Abstract

We report on the welding of fused silica with bursts of ultrashort laser pulses. By optimizing the burst frequency and repetition rate, we were able to achieve a breaking resistance of up to 96% of the bulk material, which is significantly higher than conventional high repetition rate laser bonding. The main reason for this stability increase is the reduced stress in the surroundings of the laser induced weld seams, which is proven by measurements of the stress-induced birefringence. A detailed analysis of the shape of the molten structures shows elongated structures in the burst regime. This can be attributed to stronger heating, which is supported by our thermodynamic simulations of the laser melting and bonding process.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Berthold, L. Nicola, P. M. Sarro, and M. J. Vellekoop, “Glass-to-glass anodic bonding with standard ic technology thin films as intermediate layers,” Sens. Actuators A Phys. 82, 224–228 (2000).
    [CrossRef]
  2. U. Goesele and Q.-Y. Tong, “Semiconductor wafer bonding,” Annu. Rev. Mater. Sci. 28, 215–241 (1998).
    [CrossRef]
  3. M. Shimbo, K. Furukawa, K. Fukuda, and K. Tanzawa, “Silicon-to-silicon direct bonding method,” J. Appl. Phys. 60, 2987–2989 (1986).
    [CrossRef]
  4. C. Luo and L. Lin, “The application of nanosecond-pulsed laser welding technology in MEMS packaging with a shadow mask,” Sens. Actuators A Phys. 97, 398–404 (2002).
    [CrossRef]
  5. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–112 (2003).
    [CrossRef]
  6. C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76, 351–354 (2003).
    [CrossRef]
  7. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16, 9443–9458 (2008).
    [CrossRef]
  8. S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys. A 103, 257–261 (2011).
    [CrossRef]
  9. S. Richter, S. Döring, F. Zimmermann, L. Lescieux, R. Eberhardt, S. Nolte, and A. Tünnermann, “Welding of transparent materials with ultrashort laser pulses,” Proc. SPIE 8244, 824402 (2012).
    [CrossRef]
  10. J. S. Temenoff and A. G. Mikos, Biomaterials: The Intersection of Biology and Material Science (Prentice-Hall, 2008).
  11. W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” Appl. Phys. 30, 779–788 (1959).
    [CrossRef]
  12. S. Eaton, H. Zhang, and P. R. Herman, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708–4716(2005).
    [CrossRef]
  13. C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76, 351–354 (2003).
    [CrossRef]
  14. N. W. Ashcroft and N. D. Mermin, Solid State Physics(Harcourt College Publishers, 1976).
  15. http://www.corning.com/displaytechnologies .
  16. H. S. Carslaw and J. C. Jäger, Conduction of Heat in Solids (Clarendon, 1959).
  17. J. M. Branlund and A. M. Hofmeister, “Factors affecting heat transfer in natural SiO2 solids,” Am. Mineral. 93, 1620–1629 (2008).
    [CrossRef]
  18. I. Miyamoto, A. Horn, and J. Gottmann, “Local welding of glass material and its application to direct fusion welding by ps-laser pulses,” J. Laser Micro/Nanoeng. 2, 7–14 (2007).
    [CrossRef]
  19. M. Shimizu, M. Sakakura, M. Ohnishi, M. Yamaji, Y. Shimotsuma, K. Hirao, and K. Miura, “Three-dimensional temperature distribution and modification mechanism in glass during ultrafast laser irradiation at high repetition rates,” Opt. Express 20, 934–940 (2012).
    [CrossRef]
  20. Y. Bellouard and M. O. Hongler, “Femtosecond-laser generation of self-organized bubble patterns in fused silica,” Opt. Express 19, 6807–6821 (2011).
    [CrossRef]

2012 (2)

S. Richter, S. Döring, F. Zimmermann, L. Lescieux, R. Eberhardt, S. Nolte, and A. Tünnermann, “Welding of transparent materials with ultrashort laser pulses,” Proc. SPIE 8244, 824402 (2012).
[CrossRef]

