Abstract

We propose and analyze a polarization rotator based on a bend asymmetric-slab waveguide on the silicon-on-insulator platform. The device can be fabricated using standard complementary metal–oxide–semiconductor process involving only two dry etching steps. Compared with the formerly reported polarization rotators based on two-step etching, our introduced device demonstrates a significant improvement for fabrication tolerance. Furthermore, an ultra compact structure of 5μm conversion length, an insertion loss of only 0.5 dB, and an extinction ratio of >40dB for both TE to TM polarization conversion and TM to TE polarization conversion are exhibited. Operation wavelength and the influence of environmental temperature on our device are also discussed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
    [CrossRef]
  2. D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
    [CrossRef]
  3. A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “200 Gbps photonic integrated chip on silicon platform,” in Proceedings of 5th IEEE International Conference on Group IV Photonics (IEEE, 2008), pp. 368–370.
  4. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor,” Nature 427, 615–618 (2004).
    [CrossRef]
  5. M. Foster, A. Turner, J. Sharping, B. Schmidt, M. Lipson, and A. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
    [CrossRef]
  6. K. Voigt, L. Zimmermann, G. Winzer, M. Schnarrenberger, T. Mitze, J. Bruns, and K. Petermann, “Silicon-on-insulator (SOI) delay-line interferometer with low polarization-dependent wavelength shift,” presented at 13th European Conference on Integrated Optics, Denmark, 25–27 April 2007, paper ThC2.
  7. T. Barwicz, M. Watts, M. Popović, P. Rakich, L. Socci, F. Kärtner, E. Ippen, and H. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
    [CrossRef]
  8. J. Zhang, T. Liow, M. Yu, G. Lo, and D. Kwong, “Silicon waveguide based TE mode converter,” Opt. Express 18, 25264–25270 (2010).
    [CrossRef]
  9. H. Deng, D. O. Yevick, C. Brooks, and P. E. Jessop, “Design rules for slanted-angle polarization rotators,” J. Lightwave Technol. 23, 432–445 (2005).
    [CrossRef]
  10. H. Deng, D. O. Yevick, and S. K. Chaudhuri, “Bending characteristics of asymmetric SOI polarization rotators,” IEEE Photon. Technol. Lett. 17, 2113–2115 (2005).
    [CrossRef]
  11. H. Deng, D. O. Yevick, C. Brooks, and P. E. Jessop, “Fabrication tolerance of asymmetric silicon-on-insulator polarization rotators,” J. Opt. Soc. Am. A 23, 1741–1745 (2006).
    [CrossRef]
  12. J. Yamauchi, M. Yamanoue, and H. Nakano, “A short polarization converter using a triangular waveguide,” J. Lightwave Technol. 26, 1708–1714 (2008).
    [CrossRef]
  13. Y. Yue, L. Zhang, M. Song, R. G. Beausoleil, and A. E. Willner, “Higher-order-mode assisted silicon-on-insulator 90 degree polarization rotator,” Opt. Express 17, 20694–20699 (2009).
    [CrossRef]
  14. L. Liu, Y. Ding, K. Yvind, and J. Hvam, “Efficient and compact TE–TM polarization converter built on silicon-on-insulator platform with a simple fabrication process,” Opt. Lett. 36, 1059–1061 (2011).
    [CrossRef]
  15. Y. Ding, L. Liu, C. Peucheret, and H. Ou, “Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler,” Opt. Express 20, 20021–20027 (2012).
    [CrossRef]
  16. D. Leung, B. Rahman, and K. Grattan, “Numerical analysis of asymmetric silicon nanowire waveguide as compact polarization rotator,” IEEE Photon. J 3, 381–389 (2011).
    [CrossRef]
  17. A. Velasco, M. Calvo, P. Cheben, A. Ortega-Moñux, J. Schmid, C. Ramos, Í. Fernandez, J. Lapointe, M. Vachon, S. Janz, and D. Xu, “Ultracompact polarization converter with a dual subwavelength trench built in a silicon-on-insulator waveguide,” Opt. Lett. 37, 365–367 (2012).
    [CrossRef]
  18. Z. Wang and D. Dai, “Ultrasmall Si-nanowire-based polarization rotator,” J. Opt. Soc. Am. B 25, 747–753(2008).
    [CrossRef]
  19. FIMMWAVE/FIMMPROP, Version 4.6, Photon Design Ltd., http://www.photond.com .
  20. W. W. Lui, T. Hirono, and W.-P. Huang, “Polarization rotation in semiconductor bending waveguides: a coupled-mode theory formulation,” J. Lightwave Technol. 16, 929–936 (1998).
    [CrossRef]
  21. M. Uenuma and T. Motooka, “Temperature-independent silicon waveguide optical filter,” Opt. Lett. 34, 599–601 (2009).
    [CrossRef]

