Abstract

We have realized a modified time-delay spectrometer based on a step-chirped fiber Bragg grating array. This method allows simultaneous spectral and temporal characterization of pulsed light sources in the nanosecond regime, which can also be applied to the investigation of single pulses. With a spectral resolution in the 100 pm range, pulse spectrograms are measured and exemplarily used to explore the emission behavior of a wavelength-stabilized laser diode directly modulated in the nanosecond range.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Wagener, T. Strasser, J. Pedrazzani, J. DeMarco, and D. DiGiovanni, “Fiber grating optical spectrum analyzer tap,” in Integrated Optics and Optical Fibre Communications, 11th International Conference on, and 23rd European Conference on Optical Communications (IEEE, 1997), Vol. 5, pp. 65–68.
  2. V. Hagemann, M. Rothhardt, and G. Sluyterman v.L., “Step chirped draw tower grating arrays for spectral analysis of short pulses,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, 1999), p. AD4.
  3. V. Hagemann, G. Sluyterman v.L., M. Rothhardt, and H.-R. Mueller, “Bragg grating sensor interrogation scheme using wavelength-time encoding and a draw tower fiber grating array,” Proc. SPIE 3746, 389 (1999).
  4. K. Feder, P. Westbrook, J. Ging, P. Reyes, and G. Carver, “In-fiber spectrometer using tilted fiber gratings,” IEEE Photonics Technol. Lett. 15, 933–935 (2003).
    [CrossRef]
  5. J. J. Schuss and L. C. Johnson, “Spectrometer employing optical fiber time delays for frequency resolution,” U.S. patent 4,164,373 (4August1979).
  6. C. Askins, M. Putnam, G. Williams, and E. Friebele, “Stepped-wavelength optical-fiber Bragg gratings arrays fabricated in line on a draw tower,” Opt. Lett. 19, 147–149 (1994).
    [CrossRef]
  7. C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H.-R. Mueller, “High-reflectivity draw-tower fiber Bragg gratings—arrays and single gratings of type 2,” Opt. Eng. 44, 060503 (2005).
    [CrossRef]
  8. D. J. Kane and R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt. Lett. 18, 823–825 (1993).
    [CrossRef]
  9. P. O’Shea, M. Kimmel, X. Gu, and R. Trebino, “Highly simplified device for ultrashort-pulse measurement,” Opt. Lett. 26, 932–934 (2001).
    [CrossRef]

2005

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H.-R. Mueller, “High-reflectivity draw-tower fiber Bragg gratings—arrays and single gratings of type 2,” Opt. Eng. 44, 060503 (2005).
[CrossRef]

2003

K. Feder, P. Westbrook, J. Ging, P. Reyes, and G. Carver, “In-fiber spectrometer using tilted fiber gratings,” IEEE Photonics Technol. Lett. 15, 933–935 (2003).
[CrossRef]

2001

1999

V. Hagemann, G. Sluyterman v.L., M. Rothhardt, and H.-R. Mueller, “Bragg grating sensor interrogation scheme using wavelength-time encoding and a draw tower fiber grating array,” Proc. SPIE 3746, 389 (1999).

1994

1993

Askins, C.

Carver, G.

K. Feder, P. Westbrook, J. Ging, P. Reyes, and G. Carver, “In-fiber spectrometer using tilted fiber gratings,” IEEE Photonics Technol. Lett. 15, 933–935 (2003).
[CrossRef]

Chojetzki, C.

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H.-R. Mueller, “High-reflectivity draw-tower fiber Bragg gratings—arrays and single gratings of type 2,” Opt. Eng. 44, 060503 (2005).
[CrossRef]

DeMarco, J.

J. Wagener, T. Strasser, J. Pedrazzani, J. DeMarco, and D. DiGiovanni, “Fiber grating optical spectrum analyzer tap,” in Integrated Optics and Optical Fibre Communications, 11th International Conference on, and 23rd European Conference on Optical Communications (IEEE, 1997), Vol. 5, pp. 65–68.

DiGiovanni, D.

J. Wagener, T. Strasser, J. Pedrazzani, J. DeMarco, and D. DiGiovanni, “Fiber grating optical spectrum analyzer tap,” in Integrated Optics and Optical Fibre Communications, 11th International Conference on, and 23rd European Conference on Optical Communications (IEEE, 1997), Vol. 5, pp. 65–68.

Feder, K.