M. Shimizu, M. Sakakura, M. Ohnishi, M. Yamaji, Y. Shimotsuma, K. Hirao, and K. Miura, “Three-dimensional temperature distribution and modification mechanism in glass during ultrafast laser irradiation at high repetition rates,” Opt. Express 20, 934–940 (2012).
[CrossRef]

2011 (2)

Y. Bellouard and M. O. Hongler, “Femtosecond-laser generation of self-organized bubble patterns in fused silica,” Opt. Express 19, 6807–6821 (2011).
[CrossRef]

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys. A 103, 257–261 (2011).
[CrossRef]

2008 (2)

2007 (1)

I. Miyamoto, A. Horn, and J. Gottmann, “Local welding of glass material and its application to direct fusion welding by ps-laser pulses,” J. Laser Micro/Nanoeng. 2, 7–14 (2007).
[CrossRef]

2005 (1)

2003 (3)

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76, 351–354 (2003).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–112 (2003).
[CrossRef]

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76, 351–354 (2003).
[CrossRef]

2002 (1)

C. Luo and L. Lin, “The application of nanosecond-pulsed laser welding technology in MEMS packaging with a shadow mask,” Sens. Actuators A Phys. 97, 398–404 (2002).
[CrossRef]

2000 (1)

A. Berthold, L. Nicola, P. M. Sarro, and M. J. Vellekoop, “Glass-to-glass anodic bonding with standard ic technology thin films as intermediate layers,” Sens. Actuators A Phys. 82, 224–228 (2000).
[CrossRef]

1998 (1)

U. Goesele and Q.-Y. Tong, “Semiconductor wafer bonding,” Annu. Rev. Mater. Sci. 28, 215–241 (1998).
[CrossRef]

1986 (1)

M. Shimbo, K. Furukawa, K. Fukuda, and K. Tanzawa, “Silicon-to-silicon direct bonding method,” J. Appl. Phys. 60, 2987–2989 (1986).
[CrossRef]

1959 (1)

W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” Appl. Phys. 30, 779–788 (1959).
[CrossRef]

Ashcroft, N. W.

N. W. Ashcroft and N. D. Mermin, Solid State Physics(Harcourt College Publishers, 1976).

Bellouard, Y.

Berthold, A.

A. Berthold, L. Nicola, P. M. Sarro, and M. J. Vellekoop, “Glass-to-glass anodic bonding with standard ic technology thin films as intermediate layers,” Sens. Actuators A Phys. 82, 224–228 (2000).
[CrossRef]

Branlund, J. M.

J. M. Branlund and A. M. Hofmeister, “Factors affecting heat transfer in natural SiO2 solids,” Am. Mineral. 93, 1620–1629 (2008).
[CrossRef]

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–112 (2003).
[CrossRef]

Carslaw, H. S.

H. S. Carslaw and J. C. Jäger, Conduction of Heat in Solids (Clarendon, 1959).

Chen, W.

Döring, S.

S. Richter, S. Döring, F. Zimmermann, L. Lescieux, R. Eberhardt, S. Nolte, and A. Tünnermann, “Welding of transparent materials with ultrashort laser pulses,” Proc. SPIE 8244, 824402 (2012).
[CrossRef]

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys. A 103, 257–261 (2011).
[CrossRef]

Eaton, S.

Eaton, S. M.

Eberhardt, R.

S. Richter, S. Döring, F. Zimmermann, L. Lescieux, R. Eberhardt, S. Nolte, and A. Tünnermann, “Welding of transparent materials with ultrashort laser pulses,” Proc. SPIE 8244, 824402 (2012).
[CrossRef]

Fukuda, K.

M. Shimbo, K. Furukawa, K. Fukuda, and K. Tanzawa, “Silicon-to-silicon direct bonding method,” J. Appl. Phys. 60, 2987–2989 (1986).
[CrossRef]

Furukawa, K.

