Abstract

By using the finite-difference time-domain method, a systematic investigation has been performed to analyze the light field redistribution due to the modulation from typical subsurface cracks on optical glass surfaces. The involved cracks that can occur during surface processing are mainly of three basic types, including the cone, the radial, and the lateral. It is found out that the modulated light intensification strongly depends on the crack type and especially on if the crack is on the front or rear surface. If the cone crack is on the rear surface or lateral crack is on the front surface, a strong field enhancement as large as 2 orders of magnitude can occur. As for the other four cases, i.e., cone crack on the front surface, lateral crack on the rear surface, and radial crack on both the front and rear surfaces, they do not result in a field enhancement of 2 orders of magnitude, but only several times higher than the incident light field. The field enhancement mechanisms for various crack types are compared and discussed in detail. If only from the perspective of laser damage initiation resulting from a modulated high electric field, the most harmful subsurface cracks may be initially the lateral on the front surface and the cone on the rear surface.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. P. Hed, D. F. Edwards, and J. B. Davis, “Subsurface damage in optical materials: origin, measurement and removalreport UCRL-99548 (Lawrence Livermore National Laboratory, 1989), pp. 1–17.
  2. J. H. Campbell, “Damage resistant optical glasses for high power lasers: a continuing glass science and technology challenge,” Glass Sci. Technol. 75, 91–108 (2002).
  3. P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
    [CrossRef]
  4. M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–271 (2004).
    [CrossRef]
  5. D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
    [CrossRef]
  6. J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13, 10163–10171 (2005).
    [CrossRef]
  7. C. L. Battersby, L. M. Sheehan, and M. R. Kozlowski, “Effects of wet etch processing on laser-induced damage of fused silica surfaces,” Proc. SPIE 3578, 446–455 (1999).
    [CrossRef]
  8. T. I. Suratwala, P. E. Miller, P. R. Ehrmann, and R. A. Steele, “Polishing slurry induced surface haze on phosphate laser glasses,” J. Non-Cryst. Solids 351, 2091–2101 (2005).
    [CrossRef]
  9. A. V. Hamza, W. J. Siekhaus, A. M. Rubenchik, M. Feit, L. L. Chase, S. Demos, M. Savina, M. J. Pellin, M. J. Fluss, M. C. Nostrand, M. Runkel, B. W. Choi, M. Staggs, and I. D. Hutcheon, “Engineered defects for investigation of laser induced damage of fused silica at 355 nm,” Proc. SPIE 4679, 96–105 (2002).
    [CrossRef]
  10. T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94, 151114 (2009).
    [CrossRef]
  11. P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35, 2702–2704 (2010).
    [CrossRef]
  12. N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt. 12, 661–664 (1973).
    [CrossRef]
  13. F. Y. Génin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. A 18, 2607–2616 (2001).
    [CrossRef]
  14. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
    [CrossRef]
  15. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
    [CrossRef]
  16. M. Crisp, N. Boling, and G. Dubé, “Importance of Fresnel reflections in laser surface damage of transparent dielectrics,” Appl. Phys. Lett. 21, 364–366 (1972).
    [CrossRef]
  17. B. Lawn and R. Wilshaw, “Indentation fracture: principles and applications,” J. Mater. Sci. 10, 1049–1081 (1975).
    [CrossRef]
  18. T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
    [CrossRef]
  19. J. H. Campbell, and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263–264, 318–341 (2000).
    [CrossRef]
  20. A. Salleo, F. Y. Génin, J. Yoshiyama, C. J. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355 nm initiated at scratches,” Proc. SPIE 3244, 341–347 (1998).
    [CrossRef]
  21. F. Y. Génin, M. D. Feit, M. R. Kozlowski, A. M. Rubenchik, A. Salleo, and J. Yoshiyama, “Rear-surface laser damage on 355 nm silica optics owing to Fresnel diffraction on front-surface contamination particles,” Appl. Opt. 39, 3654–3663 (2000).
    [CrossRef]
  22. S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys. 54, 601–606 (1986).
    [CrossRef]
  23. L. Li, X. Xiang, X. Zu, X. Jiang, X. Yuan, and W. Zheng, “The electric field modulation by three-dimensional crack on fused silica subsurface,” Optik 122, 1423–1425 (2011).
    [CrossRef]
  24. T. I. Suratwala, J. H. Campbell, P. E. Miller, C. B. Thorsness, M. O. Riley, P. R. Ehrmann, and R. A. Steele, “Phosphate laser glass for NIF: production status, slab selection, and recent technical advances,” Proc. SPIE 5341, 102–113 (2004).
    [CrossRef]
  25. Laboratory for Laser Energetics (LLE), “Subsurface damage in microgrinding optical glasses,” LLE Rev. 73, 45–49 (1997).
  26. N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375–386 (1974).
    [CrossRef]

2011 (1)

L. Li, X. Xiang, X. Zu, X. Jiang, X. Yuan, and W. Zheng, “The electric field modulation by three-dimensional crack on fused silica subsurface,” Optik 122, 1423–1425 (2011).
[CrossRef]

2010 (1)

2009 (2)

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94, 151114 (2009).
[CrossRef]

2006 (1)

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

2005 (2)

T. I. Suratwala, P. E. Miller, P. R. Ehrmann, and R. A. Steele, “Polishing slurry induced surface haze on phosphate laser glasses,” J. Non-Cryst. Solids 351, 2091–2101 (2005).
[CrossRef]

J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13, 10163–10171 (2005).
[CrossRef]

2004 (3)

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–271 (2004).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef]

