Abstract

Epilayers of erbium-doped GaN (GaN:Er) were synthesized by metal-organic chemical vapor deposition, and the optical excitation cross section (σexc) of Er ions in this host material were determined. Photoluminescence (PL) measurements were made using laser diodes at excitation wavelengths of 375 and 405 nm, and the integrated emission intensity at 1.54 μm was measured as a function of excitation photon flux. Together with time-resolved PL measurements, values of σexc of Er ions in GaN:Er were obtained. For excitation at 375 nm, the observed excitation cross section was found to be 4.6×1017cm2, which is approximately three orders of magnitude larger than that using resonant excitation. Based on the present and previous works, the optical excitation cross section σexc of Er ions in GaN:Er as a function the excitation wavelength has been obtained. The large values of σexc with near-band-edge excitation makes GaN:Er attractive for realization of chip-scale photonic devices for optical communications.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Ruterana, ed., Rare Earth Doped Materials for Photonics: Proceedings of E-MRS Symposium Spring 2003 (Elsevier2003).
  2. G. H. Dicke, Spectra and Energy Levels of Rare Earth Ion in Crystals (Interscience, 1968).
  3. E. Desurvire, Erbium-Doped Fibre Amplifiers: Principles and Applications (Wiley, 1994).
  4. E. Snoeks, G. N. van den Hoven, A. Polman, B. Hendriksen, M. B. J. Diemeer, and F. Priolo, “Cooperative upconversion in erbium-implanted soda-lime silicate glass optical waveguides,” J. Opt. Soc. Am. B 12, 1468–1474 (1995).
    [CrossRef]
  5. A. R. Peaker, “Erbium in semiconductors: where are we coming from; where are we going,” Mater. Res. Soc. Symp. Proc. 866, 3–12 (2005).
  6. P. Favennec, H. Lharidon, D. Moutonnet, M. Salvi, and M. Gauneau, “Optical activation of Er3+ implanted in silicon by oxygen impurities,” Jpn. J. Appl. Phys. 29, L524–L526 (1990).
    [CrossRef]
  7. M. Thaik, U. Hommerich, R. N. Schwartz, R. G. Wilson, and J. M. Zavada, “Photoluminescence spectroscopy of erbium implanted gallium nitride,” Appl. Phys. Lett. 71, 2641–2643 (1997).
    [CrossRef]
  8. S. J. Pearton, C. R. Abernathy, J. D. MacKenzie, U. Hömmerich, J. M. Zavada, R. G. Wilson, and R. N. Schwartz, “Effect of atomic hydrogen on Er luminescence from AlN,” J. Vac. Sci. Technol. A 16, 1627–1630 (1998).
    [CrossRef]
  9. C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN epilayers synthesized by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89, 151903 (2006).
    [CrossRef]
  10. C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Excitation dynamics of the 1.54 μm emission in Er doped GaN synthesized by metal organic chemical vapor deposition,” Appl. Phys. Lett. 90, 051110 (2007).
    [CrossRef]
  11. R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Current-injected 1.54 μm light emitting diodes based on erbium-doped GaN,” Appl. Phys. Lett. 93, 033502 (2008).
    [CrossRef]
  12. F. Priolo, G. Franzò, S. Coffa, and A. Carnera, “Excitation and nonradiative deexcitation processes of Er3+ in crystalline Si,” Phys. Rev. B 57, 4443–4455 (1998).
    [CrossRef]
  13. G. Franzo, S. Coffa, F. Priolo, and C. Spinella, “Mechanism and performance of forward and reverse bias electroluminescence at 1.54 μm from Er-doped Si diodes,” J. Appl. Phys. 81, 2784–2793 (1997).
    [CrossRef]
  14. O. B. Gusev, M. S. Bresler, P. E. Pak, I. N. Yassievich, M. Forcales, N. Q. Vinh, and T. Gregorkiewicz, “Excitation cross section of erbium in semiconductor matrices under optical pumping,” Phys. Rev. B 64, 075302 (2001).
    [CrossRef]
  15. A. Braud, “Excitation mechanisms of re ions in semiconductors,” in Topics in Applied Physics: Rare Earth Doped III-Nitrides for Optoelectronic and Spintronic Applications, K. O’Donnell and V. Dierolf, eds.(Springer, 2010), pp. 269–308.
  16. Q. Wang, R. Dahal, I.-W. Feng, J. Y. Lin, H. X. Jiang, and R. Hui, “Emission and absorption cross-sections of an Er:GaN waveguide prepared with metal organic chemical vapor deposition,” Appl. Phys. Lett. 99, 121106 (2011).
    [CrossRef]
  17. R. Dahal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Er-doped GaN and InGaN for optical communications,” in Topics in Applied Physics: Rare Earth Doped III-Nitrides for Optoelectronic and Spintronic Applications, K. O’Donnell and V. Dierolf, eds. (Springer, 2010), pp. 116–157.

