Abstract

Quasi-optical imaging systems require low blurring effect and large depth of focus (DOF) to get an acceptable sharpness of the image. To reduce aberration-limited blurring, the aspheric convex plano lenses with an aperture diameter of 350 mm are designed in W-band. We analyzed theoretically and experimentally the millimeter-wave band lens characteristics, such as beam spot size, spatial resolution (SR), and DOF, via f-number. It is first used to verify the DOF through f-number in the system-level test with the developed W-band radiometer imaging system. We have confirmed that the larger f-number of quasi-optical lens leads to a larger DOF but a lower SR.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Samluk, C. A. Schuetz, T. Dillon, E. L. Stein, A. Robbins, D. G. Mackrides, R. D. Martin, J. Wilson, C. Chen, and D. W. Prather, “Q-band millimeter wave imaging in the far-field enabled by optical upconversion methodology,” J. Infrared Millimeter Terahertz Waves 33, 54–66 (2012).
    [CrossRef]
  2. S. Yeom, D. S. Lee, J. Y. Son, M. K. Jung, Y. Jang, S. W. Jung, and S. J. Lee, “Real-time outdoor concealed-object detection with passive millimeter wave imaging,” Opt. Express 19, 2530–2536 (2011).
    [CrossRef]
  3. J. J. Lynch, P. A. Macdonald, H. P. Moyer, and R. G. Nagele, “Passive millimeter wave imaging sensors for commercial markets,” Appl. Opt. 49, E7–E12 (2010).
    [CrossRef]
  4. C. F. Cull, D. A. Wikner, J. N. Mait, M. Mattheiss, and D. J. Brady, “Millimeter-wave compressive holography,” Appl. Opt. 49, E67–E82 (2010).
    [CrossRef]
  5. S. Y. Li, B. L. Ren, H. J. Sun, W. D. Hu, and X. Lv, “Modified wavenumber domain algorithm for three-dimensional millimeter-wave imaging,” Prog. Electromagn. Res. 124, 35–53 (2012).
    [CrossRef]
  6. F. Gumbmann and L. P. Schmidt, “Millimeter-wave imaging with optimized sparse periodic array for short-range applications,” IEEE Trans. Geosci. Remote Sens. 49, 3629–3638 (2011).
    [CrossRef]
  7. K. Haddadi, D. Glay, and T. Lasri, “A 60 Ghz scanning near-field microscope with high spatial resolution sub-surface imaging,” IEEE Microw. Wireless Compon. Lett. 21, 625–627 (2011).
    [CrossRef]
  8. F. Qi, V. Tavakol, I. Ocket, P. Xu, D. Schreurs, J. K. Wang, and B. Nauwelaers, “Millimeter wave imaging system modeling: spatial frequency domain calculation versus spatial domain calculation,” J. Opt. Soc. Am. A 27, 131–140 (2010).
    [CrossRef]
  9. N. N. Wang, J. H. Qiu, P. Y. Zhang, and W. B. Deng, “Passive millimeter wave focal plane array imaging technology,” J. Infrared Millimeter Waves 30, 419–424 (2011).
    [CrossRef]
  10. E. L. Jacobs and O. Furxhi, “Target identification and navigation performance modeling of a passive millimeter wave imager,” Appl. Opt. 49, E94–E105 (2010).
    [CrossRef]
  11. F. Qi, V. Tavakol, D. Schreurs, and B. Nauwelaers, “Limitations of approximations towards Fourier optics for indoor active millimeter wave imaging systems,” Prog. Electromagn. Res. 109, 245–262 (2010).
    [CrossRef]
  12. F. Hu and Y. Feng, “Passive millimeter wave focal plane imaging method combined with interferometry,” J. Infrared Millimeter Waves 28, 382–385 (2009).
    [CrossRef]
  13. A. Rolland, M. Ettorre, A. V. Boriskin, L. Le Coq, and R. Sauleau, “Axisymmetric resonant lens antenna with improved directivity in Ka- band,” IEEE Antennas Wireless Propag. Lett. 10, 37–40 (2011).
    [CrossRef]
  14. Z. X. Wang and W. B. Dou, “Full-wave analysis of monopulse dielectric lens antennas at W-band,” J. Infrared Millimeter Terahertz Waves 31, 151–161 (2010).
    [CrossRef]
  15. B. Fuchs, R. Golubovic, A. K. Skrivervik, and J. R. Mosig, “Spherical lens antenna designs with particle swarm optimization,” Microw. Opt. Technol. Lett. 52, 1655–1659 (2010).
    [CrossRef]
  16. A. H. Lettington, D. Dunn, M. Attia, and I. M. Blankson, “Passive millimetre-wave imaging architectures,” J. Opt. A 5, S103–S110 (2003).
    [CrossRef]
  17. W. G. Kim, N. W. Moon, J. M. Kang, and Y. H. Kim, “Loss measuring of large aperture quasi-optics for W-band imaging radiometer system,” Prog. Electromagn. Res. 125, 295–309 (2012).
    [CrossRef]
  18. C. D. Meinhart and S. T. Wereley, “The theory of diffraction-limited resolution in microparticle image velocimetry,” Meas. Sci. Technol. 14, 1047–1053 (2003).
    [CrossRef]
  19. Technical guide on fundamental optics, http://www.cvimellesgriot.com/ .
  20. P. F. Goldsmith, Quasi-optical Systems: Gaussian Beam Quasi-optical Propagation and Applications, 4th ed. (IEEE, 1998).
  21. Technical document about lens theory from http://www.lasercomponents.com/de/ .
  22. G. D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE, 2001).
  23. http://www.opticalres.com/ .
  24. http://www.cst.com/ .
  25. K. W. Gyum, J. P. Thakur, and Y. H. Kim, “Efficient DRW antenna for quasi-optics feed in W-band imaging radiometer system,” Microw. Opt. Technol. Lett. 52, 1221–1223 (2010).
    [CrossRef]