K. Feder, P. Westbrook, J. Ging, P. Reyes, and G. Carver, “In-fiber spectrometer using tilted fiber gratings,” IEEE Photonics Technol. Lett. 15, 933–935 (2003).
[CrossRef]

Friebele, E.

Ging, J.

K. Feder, P. Westbrook, J. Ging, P. Reyes, and G. Carver, “In-fiber spectrometer using tilted fiber gratings,” IEEE Photonics Technol. Lett. 15, 933–935 (2003).
[CrossRef]

Gu, X.

Hagemann, V.

V. Hagemann, G. Sluyterman v.L., M. Rothhardt, and H.-R. Mueller, “Bragg grating sensor interrogation scheme using wavelength-time encoding and a draw tower fiber grating array,” Proc. SPIE 3746, 389 (1999).

V. Hagemann, M. Rothhardt, and G. Sluyterman v.L., “Step chirped draw tower grating arrays for spectral analysis of short pulses,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, 1999), p. AD4.

Johnson, L. C.

J. J. Schuss and L. C. Johnson, “Spectrometer employing optical fiber time delays for frequency resolution,” U.S. patent 4,164,373 (4August1979).

Kane, D. J.

Kimmel, M.

Mueller, H.-R.

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H.-R. Mueller, “High-reflectivity draw-tower fiber Bragg gratings—arrays and single gratings of type 2,” Opt. Eng. 44, 060503 (2005).
[CrossRef]

V. Hagemann, G. Sluyterman v.L., M. Rothhardt, and H.-R. Mueller, “Bragg grating sensor interrogation scheme using wavelength-time encoding and a draw tower fiber grating array,” Proc. SPIE 3746, 389 (1999).

O’Shea, P.

Ommer, J.

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H.-R. Mueller, “High-reflectivity draw-tower fiber Bragg gratings—arrays and single gratings of type 2,” Opt. Eng. 44, 060503 (2005).
[CrossRef]

Pedrazzani, J.

J. Wagener, T. Strasser, J. Pedrazzani, J. DeMarco, and D. DiGiovanni, “Fiber grating optical spectrum analyzer tap,” in Integrated Optics and Optical Fibre Communications, 11th International Conference on, and 23rd European Conference on Optical Communications (IEEE, 1997), Vol. 5, pp. 65–68.

Putnam, M.

Reyes, P.

K. Feder, P. Westbrook, J. Ging, P. Reyes, and G. Carver, “In-fiber spectrometer using tilted fiber gratings,” IEEE Photonics Technol. Lett. 15, 933–935 (2003).
[CrossRef]

Rothhardt, M.

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H.-R. Mueller, “High-reflectivity draw-tower fiber Bragg gratings—arrays and single gratings of type 2,” Opt. Eng. 44, 060503 (2005).
[CrossRef]

V. Hagemann, G. Sluyterman v.L., M. Rothhardt, and H.-R. Mueller, “Bragg grating sensor interrogation scheme using wavelength-time encoding and a draw tower fiber grating array,” Proc. SPIE 3746, 389 (1999).

V. Hagemann, M. Rothhardt, and G. Sluyterman v.L., “Step chirped draw tower grating arrays for spectral analysis of short pulses,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, 1999), p. AD4.

Schuss, J. J.

J. J. Schuss and L. C. Johnson, “Spectrometer employing optical fiber time delays for frequency resolution,” U.S. patent 4,164,373 (4August1979).

Schuster, K.

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H.-R. Mueller, “High-reflectivity draw-tower fiber Bragg gratings—arrays and single gratings of type 2,” Opt. Eng. 44, 060503 (2005).
[CrossRef]

Sluyterman v.L., G.

V. Hagemann, G. Sluyterman v.L., M. Rothhardt, and H.-R. Mueller, “Bragg grating sensor interrogation scheme using wavelength-time encoding and a draw tower fiber grating array,” Proc. SPIE 3746, 389 (1999).

V. Hagemann, M. Rothhardt, and G. Sluyterman v.L., “Step chirped draw tower grating arrays for spectral analysis of short pulses,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, 1999), p. AD4.

Strasser, T.

J. Wagener, T. Strasser, J. Pedrazzani, J. DeMarco, and D. DiGiovanni, “Fiber grating optical spectrum analyzer tap,” in Integrated Optics and Optical Fibre Communications, 11th International Conference on, and 23rd European Conference on Optical Communications (IEEE, 1997), Vol. 5, pp. 65–68.

Trebino, R.

Unger, S.