2012

2011

D. Leung, B. Rahman, and K. Grattan, “Numerical analysis of asymmetric silicon nanowire waveguide as compact polarization rotator,” IEEE Photon. J 3, 381–389 (2011).
[CrossRef]

L. Liu, Y. Ding, K. Yvind, and J. Hvam, “Efficient and compact TE–TM polarization converter built on silicon-on-insulator platform with a simple fabrication process,” Opt. Lett. 36, 1059–1061 (2011).
[CrossRef]

2010

2009

M. Uenuma and T. Motooka, “Temperature-independent silicon waveguide optical filter,” Opt. Lett. 34, 599–601 (2009).
[CrossRef]

Y. Yue, L. Zhang, M. Song, R. G. Beausoleil, and A. E. Willner, “Higher-order-mode assisted silicon-on-insulator 90 degree polarization rotator,” Opt. Express 17, 20694–20699 (2009).
[CrossRef]

A. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[CrossRef]

D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[CrossRef]

2008

2007

T. Barwicz, M. Watts, M. Popović, P. Rakich, L. Socci, F. Kärtner, E. Ippen, and H. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[CrossRef]

2006

M. Foster, A. Turner, J. Sharping, B. Schmidt, M. Lipson, and A. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef]

H. Deng, D. O. Yevick, C. Brooks, and P. E. Jessop, “Fabrication tolerance of asymmetric silicon-on-insulator polarization rotators,” J. Opt. Soc. Am. A 23, 1741–1745 (2006).
[CrossRef]

2005

H. Deng, D. O. Yevick, C. Brooks, and P. E. Jessop, “Design rules for slanted-angle polarization rotators,” J. Lightwave Technol. 23, 432–445 (2005).
[CrossRef]

H. Deng, D. O. Yevick, and S. K. Chaudhuri, “Bending characteristics of asymmetric SOI polarization rotators,” IEEE Photon. Technol. Lett. 17, 2113–2115 (2005).
[CrossRef]

2004

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef]

1998

Barwicz, T.

T. Barwicz, M. Watts, M. Popović, P. Rakich, L. Socci, F. Kärtner, E. Ippen, and H. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[CrossRef]

Basak, J.

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “200 Gbps photonic integrated chip on silicon platform,” in Proceedings of 5th IEEE International Conference on Group IV Photonics (IEEE, 2008), pp. 368–370.

Beausoleil, R. G.

Brooks, C.

Bruns, J.

K. Voigt, L. Zimmermann, G. Winzer, M. Schnarrenberger, T. Mitze, J. Bruns, and K. Petermann, “Silicon-on-insulator (SOI) delay-line interferometer with low polarization-dependent wavelength shift,” presented at 13th European Conference on Integrated Optics, Denmark, 25–27 April 2007, paper ThC2.

Calvo, M.

Chaudhuri, S. K.

H. Deng, D. O. Yevick, and S. K. Chaudhuri, “Bending characteristics of asymmetric SOI polarization rotators,” IEEE Photon. Technol. Lett. 17, 2113–2115 (2005).
[CrossRef]

Cheben, P.

Chetrit, Y.

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “200 Gbps photonic integrated chip on silicon platform,” in Proceedings of 5th IEEE International Conference on Group IV Photonics (IEEE, 2008), pp. 368–370.

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef]

Cunningham, J.

A. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[CrossRef]

Dai, D.

Deng, H.

Ding, Y.

Fernandez, Í.

Foster, M.

M. Foster, A. Turner, J. Sharping, B. Schmidt, M. Lipson, and A. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef]

Gaeta, A.

M. Foster, A. Turner, J. Sharping, B. Schmidt, M. Lipson, and A. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef]

Grattan, K.

D. Leung, B. Rahman, and K. Grattan, “Numerical analysis of asymmetric silicon nanowire waveguide as compact polarization rotator,” IEEE Photon. J 3, 381–389 (2011).
[CrossRef]

Hirono, T.

Ho, R.

A. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[CrossRef]

Huang, W.-P.

Hvam, J.

Ippen, E.

T. Barwicz, M. Watts, M. Popović, P. Rakich, L. Socci, F. Kärtner, E. Ippen, and H. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[CrossRef]

Janz, S.

Jessop, P. E.

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef]

Kärtner, F.

T. Barwicz, M. Watts, M. Popović, P. Rakich, L. Socci, F. Kärtner, E. Ippen, and H. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[CrossRef]

Koka, P.

A. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[CrossRef]

Krishnamoorthy, A.

A. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[CrossRef]

Kwong, D.

Lapointe, J.

Leung, D.

D. Leung, B. Rahman, and K. Grattan, “Numerical analysis of asymmetric silicon nanowire waveguide as compact polarization rotator,” IEEE Photon. J 3, 381–389 (2011).
[CrossRef]

Lexau, J.

A. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[CrossRef]

Li, G.

A. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[CrossRef]

Liao, L.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef]

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “200 Gbps photonic integrated chip on silicon platform,” in Proceedings of 5th IEEE International Conference on Group IV Photonics (IEEE, 2008), pp. 368–370.

Liow, T.

Lipson, M.

M. Foster, A. Turner, J. Sharping, B. Schmidt, M. Lipson, and A. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef]

Liu, A.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef]

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “200 Gbps photonic integrated chip on silicon platform,” in Proceedings of 5th IEEE International Conference on Group IV Photonics (IEEE, 2008), pp. 368–370.

Liu, L.

Lo, G.

Lui, W. W.

Miller, D.

D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[CrossRef]

Mitze, T.

K. Voigt, L. Zimmermann, G. Winzer, M. Schnarrenberger, T. Mitze, J. Bruns, and K. Petermann, “Silicon-on-insulator (SOI) delay-line interferometer with low polarization-dependent wavelength shift,” presented at 13th European Conference on Integrated Optics, Denmark, 25–27 April 2007, paper ThC2.

Motooka, T.

Nakano, H.

Nguyen, H.

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “200 Gbps photonic integrated chip on silicon platform,” in Proceedings of 5th IEEE International Conference on Group IV Photonics (IEEE, 2008), pp. 368–370.

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef]

Ortega-Moñux, A.

Ou, H.

Paniccia, M.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef]

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “200 Gbps photonic integrated chip on silicon platform,” in Proceedings of 5th IEEE International Conference on Group IV Photonics (IEEE, 2008), pp. 368–370.

Petermann, K.

K. Voigt, L. Zimmermann, G. Winzer, M. Schnarrenberger, T. Mitze, J. Bruns, and K. Petermann, “Silicon-on-insulator (SOI) delay-line interferometer with low polarization-dependent wavelength shift,” presented at 13th European Conference on Integrated Optics, Denmark, 25–27 April 2007, paper ThC2.

Peucheret, C.

Popovic, M.

T. Barwicz, M. Watts, M. Popović, P. Rakich, L. Socci, F. Kärtner, E. Ippen, and H. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[CrossRef]

Rahman, B.

D. Leung, B. Rahman, and K. Grattan, “Numerical analysis of asymmetric silicon nanowire waveguide as compact polarization rotator,” IEEE Photon. J 3, 381–389 (2011).
[CrossRef]

Rakich, P.

T. Barwicz, M. Watts, M. Popović, P. Rakich, L. Socci, F. Kärtner, E. Ippen, and H. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[CrossRef]

Ramos, C.

Rubin, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef]

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “200 Gbps photonic integrated chip on silicon platform,” in Proceedings of 5th IEEE International Conference on Group IV Photonics (IEEE, 2008), pp. 368–370.

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef]

Schmid, J.

Schmidt, B.

M. Foster, A. Turner, J. Sharping, B. Schmidt, M. Lipson, and A. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef]

Schnarrenberger, M.

K. Voigt, L. Zimmermann, G. Winzer, M. Schnarrenberger, T. Mitze, J. Bruns, and K. Petermann, “Silicon-on-insulator (SOI) delay-line interferometer with low polarization-dependent wavelength shift,” presented at 13th European Conference on Integrated Optics, Denmark, 25–27 April 2007, paper ThC2.

Schwetman, H.

A. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[CrossRef]

Sharping, J.

M. Foster, A. Turner, J. Sharping, B. Schmidt, M. Lipson, and A. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef]

Shubin, I.

A. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[CrossRef]

Smith, H.

T. Barwicz, M. Watts, M. Popović, P. Rakich, L. Socci, F. Kärtner, E. Ippen, and H. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[CrossRef]

Socci, L.

T. Barwicz, M. Watts, M. Popović, P. Rakich, L. Socci, F. Kärtner, E. Ippen, and H. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[CrossRef]

Song, M.

Turner, A.

M. Foster, A. Turner, J. Sharping, B. Schmidt, M. Lipson, and A. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef]

Uenuma, M.

Vachon, M.

Velasco, A.

Voigt, K.

K. Voigt, L. Zimmermann, G. Winzer, M. Schnarrenberger, T. Mitze, J. Bruns, and K. Petermann, “Silicon-on-insulator (SOI) delay-line interferometer with low polarization-dependent wavelength shift,” presented at 13th European Conference on Integrated Optics, Denmark, 25–27 April 2007, paper ThC2.

Wang, Z.

Watts, M.

T. Barwicz, M. Watts, M. Popović, P. Rakich, L. Socci, F. Kärtner, E. Ippen, and H. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[CrossRef]

Willner, A. E.

Winzer, G.