M. Shimbo, K. Furukawa, K. Fukuda, and K. Tanzawa, “Silicon-to-silicon direct bonding method,” J. Appl. Phys. 60, 2987–2989 (1986).
[CrossRef]

Garcia, J. F.

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76, 351–354 (2003).
[CrossRef]

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76, 351–354 (2003).
[CrossRef]

Goesele, U.

U. Goesele and Q.-Y. Tong, “Semiconductor wafer bonding,” Annu. Rev. Mater. Sci. 28, 215–241 (1998).
[CrossRef]

Gottmann, J.

I. Miyamoto, A. Horn, and J. Gottmann, “Local welding of glass material and its application to direct fusion welding by ps-laser pulses,” J. Laser Micro/Nanoeng. 2, 7–14 (2007).
[CrossRef]

Herman, P. R.

Hirao, K.

Ho, S.

Hofmeister, A. M.

J. M. Branlund and A. M. Hofmeister, “Factors affecting heat transfer in natural SiO2 solids,” Am. Mineral. 93, 1620–1629 (2008).
[CrossRef]

Hongler, M. O.

Horn, A.

I. Miyamoto, A. Horn, and J. Gottmann, “Local welding of glass material and its application to direct fusion welding by ps-laser pulses,” J. Laser Micro/Nanoeng. 2, 7–14 (2007).
[CrossRef]

Jäger, J. C.

H. S. Carslaw and J. C. Jäger, Conduction of Heat in Solids (Clarendon, 1959).

Lescieux, L.

S. Richter, S. Döring, F. Zimmermann, L. Lescieux, R. Eberhardt, S. Nolte, and A. Tünnermann, “Welding of transparent materials with ultrashort laser pulses,” Proc. SPIE 8244, 824402 (2012).
[CrossRef]

Li, J.

Lin, L.

C. Luo and L. Lin, “The application of nanosecond-pulsed laser welding technology in MEMS packaging with a shadow mask,” Sens. Actuators A Phys. 97, 398–404 (2002).
[CrossRef]

Luo, C.

C. Luo and L. Lin, “The application of nanosecond-pulsed laser welding technology in MEMS packaging with a shadow mask,” Sens. Actuators A Phys. 97, 398–404 (2002).
[CrossRef]

Mazur, E.

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76, 351–354 (2003).
[CrossRef]

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76, 351–354 (2003).
[CrossRef]

Mermin, N. D.

N. W. Ashcroft and N. D. Mermin, Solid State Physics(Harcourt College Publishers, 1976).

Mikos, A. G.

J. S. Temenoff and A. G. Mikos, Biomaterials: The Intersection of Biology and Material Science (Prentice-Hall, 2008).

Miura, K.

Miyamoto, I.

I. Miyamoto, A. Horn, and J. Gottmann, “Local welding of glass material and its application to direct fusion welding by ps-laser pulses,” J. Laser Micro/Nanoeng. 2, 7–14 (2007).
[CrossRef]

Ng, M. L.

Nicola, L.

A. Berthold, L. Nicola, P. M. Sarro, and M. J. Vellekoop, “Glass-to-glass anodic bonding with standard ic technology thin films as intermediate layers,” Sens. Actuators A Phys. 82, 224–228 (2000).
[CrossRef]

Nolte, S.

S. Richter, S. Döring, F. Zimmermann, L. Lescieux, R. Eberhardt, S. Nolte, and A. Tünnermann, “Welding of transparent materials with ultrashort laser pulses,” Proc. SPIE 8244, 824402 (2012).
[CrossRef]

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys. A 103, 257–261 (2011).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–112 (2003).
[CrossRef]

Ohnishi, M.

Post, D.

W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” Appl. Phys. 30, 779–788 (1959).
[CrossRef]

Primak, W.

W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” Appl. Phys. 30, 779–788 (1959).
[CrossRef]

Richter, S.