2011

Q. Wang, R. Dahal, I.-W. Feng, J. Y. Lin, H. X. Jiang, and R. Hui, “Emission and absorption cross-sections of an Er:GaN waveguide prepared with metal organic chemical vapor deposition,” Appl. Phys. Lett. 99, 121106 (2011).
[CrossRef]

2008

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Current-injected 1.54 μm light emitting diodes based on erbium-doped GaN,” Appl. Phys. Lett. 93, 033502 (2008).
[CrossRef]

2007

C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Excitation dynamics of the 1.54 μm emission in Er doped GaN synthesized by metal organic chemical vapor deposition,” Appl. Phys. Lett. 90, 051110 (2007).
[CrossRef]

2006

C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN epilayers synthesized by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89, 151903 (2006).
[CrossRef]

2005

A. R. Peaker, “Erbium in semiconductors: where are we coming from; where are we going,” Mater. Res. Soc. Symp. Proc. 866, 3–12 (2005).

2001

O. B. Gusev, M. S. Bresler, P. E. Pak, I. N. Yassievich, M. Forcales, N. Q. Vinh, and T. Gregorkiewicz, “Excitation cross section of erbium in semiconductor matrices under optical pumping,” Phys. Rev. B 64, 075302 (2001).
[CrossRef]

1998

S. J. Pearton, C. R. Abernathy, J. D. MacKenzie, U. Hömmerich, J. M. Zavada, R. G. Wilson, and R. N. Schwartz, “Effect of atomic hydrogen on Er luminescence from AlN,” J. Vac. Sci. Technol. A 16, 1627–1630 (1998).
[CrossRef]

F. Priolo, G. Franzò, S. Coffa, and A. Carnera, “Excitation and nonradiative deexcitation processes of Er3+ in crystalline Si,” Phys. Rev. B 57, 4443–4455 (1998).
[CrossRef]

1997

G. Franzo, S. Coffa, F. Priolo, and C. Spinella, “Mechanism and performance of forward and reverse bias electroluminescence at 1.54 μm from Er-doped Si diodes,” J. Appl. Phys. 81, 2784–2793 (1997).
[CrossRef]

M. Thaik, U. Hommerich, R. N. Schwartz, R. G. Wilson, and J. M. Zavada, “Photoluminescence spectroscopy of erbium implanted gallium nitride,” Appl. Phys. Lett. 71, 2641–2643 (1997).
[CrossRef]

1995

1990

P. Favennec, H. Lharidon, D. Moutonnet, M. Salvi, and M. Gauneau, “Optical activation of Er3+ implanted in silicon by oxygen impurities,” Jpn. J. Appl. Phys. 29, L524–L526 (1990).
[CrossRef]

Abernathy, C. R.

S. J. Pearton, C. R. Abernathy, J. D. MacKenzie, U. Hömmerich, J. M. Zavada, R. G. Wilson, and R. N. Schwartz, “Effect of atomic hydrogen on Er luminescence from AlN,” J. Vac. Sci. Technol. A 16, 1627–1630 (1998).
[CrossRef]

Braud, A.

A. Braud, “Excitation mechanisms of re ions in semiconductors,” in Topics in Applied Physics: Rare Earth Doped III-Nitrides for Optoelectronic and Spintronic Applications, K. O’Donnell and V. Dierolf, eds.(Springer, 2010), pp. 269–308.

Bresler, M. S.

O. B. Gusev, M. S. Bresler, P. E. Pak, I. N. Yassievich, M. Forcales, N. Q. Vinh, and T. Gregorkiewicz, “Excitation cross section of erbium in semiconductor matrices under optical pumping,” Phys. Rev. B 64, 075302 (2001).
[CrossRef]

Carnera, A.