2012 (3)

J. P. Samluk, C. A. Schuetz, T. Dillon, E. L. Stein, A. Robbins, D. G. Mackrides, R. D. Martin, J. Wilson, C. Chen, and D. W. Prather, “Q-band millimeter wave imaging in the far-field enabled by optical upconversion methodology,” J. Infrared Millimeter Terahertz Waves 33, 54–66 (2012).
[CrossRef]

S. Y. Li, B. L. Ren, H. J. Sun, W. D. Hu, and X. Lv, “Modified wavenumber domain algorithm for three-dimensional millimeter-wave imaging,” Prog. Electromagn. Res. 124, 35–53 (2012).
[CrossRef]

W. G. Kim, N. W. Moon, J. M. Kang, and Y. H. Kim, “Loss measuring of large aperture quasi-optics for W-band imaging radiometer system,” Prog. Electromagn. Res. 125, 295–309 (2012).
[CrossRef]

2011 (5)

S. Yeom, D. S. Lee, J. Y. Son, M. K. Jung, Y. Jang, S. W. Jung, and S. J. Lee, “Real-time outdoor concealed-object detection with passive millimeter wave imaging,” Opt. Express 19, 2530–2536 (2011).
[CrossRef]

N. N. Wang, J. H. Qiu, P. Y. Zhang, and W. B. Deng, “Passive millimeter wave focal plane array imaging technology,” J. Infrared Millimeter Waves 30, 419–424 (2011).
[CrossRef]

F. Gumbmann and L. P. Schmidt, “Millimeter-wave imaging with optimized sparse periodic array for short-range applications,” IEEE Trans. Geosci. Remote Sens. 49, 3629–3638 (2011).
[CrossRef]

K. Haddadi, D. Glay, and T. Lasri, “A 60 Ghz scanning near-field microscope with high spatial resolution sub-surface imaging,” IEEE Microw. Wireless Compon. Lett. 21, 625–627 (2011).
[CrossRef]

A. Rolland, M. Ettorre, A. V. Boriskin, L. Le Coq, and R. Sauleau, “Axisymmetric resonant lens antenna with improved directivity in Ka- band,” IEEE Antennas Wireless Propag. Lett. 10, 37–40 (2011).
[CrossRef]

2010 (8)

Z. X. Wang and W. B. Dou, “Full-wave analysis of monopulse dielectric lens antennas at W-band,” J. Infrared Millimeter Terahertz Waves 31, 151–161 (2010).
[CrossRef]

B. Fuchs, R. Golubovic, A. K. Skrivervik, and J. R. Mosig, “Spherical lens antenna designs with particle swarm optimization,” Microw. Opt. Technol. Lett. 52, 1655–1659 (2010).
[CrossRef]

F. Qi, V. Tavakol, D. Schreurs, and B. Nauwelaers, “Limitations of approximations towards Fourier optics for indoor active millimeter wave imaging systems,” Prog. Electromagn. Res. 109, 245–262 (2010).
[CrossRef]