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H.-R. Mueller, “High-reflectivity draw-tower fiber Bragg gratings—arrays and single gratings of type 2,” Opt. Eng. 44, 060503 (2005).
[CrossRef]

Wagener, J.

J. Wagener, T. Strasser, J. Pedrazzani, J. DeMarco, and D. DiGiovanni, “Fiber grating optical spectrum analyzer tap,” in Integrated Optics and Optical Fibre Communications, 11th International Conference on, and 23rd European Conference on Optical Communications (IEEE, 1997), Vol. 5, pp. 65–68.

Westbrook, P.

K. Feder, P. Westbrook, J. Ging, P. Reyes, and G. Carver, “In-fiber spectrometer using tilted fiber gratings,” IEEE Photonics Technol. Lett. 15, 933–935 (2003).
[CrossRef]

Williams, G.

IEEE Photonics Technol. Lett.

K. Feder, P. Westbrook, J. Ging, P. Reyes, and G. Carver, “In-fiber spectrometer using tilted fiber gratings,” IEEE Photonics Technol. Lett. 15, 933–935 (2003).
[CrossRef]

Opt. Eng.

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H.-R. Mueller, “High-reflectivity draw-tower fiber Bragg gratings—arrays and single gratings of type 2,” Opt. Eng. 44, 060503 (2005).
[CrossRef]

Opt. Lett.

Proc. SPIE

V. Hagemann, G. Sluyterman v.L., M. Rothhardt, and H.-R. Mueller, “Bragg grating sensor interrogation scheme using wavelength-time encoding and a draw tower fiber grating array,” Proc. SPIE 3746, 389 (1999).

Other

J. J. Schuss and L. C. Johnson, “Spectrometer employing optical fiber time delays for frequency resolution,” U.S. patent 4,164,373 (4August1979).

J. Wagener, T. Strasser, J. Pedrazzani, J. DeMarco, and D. DiGiovanni, “Fiber grating optical spectrum analyzer tap,” in Integrated Optics and Optical Fibre Communications, 11th International Conference on, and 23rd European Conference on Optical Communications (IEEE, 1997), Vol. 5, pp. 65–68.

V. Hagemann, M. Rothhardt, and G. Sluyterman v.L., “Step chirped draw tower grating arrays for spectral analysis of short pulses,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, 1999), p. AD4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Principle of the TDS illustrated on a chirped pulse propagating through a fiber with two FBGs. In the reflected signal, two peaks appear, corresponding to the wavelength-selective character of the gratings. As a temporal reference, both responses are supported by a partly transparent shape of the initial pulse.

Fig. 2.
Fig. 2.

Experimental setup of the TDS. The DTG array fiber is spooled with a diameter of 15 cm.

Fig. 3.
Fig. 3.

Reflectivity spectrum of DTG array A with red dots highlighting the peak positions.

Fig. 4.
Fig. 4.

Temporal response from DTG array B measured with the signal channel of the TDS in averaged acquisition mode. The red lines mark time slots for the response window of each FBG. The peak (*) at the end of the trace corresponds to the Fresnel reflection of the pulse from the DTG array fiber end and closes its temporal feedback window.

Fig. 5.
Fig. 5.

Spectrogram in logarithmic scale of 10 ns pulses measured with the TDS working in averaged acquisition mode.

Fig. 6.
Fig. 6.

Three spectrograms of 10 ns pulses recorded with DTG array A for different temperatures TLD.

Fig. 7.
Fig. 7.

Spectrogram of 10 ns pulses recorded with DTG array A. Additionally, the pure spectral and temporal emission behavior is extracted from the graph and compared to corresponding reference measurements.

Fig. 8.
Fig. 8.

Spectrogram of a single 10 ns pulse recorded with DTG array B. Additionally, the pure spectral and temporal emission behavior is extracted from the graph and compared to corresponding reference measurements performed with the oscilloscope in the time domain (single pulse) and with the OSA in the frequency domain (averaged acquisition).

Fig. 9.
Fig. 9.

Zoomed-in section of the time-dependent feedback signal recorded with the TDS (compare to Fig. 4) in single-shot operation mode for three different pulses. The red lines mark the temporal response windows of the DTGs, which are labeled with the slot number and the corresponding response wavelength.

Tables (1)

Tables Icon

Table 1. Design Data of the Two DTG Arrays Investigated and Used in the TDS

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

λ(z)=λ0+γz,
t=2neffc0z,
λ(t)=λ0+γc02nefft.
δλ=γc02neffδt.

Metrics