F. Priolo, G. Franzò, S. Coffa, and A. Carnera, “Excitation and nonradiative deexcitation processes of Er3+ in crystalline Si,” Phys. Rev. B 57, 4443–4455 (1998).
[CrossRef]

Coffa, S.

F. Priolo, G. Franzò, S. Coffa, and A. Carnera, “Excitation and nonradiative deexcitation processes of Er3+ in crystalline Si,” Phys. Rev. B 57, 4443–4455 (1998).
[CrossRef]

G. Franzo, S. Coffa, F. Priolo, and C. Spinella, “Mechanism and performance of forward and reverse bias electroluminescence at 1.54 μm from Er-doped Si diodes,” J. Appl. Phys. 81, 2784–2793 (1997).
[CrossRef]

Dahal, R.

Q. Wang, R. Dahal, I.-W. Feng, J. Y. Lin, H. X. Jiang, and R. Hui, “Emission and absorption cross-sections of an Er:GaN waveguide prepared with metal organic chemical vapor deposition,” Appl. Phys. Lett. 99, 121106 (2011).
[CrossRef]

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Current-injected 1.54 μm light emitting diodes based on erbium-doped GaN,” Appl. Phys. Lett. 93, 033502 (2008).
[CrossRef]

R. Dahal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Er-doped GaN and InGaN for optical communications,” in Topics in Applied Physics: Rare Earth Doped III-Nitrides for Optoelectronic and Spintronic Applications, K. O’Donnell and V. Dierolf, eds. (Springer, 2010), pp. 116–157.

Desurvire, E.

E. Desurvire, Erbium-Doped Fibre Amplifiers: Principles and Applications (Wiley, 1994).

Dicke, G. H.

G. H. Dicke, Spectra and Energy Levels of Rare Earth Ion in Crystals (Interscience, 1968).

Diemeer, M. B. J.

Favennec, P.

P. Favennec, H. Lharidon, D. Moutonnet, M. Salvi, and M. Gauneau, “Optical activation of Er3+ implanted in silicon by oxygen impurities,” Jpn. J. Appl. Phys. 29, L524–L526 (1990).
[CrossRef]

Feng, I.-W.

Q. Wang, R. Dahal, I.-W. Feng, J. Y. Lin, H. X. Jiang, and R. Hui, “Emission and absorption cross-sections of an Er:GaN waveguide prepared with metal organic chemical vapor deposition,” Appl. Phys. Lett. 99, 121106 (2011).
[CrossRef]

Forcales, M.

O. B. Gusev, M. S. Bresler, P. E. Pak, I. N. Yassievich, M. Forcales, N. Q. Vinh, and T. Gregorkiewicz, “Excitation cross section of erbium in semiconductor matrices under optical pumping,” Phys. Rev. B 64, 075302 (2001).
[CrossRef]

Franzo, G.

G. Franzo, S. Coffa, F. Priolo, and C. Spinella, “Mechanism and performance of forward and reverse bias electroluminescence at 1.54 μm from Er-doped Si diodes,” J. Appl. Phys. 81, 2784–2793 (1997).
[CrossRef]

Franzò, G.

F. Priolo, G. Franzò, S. Coffa, and A. Carnera, “Excitation and nonradiative deexcitation processes of Er3+ in crystalline Si,” Phys. Rev. B 57, 4443–4455 (1998).
[CrossRef]

Gauneau, M.

P. Favennec, H. Lharidon, D. Moutonnet, M. Salvi, and M. Gauneau, “Optical activation of Er3+ implanted in silicon by oxygen impurities,” Jpn. J. Appl. Phys. 29, L524–L526 (1990).
[CrossRef]

Gregorkiewicz, T.

O. B. Gusev, M. S. Bresler, P. E. Pak, I. N. Yassievich, M. Forcales, N. Q. Vinh, and T. Gregorkiewicz, “Excitation cross section of erbium in semiconductor matrices under optical pumping,” Phys. Rev. B 64, 075302 (2001).
[CrossRef]

Gusev, O. B.