F. Qi, V. Tavakol, I. Ocket, P. Xu, D. Schreurs, J. K. Wang, and B. Nauwelaers, “Millimeter wave imaging system modeling: spatial frequency domain calculation versus spatial domain calculation,” J. Opt. Soc. Am. A 27, 131–140 (2010).
[CrossRef]

J. J. Lynch, P. A. Macdonald, H. P. Moyer, and R. G. Nagele, “Passive millimeter wave imaging sensors for commercial markets,” Appl. Opt. 49, E7–E12 (2010).
[CrossRef]

C. F. Cull, D. A. Wikner, J. N. Mait, M. Mattheiss, and D. J. Brady, “Millimeter-wave compressive holography,” Appl. Opt. 49, E67–E82 (2010).
[CrossRef]

E. L. Jacobs and O. Furxhi, “Target identification and navigation performance modeling of a passive millimeter wave imager,” Appl. Opt. 49, E94–E105 (2010).
[CrossRef]

K. W. Gyum, J. P. Thakur, and Y. H. Kim, “Efficient DRW antenna for quasi-optics feed in W-band imaging radiometer system,” Microw. Opt. Technol. Lett. 52, 1221–1223 (2010).
[CrossRef]

2009 (1)

F. Hu and Y. Feng, “Passive millimeter wave focal plane imaging method combined with interferometry,” J. Infrared Millimeter Waves 28, 382–385 (2009).
[CrossRef]

2003 (2)

A. H. Lettington, D. Dunn, M. Attia, and I. M. Blankson, “Passive millimetre-wave imaging architectures,” J. Opt. A 5, S103–S110 (2003).
[CrossRef]

C. D. Meinhart and S. T. Wereley, “The theory of diffraction-limited resolution in microparticle image velocimetry,” Meas. Sci. Technol. 14, 1047–1053 (2003).
[CrossRef]

Attia, M.

A. H. Lettington, D. Dunn, M. Attia, and I. M. Blankson, “Passive millimetre-wave imaging architectures,” J. Opt. A 5, S103–S110 (2003).
[CrossRef]

Blankson, I. M.

A. H. Lettington, D. Dunn, M. Attia, and I. M. Blankson, “Passive millimetre-wave imaging architectures,” J. Opt. A 5, S103–S110 (2003).
[CrossRef]

Boreman, G. D.

G. D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE, 2001).

Boriskin, A. V.

A. Rolland, M. Ettorre, A. V. Boriskin, L. Le Coq, and R. Sauleau, “Axisymmetric resonant lens antenna with improved directivity in Ka- band,” IEEE Antennas Wireless Propag. Lett. 10, 37–40 (2011).
[CrossRef]

Brady, D. J.

Chen, C.

J. P. Samluk, C. A. Schuetz, T. Dillon, E. L. Stein, A. Robbins, D. G. Mackrides, R. D. Martin, J. Wilson, C. Chen, and D. W. Prather, “Q-band millimeter wave imaging in the far-field enabled by optical upconversion methodology,” J. Infrared Millimeter Terahertz Waves 33, 54–66 (2012).
[CrossRef]

Cull, C. F.

Deng, W. B.

N. N. Wang, J. H. Qiu, P. Y. Zhang, and W. B. Deng, “Passive millimeter wave focal plane array imaging technology,” J. Infrared Millimeter Waves 30, 419–424 (2011).
[CrossRef]

Dillon, T.

J. P. Samluk, C. A. Schuetz, T. Dillon, E. L. Stein, A. Robbins, D. G. Mackrides, R. D. Martin, J. Wilson, C. Chen, and D. W. Prather, “Q-band millimeter wave imaging in the far-field enabled by optical upconversion methodology,” J. Infrared Millimeter Terahertz Waves 33, 54–66 (2012).
[CrossRef]

Dou, W. B.

Z. X. Wang and W. B. Dou, “Full-wave analysis of monopulse dielectric lens antennas at W-band,” J. Infrared Millimeter Terahertz Waves 31, 151–161 (2010).
[CrossRef]

Dunn, D.

A. H. Lettington, D. Dunn, M. Attia, and I. M. Blankson, “Passive millimetre-wave imaging architectures,” J. Opt. A 5, S103–S110 (2003).
[CrossRef]

Ettorre, M.

A. Rolland, M. Ettorre, A. V. Boriskin, L. Le Coq, and R. Sauleau, “Axisymmetric resonant lens antenna with improved directivity in Ka- band,” IEEE Antennas Wireless Propag. Lett. 10, 37–40 (2011).
[CrossRef]

Feng, Y.