S. Richter, S. Döring, F. Zimmermann, L. Lescieux, R. Eberhardt, S. Nolte, and A. Tünnermann, “Welding of transparent materials with ultrashort laser pulses,” Proc. SPIE 8244, 824402 (2012).
[CrossRef]

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys. A 103, 257–261 (2011).
[CrossRef]

Sakakura, M.

Sarro, P. M.

A. Berthold, L. Nicola, P. M. Sarro, and M. J. Vellekoop, “Glass-to-glass anodic bonding with standard ic technology thin films as intermediate layers,” Sens. Actuators A Phys. 82, 224–228 (2000).
[CrossRef]

Schaffer, C. B.

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76, 351–354 (2003).
[CrossRef]

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76, 351–354 (2003).
[CrossRef]

Shimbo, M.

M. Shimbo, K. Furukawa, K. Fukuda, and K. Tanzawa, “Silicon-to-silicon direct bonding method,” J. Appl. Phys. 60, 2987–2989 (1986).
[CrossRef]

Shimizu, M.

Shimotsuma, Y.

Tanzawa, K.

M. Shimbo, K. Furukawa, K. Fukuda, and K. Tanzawa, “Silicon-to-silicon direct bonding method,” J. Appl. Phys. 60, 2987–2989 (1986).
[CrossRef]

Temenoff, J. S.

J. S. Temenoff and A. G. Mikos, Biomaterials: The Intersection of Biology and Material Science (Prentice-Hall, 2008).

Tong, Q.-Y.

U. Goesele and Q.-Y. Tong, “Semiconductor wafer bonding,” Annu. Rev. Mater. Sci. 28, 215–241 (1998).
[CrossRef]

Tuennermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–112 (2003).
[CrossRef]

Tünnermann, A.

S. Richter, S. Döring, F. Zimmermann, L. Lescieux, R. Eberhardt, S. Nolte, and A. Tünnermann, “Welding of transparent materials with ultrashort laser pulses,” Proc. SPIE 8244, 824402 (2012).
[CrossRef]

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys. A 103, 257–261 (2011).
[CrossRef]

Vellekoop, M. J.

A. Berthold, L. Nicola, P. M. Sarro, and M. J. Vellekoop, “Glass-to-glass anodic bonding with standard ic technology thin films as intermediate layers,” Sens. Actuators A Phys. 82, 224–228 (2000).
[CrossRef]

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–112 (2003).
[CrossRef]

Yamaji, M.

Zhang, H.

Zimmermann, F.

S. Richter, S. Döring, F. Zimmermann, L. Lescieux, R. Eberhardt, S. Nolte, and A. Tünnermann, “Welding of transparent materials with ultrashort laser pulses,” Proc. SPIE 8244, 824402 (2012).
[CrossRef]

Am. Mineral. (1)

J. M. Branlund and A. M. Hofmeister, “Factors affecting heat transfer in natural SiO2 solids,” Am. Mineral. 93, 1620–1629 (2008).
[CrossRef]

Annu. Rev. Mater. Sci. (1)

U. Goesele and Q.-Y. Tong, “Semiconductor wafer bonding,” Annu. Rev. Mater. Sci. 28, 215–241 (1998).
[CrossRef]

Appl. Phys. (1)

W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” Appl. Phys. 30, 779–788 (1959).
[CrossRef]

Appl. Phys. A (4)

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76, 351–354 (2003).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–112 (2003).
[CrossRef]

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76, 351–354 (2003).
[CrossRef]

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys. A 103, 257–261 (2011).
[CrossRef]

J. Appl. Phys. (1)

M. Shimbo, K. Furukawa, K. Fukuda, and K. Tanzawa, “Silicon-to-silicon direct bonding method,” J. Appl. Phys. 60, 2987–2989 (1986).
[CrossRef]