O. B. Gusev, M. S. Bresler, P. E. Pak, I. N. Yassievich, M. Forcales, N. Q. Vinh, and T. Gregorkiewicz, “Excitation cross section of erbium in semiconductor matrices under optical pumping,” Phys. Rev. B 64, 075302 (2001).
[CrossRef]

Hendriksen, B.

Hommerich, U.

M. Thaik, U. Hommerich, R. N. Schwartz, R. G. Wilson, and J. M. Zavada, “Photoluminescence spectroscopy of erbium implanted gallium nitride,” Appl. Phys. Lett. 71, 2641–2643 (1997).
[CrossRef]

Hömmerich, U.

S. J. Pearton, C. R. Abernathy, J. D. MacKenzie, U. Hömmerich, J. M. Zavada, R. G. Wilson, and R. N. Schwartz, “Effect of atomic hydrogen on Er luminescence from AlN,” J. Vac. Sci. Technol. A 16, 1627–1630 (1998).
[CrossRef]

Hui, R.

Q. Wang, R. Dahal, I.-W. Feng, J. Y. Lin, H. X. Jiang, and R. Hui, “Emission and absorption cross-sections of an Er:GaN waveguide prepared with metal organic chemical vapor deposition,” Appl. Phys. Lett. 99, 121106 (2011).
[CrossRef]

Jiang, H. X.

Q. Wang, R. Dahal, I.-W. Feng, J. Y. Lin, H. X. Jiang, and R. Hui, “Emission and absorption cross-sections of an Er:GaN waveguide prepared with metal organic chemical vapor deposition,” Appl. Phys. Lett. 99, 121106 (2011).
[CrossRef]

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Current-injected 1.54 μm light emitting diodes based on erbium-doped GaN,” Appl. Phys. Lett. 93, 033502 (2008).
[CrossRef]

C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Excitation dynamics of the 1.54 μm emission in Er doped GaN synthesized by metal organic chemical vapor deposition,” Appl. Phys. Lett. 90, 051110 (2007).
[CrossRef]

C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN epilayers synthesized by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89, 151903 (2006).
[CrossRef]

R. Dahal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Er-doped GaN and InGaN for optical communications,” in Topics in Applied Physics: Rare Earth Doped III-Nitrides for Optoelectronic and Spintronic Applications, K. O’Donnell and V. Dierolf, eds. (Springer, 2010), pp. 116–157.

Lharidon, H.

P. Favennec, H. Lharidon, D. Moutonnet, M. Salvi, and M. Gauneau, “Optical activation of Er3+ implanted in silicon by oxygen impurities,” Jpn. J. Appl. Phys. 29, L524–L526 (1990).
[CrossRef]

Lin, J. Y.

Q. Wang, R. Dahal, I.-W. Feng, J. Y. Lin, H. X. Jiang, and R. Hui, “Emission and absorption cross-sections of an Er:GaN waveguide prepared with metal organic chemical vapor deposition,” Appl. Phys. Lett. 99, 121106 (2011).
[CrossRef]

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Current-injected 1.54 μm light emitting diodes based on erbium-doped GaN,” Appl. Phys. Lett. 93, 033502 (2008).
[CrossRef]

C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Excitation dynamics of the 1.54 μm emission in Er doped GaN synthesized by metal organic chemical vapor deposition,” Appl. Phys. Lett. 90, 051110 (2007).
[CrossRef]

C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN epilayers synthesized by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89, 151903 (2006).
[CrossRef]

R. Dahal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Er-doped GaN and InGaN for optical communications,” in Topics in Applied Physics: Rare Earth Doped III-Nitrides for Optoelectronic and Spintronic Applications, K. O’Donnell and V. Dierolf, eds. (Springer, 2010), pp. 116–157.

MacKenzie, J. D.

S. J. Pearton, C. R. Abernathy, J. D. MacKenzie, U. Hömmerich, J. M. Zavada, R. G. Wilson, and R. N. Schwartz, “Effect of atomic hydrogen on Er luminescence from AlN,” J. Vac. Sci. Technol. A 16, 1627–1630 (1998).
[CrossRef]

Moutonnet, D.

P. Favennec, H. Lharidon, D. Moutonnet, M. Salvi, and M. Gauneau, “Optical activation of Er3+ implanted in silicon by oxygen impurities,” Jpn. J. Appl. Phys. 29, L524–L526 (1990).
[CrossRef]

Nepal, N.

