random phase mask for the recording of Fourier transform holograms of data masks,” Appl. Opt. 9, 695–700 (1970).
    [CrossRef]
  7. Y. Takeda, Y. Oshida, and Y. Miyamura, “Random phase shifters for Fourier transformed holograms,” Appl. Opt. 11, 818–822 (1972).
    [CrossRef]
  8. Y. Tsunoda and Y. Takeda, “High density image-storage holograms by a random phase sampling method,” Appl. Opt. 13, 2046–2051 (1974).
    [CrossRef]
  9. Y. Nakayama and M. Kato, “Diffuser with pseudorandom phase sequence,” J. Opt. Soc. Am. 69, 1367–1372 (1979).
    [CrossRef]
  10. R. Epstein and S. Skupsky, “Anticipated improvement in laser beam uniformity using distributed phase plates with quasirandom patterns,” J. Appl. Phys. 68, 924–931 (1990).
    [CrossRef]
  11. R. Bräuer, F. Wyrowski, and O. Bryngdahl, “Diffusers in digital holography,” J. Opt. Soc. Am. A 8, 572–578 (1991).
    [CrossRef]
  12. S. N. Dixit, I. M. Thomas, B. W. Woods, A. J. Morgan, M. A. Henesian, P. J. Wegner, and H. T. Powell, “Random phase plates for beam smoothing on the Nova laser,” Appl. Opt. 32, 2543–2554 (1993).
    [CrossRef]
  13. Q. Gao and R. Kostuk, “Improvement to holographic digital data-storage systems with random and pseudorandom phase masks,” Appl. Opt. 36, 4853–4861 (1997).
    [CrossRef]
  14. N. Yoshizawa and T. Yatagai, “Interpolation method for computer-generated holograms using random phase technique,” Opt. Rev. 6, 433–438 (1999).
    [CrossRef]
  15. X. Tan, O. Matoba, T. Shimura, and K. Kuroda, “Improvement in holographic storage capacity by use of double-random phase encryption,” Appl. Opt. 40, 4721–4727 (2001).
    [CrossRef]
  16. H. Choi, K.-M. Pak, and Y.-H. Won, “Fast and low error color encrypted computer-generated hologram based on amplitude-phase modulation with a random mask for an identification tag application,” Opt. Commun. 285, 2809–2813 (2012).
    [CrossRef]
  17. F. Wyrowski and O. Bryngdahl, “Iterative Fourier-transform algorithm applied to computer holography,” J. Opt. Soc. Am. A 5, 1058–1065 (1988).
    [CrossRef]
  18. R. J. Fienup, “Iterative method applied to image reconstruction and to computer-generated holograms,” Opt. Eng. 19, 193297 (1980).
    [CrossRef]
  19. F. Wyrowski and O. Bryngdahl, “Speckle-free reconstruction in digital holography,” J. Opt. Soc. Am. A 6, 1171–1174(1989).
    [CrossRef]
  20. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996), pp. 101–107.
  21. R. Magnusson and T. K. Gaylord, “Diffraction regimes of transmission gratings,” J. Opt. Soc. Am. 68, 809–814 (1978).
    [CrossRef]
  22. A. Emoto, H. Ono, and N. Kawatsuki, “Spatial frequency selective reconstruction using Fourier transform holograms in functionalized mesogenic composites,” Liq. Cryst. 30, 1201–1206 (2003).
    [CrossRef]

2012 (1)

H. Choi, K.-M. Pak, and Y.-H. Won, “Fast and low error color encrypted computer-generated hologram based on amplitude-phase modulation with a random mask for an identification tag application,” Opt. Commun. 285, 2809–2813 (2012).
[CrossRef]

2004 (1)

2003 (1)

A. Emoto, H. Ono, and N. Kawatsuki, “Spatial frequency selective reconstruction using Fourier transform holograms in functionalized mesogenic composites,” Liq. Cryst. 30, 1201–1206 (2003).
[CrossRef]

2001 (2)

H. Ono, T. Kawamura, N. Kawatsuki, and H. Norisada, “Intensity filtering of a two-dimensional optical image in high-performance photorefractive mesogenic composites,” Appl. Phys. Lett. 79, 895–897 (2001).
[CrossRef]

X. Tan, O. Matoba, T. Shimura, and K. Kuroda, “Improvement in holographic storage capacity by use of double-random phase encryption,” Appl. Opt. 40, 4721–4727 (2001).
[CrossRef]

1999 (1)

N. Yoshizawa and T. Yatagai, “Interpolation method for computer-generated holograms using random phase technique,” Opt. Rev. 6, 433–438 (1999).
[CrossRef]

1997 (1)

1996 (1)

1993 (1)

1991 (1)

1990 (1)

R. Epstein and S. Skupsky, “Anticipated improvement in laser beam uniformity using distributed phase plates with quasirandom patterns,” J. Appl. Phys. 68, 924–931 (1990).
[CrossRef]

1989 (1)

1988 (1)

1980 (1)

R. J. Fienup, “Iterative method applied to image reconstruction and to computer-generated holograms,” Opt. Eng. 19, 193297 (1980).
[CrossRef]

1979 (1)

1978 (1)

1974 (1)

1972 (2)

1970 (1)

Bjornson, E.