F. Hu and Y. Feng, “Passive millimeter wave focal plane imaging method combined with interferometry,” J. Infrared Millimeter Waves 28, 382–385 (2009).
[CrossRef]

Fuchs, B.

B. Fuchs, R. Golubovic, A. K. Skrivervik, and J. R. Mosig, “Spherical lens antenna designs with particle swarm optimization,” Microw. Opt. Technol. Lett. 52, 1655–1659 (2010).
[CrossRef]

Furxhi, O.

Glay, D.

K. Haddadi, D. Glay, and T. Lasri, “A 60 Ghz scanning near-field microscope with high spatial resolution sub-surface imaging,” IEEE Microw. Wireless Compon. Lett. 21, 625–627 (2011).
[CrossRef]

Goldsmith, P. F.

P. F. Goldsmith, Quasi-optical Systems: Gaussian Beam Quasi-optical Propagation and Applications, 4th ed. (IEEE, 1998).

Golubovic, R.

B. Fuchs, R. Golubovic, A. K. Skrivervik, and J. R. Mosig, “Spherical lens antenna designs with particle swarm optimization,” Microw. Opt. Technol. Lett. 52, 1655–1659 (2010).
[CrossRef]

Gumbmann, F.

F. Gumbmann and L. P. Schmidt, “Millimeter-wave imaging with optimized sparse periodic array for short-range applications,” IEEE Trans. Geosci. Remote Sens. 49, 3629–3638 (2011).
[CrossRef]

Gyum, K. W.

K. W. Gyum, J. P. Thakur, and Y. H. Kim, “Efficient DRW antenna for quasi-optics feed in W-band imaging radiometer system,” Microw. Opt. Technol. Lett. 52, 1221–1223 (2010).
[CrossRef]

Haddadi, K.

K. Haddadi, D. Glay, and T. Lasri, “A 60 Ghz scanning near-field microscope with high spatial resolution sub-surface imaging,” IEEE Microw. Wireless Compon. Lett. 21, 625–627 (2011).
[CrossRef]

Hu, F.

F. Hu and Y. Feng, “Passive millimeter wave focal plane imaging method combined with interferometry,” J. Infrared Millimeter Waves 28, 382–385 (2009).
[CrossRef]

Hu, W. D.

S. Y. Li, B. L. Ren, H. J. Sun, W. D. Hu, and X. Lv, “Modified wavenumber domain algorithm for three-dimensional millimeter-wave imaging,” Prog. Electromagn. Res. 124, 35–53 (2012).
[CrossRef]

Jacobs, E. L.

Jang, Y.

Jung, M. K.

Jung, S. W.

Kang, J. M.

W. G. Kim, N. W. Moon, J. M. Kang, and Y. H. Kim, “Loss measuring of large aperture quasi-optics for W-band imaging radiometer system,” Prog. Electromagn. Res. 125, 295–309 (2012).
[CrossRef]

Kim, W. G.

W. G. Kim, N. W. Moon, J. M. Kang, and Y. H. Kim, “Loss measuring of large aperture quasi-optics for W-band imaging radiometer system,” Prog. Electromagn. Res. 125, 295–309 (2012).
[CrossRef]

Kim, Y. H.

W. G. Kim, N. W. Moon, J. M. Kang, and Y. H. Kim, “Loss measuring of large aperture quasi-optics for W-band imaging radiometer system,” Prog. Electromagn. Res. 125, 295–309 (2012).
[CrossRef]

K. W. Gyum, J. P. Thakur, and Y. H. Kim, “Efficient DRW antenna for quasi-optics feed in W-band imaging radiometer system,” Microw. Opt. Technol. Lett. 52, 1221–1223 (2010).
[CrossRef]

Lasri, T.

K. Haddadi, D. Glay, and T. Lasri, “A 60 Ghz scanning near-field microscope with high spatial resolution sub-surface imaging,” IEEE Microw. Wireless Compon. Lett. 21, 625–627 (2011).
[CrossRef]

Le Coq, L.

A. Rolland, M. Ettorre, A. V. Boriskin, L. Le Coq, and R. Sauleau, “Axisymmetric resonant lens antenna with improved directivity in Ka- band,” IEEE Antennas Wireless Propag. Lett. 10, 37–40 (2011).
[CrossRef]

Lee, D. S.

Lee, S. J.

Lettington, A. H.

A. H. Lettington, D. Dunn, M. Attia, and I. M. Blankson, “Passive millimetre-wave imaging architectures,” J. Opt. A 5, S103–S110 (2003).
[CrossRef]

Li, S. Y.