C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Excitation dynamics of the 1.54 μm emission in Er doped GaN synthesized by metal organic chemical vapor deposition,” Appl. Phys. Lett. 90, 051110 (2007).
[CrossRef]

C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN epilayers synthesized by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89, 151903 (2006).
[CrossRef]

Pak, P. E.

O. B. Gusev, M. S. Bresler, P. E. Pak, I. N. Yassievich, M. Forcales, N. Q. Vinh, and T. Gregorkiewicz, “Excitation cross section of erbium in semiconductor matrices under optical pumping,” Phys. Rev. B 64, 075302 (2001).
[CrossRef]

Peaker, A. R.

A. R. Peaker, “Erbium in semiconductors: where are we coming from; where are we going,” Mater. Res. Soc. Symp. Proc. 866, 3–12 (2005).

Pearton, S. J.

S. J. Pearton, C. R. Abernathy, J. D. MacKenzie, U. Hömmerich, J. M. Zavada, R. G. Wilson, and R. N. Schwartz, “Effect of atomic hydrogen on Er luminescence from AlN,” J. Vac. Sci. Technol. A 16, 1627–1630 (1998).
[CrossRef]

Polman, A.

Priolo, F.

F. Priolo, G. Franzò, S. Coffa, and A. Carnera, “Excitation and nonradiative deexcitation processes of Er3+ in crystalline Si,” Phys. Rev. B 57, 4443–4455 (1998).
[CrossRef]

G. Franzo, S. Coffa, F. Priolo, and C. Spinella, “Mechanism and performance of forward and reverse bias electroluminescence at 1.54 μm from Er-doped Si diodes,” J. Appl. Phys. 81, 2784–2793 (1997).
[CrossRef]

E. Snoeks, G. N. van den Hoven, A. Polman, B. Hendriksen, M. B. J. Diemeer, and F. Priolo, “Cooperative upconversion in erbium-implanted soda-lime silicate glass optical waveguides,” J. Opt. Soc. Am. B 12, 1468–1474 (1995).
[CrossRef]

Salvi, M.

P. Favennec, H. Lharidon, D. Moutonnet, M. Salvi, and M. Gauneau, “Optical activation of Er3+ implanted in silicon by oxygen impurities,” Jpn. J. Appl. Phys. 29, L524–L526 (1990).
[CrossRef]

Schwartz, R. N.

S. J. Pearton, C. R. Abernathy, J. D. MacKenzie, U. Hömmerich, J. M. Zavada, R. G. Wilson, and R. N. Schwartz, “Effect of atomic hydrogen on Er luminescence from AlN,” J. Vac. Sci. Technol. A 16, 1627–1630 (1998).
[CrossRef]

M. Thaik, U. Hommerich, R. N. Schwartz, R. G. Wilson, and J. M. Zavada, “Photoluminescence spectroscopy of erbium implanted gallium nitride,” Appl. Phys. Lett. 71, 2641–2643 (1997).
[CrossRef]

Snoeks, E.

Spinella, C.

G. Franzo, S. Coffa, F. Priolo, and C. Spinella, “Mechanism and performance of forward and reverse bias electroluminescence at 1.54 μm from Er-doped Si diodes,” J. Appl. Phys. 81, 2784–2793 (1997).
[CrossRef]

Thaik, M.

M. Thaik, U. Hommerich, R. N. Schwartz, R. G. Wilson, and J. M. Zavada, “Photoluminescence spectroscopy of erbium implanted gallium nitride,” Appl. Phys. Lett. 71, 2641–2643 (1997).
[CrossRef]

Ugolini, C.

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Current-injected 1.54 μm light emitting diodes based on erbium-doped GaN,” Appl. Phys. Lett. 93, 033502 (2008).
[CrossRef]

C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Excitation dynamics of the 1.54 μm emission in Er doped GaN synthesized by metal organic chemical vapor deposition,” Appl. Phys. Lett. 90, 051110 (2007).
[CrossRef]

C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN epilayers synthesized by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89, 151903 (2006).
[CrossRef]

van den Hoven, G. N.

Vinh, N. Q.