K. Voigt, L. Zimmermann, G. Winzer, M. Schnarrenberger, T. Mitze, J. Bruns, and K. Petermann, “Silicon-on-insulator (SOI) delay-line interferometer with low polarization-dependent wavelength shift,” presented at 13th European Conference on Integrated Optics, Denmark, 25–27 April 2007, paper ThC2.

Xu, D.

Yamanoue, M.

Yamauchi, J.

Yevick, D. O.

Yu, M.

Yue, Y.

Yvind, K.

Zhang, J.

Zhang, L.

Zheng, X.

A. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[CrossRef]

Zimmermann, L.

K. Voigt, L. Zimmermann, G. Winzer, M. Schnarrenberger, T. Mitze, J. Bruns, and K. Petermann, “Silicon-on-insulator (SOI) delay-line interferometer with low polarization-dependent wavelength shift,” presented at 13th European Conference on Integrated Optics, Denmark, 25–27 April 2007, paper ThC2.

IEEE Photon. J

D. Leung, B. Rahman, and K. Grattan, “Numerical analysis of asymmetric silicon nanowire waveguide as compact polarization rotator,” IEEE Photon. J 3, 381–389 (2011).
[CrossRef]

IEEE Photon. Technol. Lett.

H. Deng, D. O. Yevick, and S. K. Chaudhuri, “Bending characteristics of asymmetric SOI polarization rotators,” IEEE Photon. Technol. Lett. 17, 2113–2115 (2005).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Nat. Photonics

T. Barwicz, M. Watts, M. Popović, P. Rakich, L. Socci, F. Kärtner, E. Ippen, and H. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[CrossRef]

Nature

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef]

M. Foster, A. Turner, J. Sharping, B. Schmidt, M. Lipson, and A. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. IEEE

A. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[CrossRef]

D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[CrossRef]

Other

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “200 Gbps photonic integrated chip on silicon platform,” in Proceedings of 5th IEEE International Conference on Group IV Photonics (IEEE, 2008), pp. 368–370.

K. Voigt, L. Zimmermann, G. Winzer, M. Schnarrenberger, T. Mitze, J. Bruns, and K. Petermann, “Silicon-on-insulator (SOI) delay-line interferometer with low polarization-dependent wavelength shift,” presented at 13th European Conference on Integrated Optics, Denmark, 25–27 April 2007, paper ThC2.

FIMMWAVE/FIMMPROP, Version 4.6, Photon Design Ltd., http://www.photond.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Transverse geometries. (a) TE and TM modes. (b) Hybrid modes rotated by 45°.

Fig. 2.
Fig. 2.

Schematic top view of the device and transverse geometries of the waveguides in each section. Positive Δx value means the conversion waveguide has a positive offset along x axis. The cross-section of the conversion region is shown in the top right corner.

Fig. 3.
Fig. 3.

(a) Required slab width Wb to achieve 100% hybridness. (b) Corresponding half-beat length Lπ for different ridge width Wa when the bending radius R is 4 μm (pentastar), 6 μm (square), 8 μm (triangle), or infinite (solid circle).

Fig. 4.
Fig. 4.

Field distribution for the lowest two guided modes for the bend asymmetric-slab waveguide with the width Wa=260nm, Wb=1200nm, and bending radius R=4μm.

Fig. 5.
Fig. 5.

(a) Insertion loss. (b) ER for TE to TM conversion (solid circle) and TM to TE conversion (triangle) as a function of waveguide offset Δx.

Fig. 6.
Fig. 6.

Field distribution of (a) Hx and (b) Hy component of the propagation light with TE0 mode input. The bend structure in the middle section is marked by two bend curves, which cannot be displayed by the software.

Fig. 7.
Fig. 7.

(a) ER as a function of ΔWb with Wa fixed (Wa=260nm) for TE to TM and TM to TE conversion when the conversion region is a bend or normal straight asymmetric waveguide. (b) ER as a function of ΔWa with Wb fixed (Wb=1200nm for the bend and 280 nm for the straight).

Fig. 8.
Fig. 8.

ER as a function of conversion length for TE to TM (solid circle) and TM to TE (triangle) conversion. R=4μm, L=5.1μm, Wa=260nm, Wb=1200nm, and Δx=80nm.

Fig. 9.
Fig. 9.

(a) ER and (b) insertion loss of the polarization rotator as a function of the bending radius of the bend at the output section when the output direction is parallel with the input direction.

Fig. 10.
Fig. 10.

ER as a function of (a) operation wavelength and (b) temperature change for TE to TM (solid circle) and TM to TE (triangle) conversion.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

L=(2k+1)Lπ,k=0,1,2,3
Lπ=π|β1β2|,
PCETETM=PTMPTE+PTM,
PCETMTE=PTEPTE+PTM,
ERTETM=10logPTMPTE,
ERTMTE=10logPTEPTM.

Metrics