S. Y. Li, B. L. Ren, H. J. Sun, W. D. Hu, and X. Lv, “Modified wavenumber domain algorithm for three-dimensional millimeter-wave imaging,” Prog. Electromagn. Res. 124, 35–53 (2012).
[CrossRef]

Lv, X.

S. Y. Li, B. L. Ren, H. J. Sun, W. D. Hu, and X. Lv, “Modified wavenumber domain algorithm for three-dimensional millimeter-wave imaging,” Prog. Electromagn. Res. 124, 35–53 (2012).
[CrossRef]

Lynch, J. J.

Macdonald, P. A.

Mackrides, D. G.

J. P. Samluk, C. A. Schuetz, T. Dillon, E. L. Stein, A. Robbins, D. G. Mackrides, R. D. Martin, J. Wilson, C. Chen, and D. W. Prather, “Q-band millimeter wave imaging in the far-field enabled by optical upconversion methodology,” J. Infrared Millimeter Terahertz Waves 33, 54–66 (2012).
[CrossRef]

Mait, J. N.

Martin, R. D.

J. P. Samluk, C. A. Schuetz, T. Dillon, E. L. Stein, A. Robbins, D. G. Mackrides, R. D. Martin, J. Wilson, C. Chen, and D. W. Prather, “Q-band millimeter wave imaging in the far-field enabled by optical upconversion methodology,” J. Infrared Millimeter Terahertz Waves 33, 54–66 (2012).
[CrossRef]

Mattheiss, M.

Meinhart, C. D.

C. D. Meinhart and S. T. Wereley, “The theory of diffraction-limited resolution in microparticle image velocimetry,” Meas. Sci. Technol. 14, 1047–1053 (2003).
[CrossRef]

Moon, N. W.

W. G. Kim, N. W. Moon, J. M. Kang, and Y. H. Kim, “Loss measuring of large aperture quasi-optics for W-band imaging radiometer system,” Prog. Electromagn. Res. 125, 295–309 (2012).
[CrossRef]

Mosig, J. R.

B. Fuchs, R. Golubovic, A. K. Skrivervik, and J. R. Mosig, “Spherical lens antenna designs with particle swarm optimization,” Microw. Opt. Technol. Lett. 52, 1655–1659 (2010).
[CrossRef]

Moyer, H. P.

Nagele, R. G.

Nauwelaers, B.

F. Qi, V. Tavakol, I. Ocket, P. Xu, D. Schreurs, J. K. Wang, and B. Nauwelaers, “Millimeter wave imaging system modeling: spatial frequency domain calculation versus spatial domain calculation,” J. Opt. Soc. Am. A 27, 131–140 (2010).
[CrossRef]

F. Qi, V. Tavakol, D. Schreurs, and B. Nauwelaers, “Limitations of approximations towards Fourier optics for indoor active millimeter wave imaging systems,” Prog. Electromagn. Res. 109, 245–262 (2010).
[CrossRef]

Ocket, I.

Prather, D. W.

J. P. Samluk, C. A. Schuetz, T. Dillon, E. L. Stein, A. Robbins, D. G. Mackrides, R. D. Martin, J. Wilson, C. Chen, and D. W. Prather, “Q-band millimeter wave imaging in the far-field enabled by optical upconversion methodology,” J. Infrared Millimeter Terahertz Waves 33, 54–66 (2012).
[CrossRef]

Qi, F.

F. Qi, V. Tavakol, D. Schreurs, and B. Nauwelaers, “Limitations of approximations towards Fourier optics for indoor active millimeter wave imaging systems,” Prog. Electromagn. Res. 109, 245–262 (2010).
[CrossRef]

F. Qi, V. Tavakol, I. Ocket, P. Xu, D. Schreurs, J. K. Wang, and B. Nauwelaers, “Millimeter wave imaging system modeling: spatial frequency domain calculation versus spatial domain calculation,” J. Opt. Soc. Am. A 27, 131–140 (2010).
[CrossRef]

Qiu, J. H.

N. N. Wang, J. H. Qiu, P. Y. Zhang, and W. B. Deng, “Passive millimeter wave focal plane array imaging technology,” J. Infrared Millimeter Waves 30, 419–424 (2011).
[CrossRef]

Ren, B. L.

S. Y. Li, B. L. Ren, H. J. Sun, W. D. Hu, and X. Lv, “Modified wavenumber domain algorithm for three-dimensional millimeter-wave imaging,” Prog. Electromagn. Res. 124, 35–53 (2012).
[CrossRef]

Robbins, A.