O. B. Gusev, M. S. Bresler, P. E. Pak, I. N. Yassievich, M. Forcales, N. Q. Vinh, and T. Gregorkiewicz, “Excitation cross section of erbium in semiconductor matrices under optical pumping,” Phys. Rev. B 64, 075302 (2001).
[CrossRef]

Wang, Q.

Q. Wang, R. Dahal, I.-W. Feng, J. Y. Lin, H. X. Jiang, and R. Hui, “Emission and absorption cross-sections of an Er:GaN waveguide prepared with metal organic chemical vapor deposition,” Appl. Phys. Lett. 99, 121106 (2011).
[CrossRef]

Wilson, R. G.

S. J. Pearton, C. R. Abernathy, J. D. MacKenzie, U. Hömmerich, J. M. Zavada, R. G. Wilson, and R. N. Schwartz, “Effect of atomic hydrogen on Er luminescence from AlN,” J. Vac. Sci. Technol. A 16, 1627–1630 (1998).
[CrossRef]

M. Thaik, U. Hommerich, R. N. Schwartz, R. G. Wilson, and J. M. Zavada, “Photoluminescence spectroscopy of erbium implanted gallium nitride,” Appl. Phys. Lett. 71, 2641–2643 (1997).
[CrossRef]

Yassievich, I. N.

O. B. Gusev, M. S. Bresler, P. E. Pak, I. N. Yassievich, M. Forcales, N. Q. Vinh, and T. Gregorkiewicz, “Excitation cross section of erbium in semiconductor matrices under optical pumping,” Phys. Rev. B 64, 075302 (2001).
[CrossRef]

Zavada, J. M.

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Current-injected 1.54 μm light emitting diodes based on erbium-doped GaN,” Appl. Phys. Lett. 93, 033502 (2008).
[CrossRef]

C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Excitation dynamics of the 1.54 μm emission in Er doped GaN synthesized by metal organic chemical vapor deposition,” Appl. Phys. Lett. 90, 051110 (2007).
[CrossRef]

C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN epilayers synthesized by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89, 151903 (2006).
[CrossRef]

S. J. Pearton, C. R. Abernathy, J. D. MacKenzie, U. Hömmerich, J. M. Zavada, R. G. Wilson, and R. N. Schwartz, “Effect of atomic hydrogen on Er luminescence from AlN,” J. Vac. Sci. Technol. A 16, 1627–1630 (1998).
[CrossRef]

M. Thaik, U. Hommerich, R. N. Schwartz, R. G. Wilson, and J. M. Zavada, “Photoluminescence spectroscopy of erbium implanted gallium nitride,” Appl. Phys. Lett. 71, 2641–2643 (1997).
[CrossRef]

R. Dahal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Er-doped GaN and InGaN for optical communications,” in Topics in Applied Physics: Rare Earth Doped III-Nitrides for Optoelectronic and Spintronic Applications, K. O’Donnell and V. Dierolf, eds. (Springer, 2010), pp. 116–157.

Appl. Phys. Lett.

M. Thaik, U. Hommerich, R. N. Schwartz, R. G. Wilson, and J. M. Zavada, “Photoluminescence spectroscopy of erbium implanted gallium nitride,” Appl. Phys. Lett. 71, 2641–2643 (1997).
[CrossRef]

C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN epilayers synthesized by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89, 151903 (2006).
[CrossRef]

C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Excitation dynamics of the 1.54 μm emission in Er doped GaN synthesized by metal organic chemical vapor deposition,” Appl. Phys. Lett. 90, 051110 (2007).
[CrossRef]

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Current-injected 1.54 μm light emitting diodes based on erbium-doped GaN,” Appl. Phys. Lett. 93, 033502 (2008).
[CrossRef]

Q. Wang, R. Dahal, I.-W. Feng, J. Y. Lin, H. X. Jiang, and R. Hui, “Emission and absorption cross-sections of an Er:GaN waveguide prepared with metal organic chemical vapor deposition,” Appl. Phys. Lett. 99, 121106 (2011).
[CrossRef]

J. Appl. Phys.

G. Franzo, S. Coffa, F. Priolo, and C. Spinella, “Mechanism and performance of forward and reverse bias electroluminescence at 1.54 μm from Er-doped Si diodes,” J. Appl. Phys. 81, 2784–2793 (1997).
[CrossRef]

J. Opt. Soc. Am. B

J. Vac. Sci. Technol. A

S. J. Pearton, C. R. Abernathy, J. D. MacKenzie, U. Hömmerich, J. M. Zavada, R. G. Wilson, and R. N. Schwartz, “Effect of atomic hydrogen on Er luminescence from AlN,” J. Vac. Sci. Technol. A 16, 1627–1630 (1998).
[CrossRef]

Jpn. J. Appl. Phys.