Bräuer, R.

Bryngdahl, O.

Burckhardt, C. B.

Choi, H.

H. Choi, K.-M. Pak, and Y.-H. Won, “Fast and low error color encrypted computer-generated hologram based on amplitude-phase modulation with a random mask for an identification tag application,” Opt. Commun. 285, 2809–2813 (2012).
[CrossRef]

Dixit, S. N.

Emoto, A.

A. Emoto, H. Ono, and N. Kawatsuki, “Spatial frequency selective reconstruction using Fourier transform holograms in functionalized mesogenic composites,” Liq. Cryst. 30, 1201–1206 (2003).
[CrossRef]

Epstein, R.

R. Epstein and S. Skupsky, “Anticipated improvement in laser beam uniformity using distributed phase plates with quasirandom patterns,” J. Appl. Phys. 68, 924–931 (1990).
[CrossRef]

Fienup, R. J.

R. J. Fienup, “Iterative method applied to image reconstruction and to computer-generated holograms,” Opt. Eng. 19, 193297 (1980).
[CrossRef]

Gao, Q.

Gaylord, T. K.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996), pp. 101–107.

Henesian, M. A.

Hesselink, L.

Hill, B.

Kato, M.

Kawamura, T.

H. Ono, T. Kawamura, N. Kawatsuki, and H. Norisada, “Intensity filtering of a two-dimensional optical image in high-performance photorefractive mesogenic composites,” Appl. Phys. Lett. 79, 895–897 (2001).
[CrossRef]

Kawatsuki, N.

A. Emoto, H. Ono, and N. Kawatsuki, “Spatial frequency selective reconstruction using Fourier transform holograms in functionalized mesogenic composites,” Liq. Cryst. 30, 1201–1206 (2003).
[CrossRef]

H. Ono, T. Kawamura, N. Kawatsuki, and H. Norisada, “Intensity filtering of a two-dimensional optical image in high-performance photorefractive mesogenic composites,” Appl. Phys. Lett. 79, 895–897 (2001).
[CrossRef]

Kostuk, R.

Kuroda, K.

Kwan, D.

Magnusson, R.

Matoba, O.

Miyamura, Y.

Morgan, A. J.

Nakayama, Y.

Norisada, H.

H. Ono, T. Kawamura, N. Kawatsuki, and H. Norisada, “Intensity filtering of a two-dimensional optical image in high-performance photorefractive mesogenic composites,” Appl. Phys. Lett. 79, 895–897 (2001).
[CrossRef]

Okas, R.

Ono, H.

A. Emoto, H. Ono, and N. Kawatsuki, “Spatial frequency selective reconstruction using Fourier transform holograms in functionalized mesogenic composites,” Liq. Cryst. 30, 1201–1206 (2003).
[CrossRef]

H. Ono, T. Kawamura, N. Kawatsuki, and H. Norisada, “Intensity filtering of a two-dimensional optical image in high-performance photorefractive mesogenic composites,” Appl. Phys. Lett. 79, 895–897 (2001).
[CrossRef]

Orlov, S. S.

Oshida, Y.

Pak, K.-M.

H. Choi, K.-M. Pak, and Y.-H. Won, “Fast and low error color encrypted computer-generated hologram based on amplitude-phase modulation with a random mask for an identification tag application,” Opt. Commun. 285, 2809–2813 (2012).
[CrossRef]

Phillips, W.

Powell, H. T.

Psaltis, D.

Pu, A.

Shimura, T.

Skupsky, S.

R. Epstein and S. Skupsky, “Anticipated improvement in laser beam uniformity using distributed phase plates with quasirandom patterns,” J. Appl. Phys. 68, 924–931 (1990).
[CrossRef]

Snyder, R.

Sundaram, P.

Takashima, Y.

Takeda, Y.

Tan, X.

Thomas, I. M.

Tsunoda, Y.

Wegner, P. J.

Won, Y.-H.

H. Choi, K.-M. Pak, and Y.-H. Won, “Fast and low error color encrypted computer-generated hologram based on amplitude-phase modulation with a random mask for an identification tag application,” Opt. Commun. 285, 2809–2813 (2012).
[CrossRef]

Woods, B. W.

Wyrowski, F.

Yatagai, T.

N. Yoshizawa and T. Yatagai, “Interpolation method for computer-generated holograms using random phase technique,” Opt. Rev. 6, 433–438 (1999).
[CrossRef]

Yoshizawa, N.