J. Laser Micro/Nanoeng. (1)

I. Miyamoto, A. Horn, and J. Gottmann, “Local welding of glass material and its application to direct fusion welding by ps-laser pulses,” J. Laser Micro/Nanoeng. 2, 7–14 (2007).
[CrossRef]

Opt. Express (4)

Proc. SPIE (1)

S. Richter, S. Döring, F. Zimmermann, L. Lescieux, R. Eberhardt, S. Nolte, and A. Tünnermann, “Welding of transparent materials with ultrashort laser pulses,” Proc. SPIE 8244, 824402 (2012).
[CrossRef]

Sens. Actuators A Phys. (2)

C. Luo and L. Lin, “The application of nanosecond-pulsed laser welding technology in MEMS packaging with a shadow mask,” Sens. Actuators A Phys. 97, 398–404 (2002).
[CrossRef]

A. Berthold, L. Nicola, P. M. Sarro, and M. J. Vellekoop, “Glass-to-glass anodic bonding with standard ic technology thin films as intermediate layers,” Sens. Actuators A Phys. 82, 224–228 (2000).
[CrossRef]

Other (4)

J. S. Temenoff and A. G. Mikos, Biomaterials: The Intersection of Biology and Material Science (Prentice-Hall, 2008).

N. W. Ashcroft and N. D. Mermin, Solid State Physics(Harcourt College Publishers, 1976).

http://www.corning.com/displaytechnologies .

H. S. Carslaw and J. C. Jäger, Conduction of Heat in Solids (Clarendon, 1959).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Acousto-optical modulator picks a defined number of pulses N from a continuous pulse train to generate bursts of femtosecond pulses.

Fig. 2.
Fig. 2.

Experimental setup for the welding of glass samples. To control the repetition rate and the number of pulses within a burst an acousto-optic modulator (AOM) was utilized. Pulse energy was adjusted by a half-wave plate (HWP) followed by a polarizer. Laser pulses were converted to the second harmonic (515 nm) and separated from the fundamental wavelength by a beam splitter (BS). Sample as well as the focus position was moved by a high-precision translation stage.

Fig. 3.
Fig. 3.

Calculated glass temperature in a distance of 2 μm from the center of the focal spot for single pulses of different laser repetition rates (blue color shades) and for bursts with a repetition rate of 100 kHz and different number of pulses (P) within a burst (green color shades, dashed curves). Laser repetition rate has been 9.4 MHz for bursts. TS denotes the softening point of fused silica (1585°C [15]).

Fig. 4.
Fig. 4.

Top view (left) and cross section (right) of a typical laser-induced modification in bulk fused silica. Velocity of the sample movement was 100mm/min, numerical aperture 0.5, applied power 1.9 W for the right, and 0.19 W for the left modification.

Fig. 5.
Fig. 5.

Measured and simulated melt length for bursts of 100 kHz (left) and 202 kHz (right) in fused silica. Pulse energy was 0.2 μJ and the driving velocity was 100mm/min. Dashed curve shows the simulation using a constant diffusivity.

Fig. 6.
Fig. 6.

Polarization microscope images of the cross section of laser-induced modifications in different temporal regimes. Heat affected regions are marked with dashed curves.

Fig. 7.
Fig. 7.

Measured and simulated melt lengths for different temporal regimes. Pulse energy was 0.2 μJ and the velocity of the sample movement was 100mm/min.

Fig. 8.
Fig. 8.

Line scan (a) of the induced stress, calculated from the optical path difference (inset, map of the measured optical path difference), for various modifications in burst and high repetition rate regimes. Micrograph (b) of the measured optical path difference at 4.7 MHz and 202 kHz and 25 pulses within a burst (each normalized).

Fig. 9.
Fig. 9.

Results of the breaking stress measurements of fused silica samples processed at distinct laser regimes. Bulk value (average) as a reference is about (90±13.5)MPa.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ=3Fl2bh2.
T(r,z,t)t=D(T(r,z,t))[1rr(rr)+2z2]T(r,z,t).

Metrics