P. Favennec, H. Lharidon, D. Moutonnet, M. Salvi, and M. Gauneau, “Optical activation of Er3+ implanted in silicon by oxygen impurities,” Jpn. J. Appl. Phys. 29, L524–L526 (1990).
[CrossRef]

Mater. Res. Soc. Symp. Proc.

A. R. Peaker, “Erbium in semiconductors: where are we coming from; where are we going,” Mater. Res. Soc. Symp. Proc. 866, 3–12 (2005).

Phys. Rev. B

F. Priolo, G. Franzò, S. Coffa, and A. Carnera, “Excitation and nonradiative deexcitation processes of Er3+ in crystalline Si,” Phys. Rev. B 57, 4443–4455 (1998).
[CrossRef]

O. B. Gusev, M. S. Bresler, P. E. Pak, I. N. Yassievich, M. Forcales, N. Q. Vinh, and T. Gregorkiewicz, “Excitation cross section of erbium in semiconductor matrices under optical pumping,” Phys. Rev. B 64, 075302 (2001).
[CrossRef]

Other

A. Braud, “Excitation mechanisms of re ions in semiconductors,” in Topics in Applied Physics: Rare Earth Doped III-Nitrides for Optoelectronic and Spintronic Applications, K. O’Donnell and V. Dierolf, eds.(Springer, 2010), pp. 269–308.

R. Dahal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Er-doped GaN and InGaN for optical communications,” in Topics in Applied Physics: Rare Earth Doped III-Nitrides for Optoelectronic and Spintronic Applications, K. O’Donnell and V. Dierolf, eds. (Springer, 2010), pp. 116–157.

P. Ruterana, ed., Rare Earth Doped Materials for Photonics: Proceedings of E-MRS Symposium Spring 2003 (Elsevier2003).

G. H. Dicke, Spectra and Energy Levels of Rare Earth Ion in Crystals (Interscience, 1968).

E. Desurvire, Erbium-Doped Fibre Amplifiers: Principles and Applications (Wiley, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Infrared PL spectra near 1.54 μm measured from a GaN:Er epilayer at an excitation power 1.6mW for λexc=375 and 405 nm. The schematic structure diagram of the GaN:Er epilayer grown on an AlN/sapphire template is shown in the inset.

Fig. 2.
Fig. 2.

(a) Infrared PL emission spectra near 1.54 μm and (b) integrated 1.54 μm emission intensity Iint measured from a GaN:Er epilayer as a function of the excitation photon flux φexc for λexc=375nm. The solid curve is the least squares fit of data using Eq. (2).

Fig. 3.
Fig. 3.

(a) Rise and decay kinetics of the 1.54 μm emission line probed using time-resolved PL measurements and (b) reciprocal value of the characteristic rising time τpump1 as a function of the excitation photon flux φexc for λexc=375nm measured from a GaN:Er epilayer sample. The solid curves are the least squares fit of data using Eqs. (3)–(5).

Fig. 4.
Fig. 4.

Rise and decay kinetics of the 1.54 μm emission line probed using time-resolved PL measurements and (b) integrated 1.54 μm emission intensity Iint and the reciprocal value of the characteristic rising time τpump1 as a function of the excitation photon flux φexc for λexc=405nm measured from a GaN:Er epilayer sample. The solid lines are the least squares fit of data using Eqs. (2)–(5).

Fig. 5.
Fig. 5.

Excitation wavelength (λexc)-dependent optical excitation cross section σexc of GaN:Er epilayers, including the results in this work and previous results [15,16].

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

dNEr*dt=σexcφexc(NErNEr*)NEr*τ,
IintNEr*τrad=(σexcτφexcσexcτφexc+1)NErτrad,
I(t)=I0(1exp(tτpump)),
τpump1=σexcφexc+1τ.
I(t)=I0exp(t/τ),

Metrics