N. Yoshizawa and T. Yatagai, “Interpolation method for computer-generated holograms using random phase technique,” Opt. Rev. 6, 433–438 (1999).
[CrossRef]

Appl. Opt. (9)

C. B. Burckhardt, “Use of a random phase mask for the recording of Fourier transform holograms of data masks,” Appl. Opt. 9, 695–700 (1970).
[CrossRef]

B. Hill, “Some aspects of a large capacity holographic memory,” Appl. Opt. 11, 182–191 (1972).
[CrossRef]

Y. Takeda, Y. Oshida, and Y. Miyamura, “Random phase shifters for Fourier transformed holograms,” Appl. Opt. 11, 818–822 (1972).
[CrossRef]

Y. Tsunoda and Y. Takeda, “High density image-storage holograms by a random phase sampling method,” Appl. Opt. 13, 2046–2051 (1974).
[CrossRef]

S. N. Dixit, I. M. Thomas, B. W. Woods, A. J. Morgan, M. A. Henesian, P. J. Wegner, and H. T. Powell, “Random phase plates for beam smoothing on the Nova laser,” Appl. Opt. 32, 2543–2554 (1993).
[CrossRef]

Q. Gao and R. Kostuk, “Improvement to holographic digital data-storage systems with random and pseudorandom phase masks,” Appl. Opt. 36, 4853–4861 (1997).
[CrossRef]

A. Pu, and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389–2398 (1996).
[CrossRef]

X. Tan, O. Matoba, T. Shimura, and K. Kuroda, “Improvement in holographic storage capacity by use of double-random phase encryption,” Appl. Opt. 40, 4721–4727 (2001).
[CrossRef]

S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, “High-transfer-rate high-capacity holographic disk data-storage system,” Appl. Opt. 43, 4902–4914 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

H. Ono, T. Kawamura, N. Kawatsuki, and H. Norisada, “Intensity filtering of a two-dimensional optical image in high-performance photorefractive mesogenic composites,” Appl. Phys. Lett. 79, 895–897 (2001).
[CrossRef]

J. Appl. Phys. (1)

R. Epstein and S. Skupsky, “Anticipated improvement in laser beam uniformity using distributed phase plates with quasirandom patterns,” J. Appl. Phys. 68, 924–931 (1990).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (3)

Liq. Cryst. (1)

A. Emoto, H. Ono, and N. Kawatsuki, “Spatial frequency selective reconstruction using Fourier transform holograms in functionalized mesogenic composites,” Liq. Cryst. 30, 1201–1206 (2003).
[CrossRef]

Opt. Commun. (1)

H. Choi, K.-M. Pak, and Y.-H. Won, “Fast and low error color encrypted computer-generated hologram based on amplitude-phase modulation with a random mask for an identification tag application,” Opt. Commun. 285, 2809–2813 (2012).
[CrossRef]

Opt. Eng. (1)

R. J. Fienup, “Iterative method applied to image reconstruction and to computer-generated holograms,” Opt. Eng. 19, 193297 (1980).
[CrossRef]

Opt. Rev. (1)

N. Yoshizawa and T. Yatagai, “Interpolation method for computer-generated holograms using random phase technique,” Opt. Rev. 6, 433–438 (1999).
[CrossRef]

Other (2)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996), pp. 101–107.

H. J. Coufal, D. Psaltis, and G. T. Sincerbox (Eds.), Holographic Data Storage (Springer, 2000), pp. 4–18.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Modeling of RDPD patterns. (a) Overview of the distribution. (b) and (c), schemes of the displacement of phase segments for RDPD1 and RDPD2, respectively.

Fig. 2.
Fig. 2.

Experimental setup for holographic recording and reconstruction. LCOS-1 and LCOS-2, LCOS-SLM; HWP, half-wave plate; PBS, polarization beam splitter; BS, beam splitter; M, mirror; L, lens; and P, pin hole. The inset shows optical intensity distribution for optical page data produced by LCOS-1 and peripheral polarizers. Random phase modulation is produced by LCOS-2.

Fig. 3.
Fig. 3.

Fourier transform images for no random phase, conventional random phase A, and conventional random phase B. Upper row shows the 40×40 pixel region extracted from the prepared 600×600 pixel random phase data. Middle and bottom rows show the calculated and experimental Fourier transform images, respectively. The optical intensity distributions for the Fourier transform images are described as I(x,y) in the text.

Fig. 4.
Fig. 4.

Cross-sectional distributions I(x) for the (a) calculated and (b) experimental Fourier transform images in Fig. 3.

Fig. 5.
Fig. 5.

Reconstructed images and cross-sectional distributions from point A to B for the Fourier transform holography with (a) no phase modulation, (b) conventional random phase A modulation, and (c) conventional random phase B modulation. Regions in green correspond to the original data pattern distribution.

Fig. 6.
Fig. 6.

Fourier transform images for RDPD1 and RDPD2. Upper row is the 40×40 pixel region extracted from the prepared 600×600 pixel random phase data. Middle and bottom rows show the calculated and experimental Fourier transform images, respectively. The optical intensity distributions for the Fourier transform images are described as I(x,y) in the text.

Fig. 7.
Fig. 7.

Cross-sectional distributions I(x) for the (a) calculated and (b) experimental Fourier transform images in Fig. 6.

Fig. 8.
Fig. 8.

Reconstructed images and the cross-sectional distributions from point A to B for Fourier transform holography with (a) RDPD1 and (b) RDPD2. Regions in green correspond to the original data pattern distribution.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

urandom(x,y)=usignal(x,y)exp[iΔϕrandom(m,n)].
ufocal(x,y)=exp[iπ2f(x2+y2)]iλf--urandom(x,y)exp[-i2πλf(xx+yy)]dxdy,

Metrics