J. P. Samluk, C. A. Schuetz, T. Dillon, E. L. Stein, A. Robbins, D. G. Mackrides, R. D. Martin, J. Wilson, C. Chen, and D. W. Prather, “Q-band millimeter wave imaging in the far-field enabled by optical upconversion methodology,” J. Infrared Millimeter Terahertz Waves 33, 54–66 (2012).
[CrossRef]

Rolland, A.

A. Rolland, M. Ettorre, A. V. Boriskin, L. Le Coq, and R. Sauleau, “Axisymmetric resonant lens antenna with improved directivity in Ka- band,” IEEE Antennas Wireless Propag. Lett. 10, 37–40 (2011).
[CrossRef]

Samluk, J. P.

J. P. Samluk, C. A. Schuetz, T. Dillon, E. L. Stein, A. Robbins, D. G. Mackrides, R. D. Martin, J. Wilson, C. Chen, and D. W. Prather, “Q-band millimeter wave imaging in the far-field enabled by optical upconversion methodology,” J. Infrared Millimeter Terahertz Waves 33, 54–66 (2012).
[CrossRef]

Sauleau, R.

A. Rolland, M. Ettorre, A. V. Boriskin, L. Le Coq, and R. Sauleau, “Axisymmetric resonant lens antenna with improved directivity in Ka- band,” IEEE Antennas Wireless Propag. Lett. 10, 37–40 (2011).
[CrossRef]

Schmidt, L. P.

F. Gumbmann and L. P. Schmidt, “Millimeter-wave imaging with optimized sparse periodic array for short-range applications,” IEEE Trans. Geosci. Remote Sens. 49, 3629–3638 (2011).
[CrossRef]

Schreurs, D.

F. Qi, V. Tavakol, I. Ocket, P. Xu, D. Schreurs, J. K. Wang, and B. Nauwelaers, “Millimeter wave imaging system modeling: spatial frequency domain calculation versus spatial domain calculation,” J. Opt. Soc. Am. A 27, 131–140 (2010).
[CrossRef]

F. Qi, V. Tavakol, D. Schreurs, and B. Nauwelaers, “Limitations of approximations towards Fourier optics for indoor active millimeter wave imaging systems,” Prog. Electromagn. Res. 109, 245–262 (2010).
[CrossRef]

Schuetz, C. A.

J. P. Samluk, C. A. Schuetz, T. Dillon, E. L. Stein, A. Robbins, D. G. Mackrides, R. D. Martin, J. Wilson, C. Chen, and D. W. Prather, “Q-band millimeter wave imaging in the far-field enabled by optical upconversion methodology,” J. Infrared Millimeter Terahertz Waves 33, 54–66 (2012).
[CrossRef]

Skrivervik, A. K.

B. Fuchs, R. Golubovic, A. K. Skrivervik, and J. R. Mosig, “Spherical lens antenna designs with particle swarm optimization,” Microw. Opt. Technol. Lett. 52, 1655–1659 (2010).
[CrossRef]

Son, J. Y.

Stein, E. L.

J. P. Samluk, C. A. Schuetz, T. Dillon, E. L. Stein, A. Robbins, D. G. Mackrides, R. D. Martin, J. Wilson, C. Chen, and D. W. Prather, “Q-band millimeter wave imaging in the far-field enabled by optical upconversion methodology,” J. Infrared Millimeter Terahertz Waves 33, 54–66 (2012).
[CrossRef]

Sun, H. J.

S. Y. Li, B. L. Ren, H. J. Sun, W. D. Hu, and X. Lv, “Modified wavenumber domain algorithm for three-dimensional millimeter-wave imaging,” Prog. Electromagn. Res. 124, 35–53 (2012).
[CrossRef]

Tavakol, V.

F. Qi, V. Tavakol, D. Schreurs, and B. Nauwelaers, “Limitations of approximations towards Fourier optics for indoor active millimeter wave imaging systems,” Prog. Electromagn. Res. 109, 245–262 (2010).
[CrossRef]

F. Qi, V. Tavakol, I. Ocket, P. Xu, D. Schreurs, J. K. Wang, and B. Nauwelaers, “Millimeter wave imaging system modeling: spatial frequency domain calculation versus spatial domain calculation,” J. Opt. Soc. Am. A 27, 131–140 (2010).
[CrossRef]

Thakur, J. P.

K. W. Gyum, J. P. Thakur, and Y. H. Kim, “Efficient DRW antenna for quasi-optics feed in W-band imaging radiometer system,” Microw. Opt. Technol. Lett. 52, 1221–1223 (2010).
[CrossRef]

Wang, J. K.

Wang, N. N.

N. N. Wang, J. H. Qiu, P. Y. Zhang, and W. B. Deng, “Passive millimeter wave focal plane array imaging technology,” J. Infrared Millimeter Waves 30, 419–424 (2011).
[CrossRef]

Wang, Z. X.

Z. X. Wang and W. B. Dou, “Full-wave analysis of monopulse dielectric lens antennas at W-band,” J. Infrared Millimeter Terahertz Waves 31, 151–161 (2010).
[CrossRef]

Wereley, S. T.

C. D. Meinhart and S. T. Wereley, “The theory of diffraction-limited resolution in microparticle image velocimetry,” Meas. Sci. Technol. 14, 1047–1053 (2003).
[CrossRef]

Wikner, D. A.

Wilson, J.

J. P. Samluk, C. A. Schuetz, T. Dillon, E. L. Stein, A. Robbins, D. G. Mackrides, R. D. Martin, J. Wilson, C. Chen, and D. W. Prather, “Q-band millimeter wave imaging in the far-field enabled by optical upconversion methodology,” J. Infrared Millimeter Terahertz Waves 33, 54–66 (2012).
[CrossRef]

Xu, P.

Yeom, S.

Zhang, P. Y.

N. N. Wang, J. H. Qiu, P. Y. Zhang, and W. B. Deng, “Passive millimeter wave focal plane array imaging technology,” J. Infrared Millimeter Waves 30, 419–424 (2011).
[CrossRef]

Appl. Opt. (3)

IEEE Antennas Wireless Propag. Lett. (1)

A. Rolland, M. Ettorre, A. V. Boriskin, L. Le Coq, and R. Sauleau, “Axisymmetric resonant lens antenna with improved directivity in Ka- band,” IEEE Antennas Wireless Propag. Lett. 10, 37–40 (2011).
[CrossRef]

IEEE Microw. Wireless Compon. Lett. (1)

K. Haddadi, D. Glay, and T. Lasri, “A 60 Ghz scanning near-field microscope with high spatial resolution sub-surface imaging,” IEEE Microw. Wireless Compon. Lett. 21, 625–627 (2011).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (1)

F. Gumbmann and L. P. Schmidt, “Millimeter-wave imaging with optimized sparse periodic array for short-range applications,” IEEE Trans. Geosci. Remote Sens. 49, 3629–3638 (2011).
[CrossRef]

J. Infrared Millimeter Terahertz Waves (2)

Z. X. Wang and W. B. Dou, “Full-wave analysis of monopulse dielectric lens antennas at W-band,” J. Infrared Millimeter Terahertz Waves 31, 151–161 (2010).
[CrossRef]

J. P. Samluk, C. A. Schuetz, T. Dillon, E. L. Stein, A. Robbins, D. G. Mackrides, R. D. Martin, J. Wilson, C. Chen, and D. W. Prather, “Q-band millimeter wave imaging in the far-field enabled by optical upconversion methodology,” J. Infrared Millimeter Terahertz Waves 33, 54–66 (2012).
[CrossRef]

J. Infrared Millimeter Waves (2)

F. Hu and Y. Feng, “Passive millimeter wave focal plane imaging method combined with interferometry,” J. Infrared Millimeter Waves 28, 382–385 (2009).
[CrossRef]

N. N. Wang, J. H. Qiu, P. Y. Zhang, and W. B. Deng, “Passive millimeter wave focal plane array imaging technology,” J. Infrared Millimeter Waves 30, 419–424 (2011).
[CrossRef]

J. Opt. A (1)

A. H. Lettington, D. Dunn, M. Attia, and I. M. Blankson, “Passive millimetre-wave imaging architectures,” J. Opt. A 5, S103–S110 (2003).
[CrossRef]

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (1)

C. D. Meinhart and S. T. Wereley, “The theory of diffraction-limited resolution in microparticle image velocimetry,” Meas. Sci. Technol. 14, 1047–1053 (2003).
[CrossRef]

Microw. Opt. Technol. Lett. (2)

B. Fuchs, R. Golubovic, A. K. Skrivervik, and J. R. Mosig, “Spherical lens antenna designs with particle swarm optimization,” Microw. Opt. Technol. Lett. 52, 1655–1659 (2010).
[CrossRef]

K. W. Gyum, J. P. Thakur, and Y. H. Kim, “Efficient DRW antenna for quasi-optics feed in W-band imaging radiometer system,” Microw. Opt. Technol. Lett. 52, 1221–1223 (2010).
[CrossRef]

Opt. Express (1)

Prog. Electromagn. Res. (3)

S. Y. Li, B. L. Ren, H. J. Sun, W. D. Hu, and X. Lv, “Modified wavenumber domain algorithm for three-dimensional millimeter-wave imaging,” Prog. Electromagn. Res. 124, 35–53 (2012).
[CrossRef]

F. Qi, V. Tavakol, D. Schreurs, and B. Nauwelaers, “Limitations of approximations towards Fourier optics for indoor active millimeter wave imaging systems,” Prog. Electromagn. Res. 109, 245–262 (2010).
[CrossRef]

W. G. Kim, N. W. Moon, J. M. Kang, and Y. H. Kim, “Loss measuring of large aperture quasi-optics for W-band imaging radiometer system,” Prog. Electromagn. Res. 125, 295–309 (2012).
[CrossRef]

Other (6)

Technical guide on fundamental optics, http://www.cvimellesgriot.com/ .

P. F. Goldsmith, Quasi-optical Systems: Gaussian Beam Quasi-optical Propagation and Applications, 4th ed. (IEEE, 1998).

Technical document about lens theory from http://www.lasercomponents.com/de/ .

G. D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE, 2001).

http://www.opticalres.com/ .

http://www.cst.com/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

Schematic of quasi-optical lens.

Fig. 2.
Fig. 2.

Aberration-limited angular blur via shape factor.

Fig. 3.
Fig. 3.

(a) Image of a point object. (b) Airy pattern: 2-D plot of the diffracted irradiance distribution. (c) Cross-section of (b). ρ is normalized radial distance from the center [22].

Fig. 4.
Fig. 4.

(a) Aberration- and diffraction-limited and (b) dominant spot size of convex plano lens.

Fig. 5.
Fig. 5.

Focusing of Gaussian beam.

Fig. 6.
Fig. 6.

Configuration of quasi-optical lens antenna.

Fig. 7.
Fig. 7.

Photo of fabricated aspheric lenses with (a) high f/# and (b) low f/# (Courtesy Millisys Inc.).

Fig. 8.
Fig. 8.

Fabricated DRA (Courtesy Millisys Inc.).

Fig. 9.
Fig. 9.

Measurement results of DRA: (a) return loss and (b) H-plane radiation pattern.

Fig. 10.
Fig. 10.

Experimental setup of aspheric lens in component-level.

Fig. 11.
Fig. 11.

Received power via image distance for (a) high f/# and (b) low f/# lens at 94 GHz.

Fig. 12.
Fig. 12.

H-plane focused beam pattern of (a) high f/# and (b) low f/# at So=2500mm.

Fig. 13.
Fig. 13.

(a) Configuration and (b) signal flow of 94 GHz radiometer imaging system.

Fig. 14.
Fig. 14.

Experimental setup of aspheric lens in system-level test.

Fig. 15.
Fig. 15.

Measured images and relative IC via image distance for (a) high and (b) low f/# lens.

Fig. 16.
Fig. 16.

Normalized IC via relative image distance for (a) high f/# lens and (b) low f/# lens.

Tables (3)

Tables Icon

Table 1. Theoretical Characteristics of Aspheric Lenses

Tables Icon

Table 2. Designed Constants of Aspheric Lenses

Tables Icon

Table 3. Experimental Results of Aspheric Lenses at 94 GHz

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

1Si+1So=1F,
M=SiSo.
Si=(M+1)F.
ΔΘab=(D/F)3[n2(2n+1)q+(n+2)q2/n]/[32(n1)2],
dab=ΔΘab·Si,
q=R2/(R2R1),
dab_HDPE=0.068(M+1)2F(f/#)3,
ΔΘdiff=1.64λD,
ddiff=ΔΘdiff·Si=1.64λ(M+1)f/#.
rsp=ddiff_o2=1.22λ(M+1)f/#,
w(x)=wo[1+(λxπwo2)]0.5,
R(x)=x[1+(πwo2λx)2],
XR=πwo2λ.
DOF=2×XR=2×πwo2λ=2.97πλ[(M+1)f/#]2.
y=x2R(1+1(1+k)x2/R2)+ax4+bx6+cx8+dx10,
IC=Voltage amplitudeVoltage average=VmaxVminVmax+Vmin[V/V],

Metrics