T. I. Suratwala, J. H. Campbell, P. E. Miller, C. B. Thorsness, M. O. Riley, P. R. Ehrmann, and R. A. Steele, “Phosphate laser glass for NIF: production status, slab selection, and recent technical advances,” Proc. SPIE 5341, 102–113 (2004).
[CrossRef]

2002 (2)

A. V. Hamza, W. J. Siekhaus, A. M. Rubenchik, M. Feit, L. L. Chase, S. Demos, M. Savina, M. J. Pellin, M. J. Fluss, M. C. Nostrand, M. Runkel, B. W. Choi, M. Staggs, and I. D. Hutcheon, “Engineered defects for investigation of laser induced damage of fused silica at 355 nm,” Proc. SPIE 4679, 96–105 (2002).
[CrossRef]

J. H. Campbell, “Damage resistant optical glasses for high power lasers: a continuing glass science and technology challenge,” Glass Sci. Technol. 75, 91–108 (2002).

2001 (1)

2000 (2)

1999 (1)

C. L. Battersby, L. M. Sheehan, and M. R. Kozlowski, “Effects of wet etch processing on laser-induced damage of fused silica surfaces,” Proc. SPIE 3578, 446–455 (1999).
[CrossRef]

1998 (2)

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[CrossRef]

A. Salleo, F. Y. Génin, J. Yoshiyama, C. J. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355 nm initiated at scratches,” Proc. SPIE 3244, 341–347 (1998).
[CrossRef]

1997 (1)

Laboratory for Laser Energetics (LLE), “Subsurface damage in microgrinding optical glasses,” LLE Rev. 73, 45–49 (1997).

1995 (1)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef]

1986 (1)

S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys. 54, 601–606 (1986).
[CrossRef]

1975 (1)

B. Lawn and R. Wilshaw, “Indentation fracture: principles and applications,” J. Mater. Sci. 10, 1049–1081 (1975).
[CrossRef]

1974 (1)

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375–386 (1974).
[CrossRef]

1973 (1)

1972 (1)

M. Crisp, N. Boling, and G. Dubé, “Importance of Fresnel reflections in laser surface damage of transparent dielectrics,” Appl. Phys. Lett. 21, 364–366 (1972).
[CrossRef]

Battersby, C. L.

C. L. Battersby, L. M. Sheehan, and M. R. Kozlowski, “Effects of wet etch processing on laser-induced damage of fused silica surfaces,” Proc. SPIE 3578, 446–455 (1999).
[CrossRef]

Bercegol, H.

Birolleau, J.

Bloembergen, N.

Boling, N.

M. Crisp, N. Boling, and G. Dubé, “Importance of Fresnel reflections in laser surface damage of transparent dielectrics,” Appl. Phys. Lett. 21, 364–366 (1972).
[CrossRef]

Bude, J. D.

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35, 2702–2704 (2010).
[CrossRef]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94, 151114 (2009).
[CrossRef]

Camp, D. W.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[CrossRef]

Campbell, J. H.

T. I. Suratwala, J. H. Campbell, P. E. Miller, C. B. Thorsness, M. O. Riley, P. R. Ehrmann, and R. A. Steele, “Phosphate laser glass for NIF: production status, slab selection, and recent technical advances,” Proc. SPIE 5341, 102–113 (2004).
[CrossRef]

J. H. Campbell, “Damage resistant optical glasses for high power lasers: a continuing glass science and technology challenge,” Glass Sci. Technol. 75, 91–108 (2002).

J. H. Campbell, and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263–264, 318–341 (2000).
[CrossRef]

Carr, C. W.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef]

Chase, L. L.

A. V. Hamza, W. J. Siekhaus, A. M. Rubenchik, M. Feit, L. L. Chase, S. Demos, M. Savina, M. J. Pellin, M. J. Fluss, M. C. Nostrand, M. Runkel, B. W. Choi, M. Staggs, and I. D. Hutcheon, “Engineered defects for investigation of laser induced damage of fused silica at 355 nm,” Proc. SPIE 4679, 96–105 (2002).
[CrossRef]

F. Y. Génin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. A 18, 2607–2616 (2001).
[CrossRef]

Choi, B. W.

A. V. Hamza, W. J. Siekhaus, A. M. Rubenchik, M. Feit, L. L. Chase, S. Demos, M. Savina, M. J. Pellin, M. J. Fluss, M. C. Nostrand, M. Runkel, B. W. Choi, M. Staggs, and I. D. Hutcheon, “Engineered defects for investigation of laser induced damage of fused silica at 355 nm,” Proc. SPIE 4679, 96–105 (2002).
[CrossRef]

Crisp, M.

M. Crisp, N. Boling, and G. Dubé, “Importance of Fresnel reflections in laser surface damage of transparent dielectrics,” Appl. Phys. Lett. 21, 364–366 (1972).
[CrossRef]

Davis, J. B.

P. P. Hed, D. F. Edwards, and J. B. Davis, “Subsurface damage in optical materials: origin, measurement and removalreport UCRL-99548 (Lawrence Livermore National Laboratory, 1989), pp. 1–17.

Davis, P.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

Demos, S.

A. V. Hamza, W. J. Siekhaus, A. M. Rubenchik, M. Feit, L. L. Chase, S. Demos, M. Savina, M. J. Pellin, M. J. Fluss, M. C. Nostrand, M. Runkel, B. W. Choi, M. Staggs, and I. D. Hutcheon, “Engineered defects for investigation of laser induced damage of fused silica at 355 nm,” Proc. SPIE 4679, 96–105 (2002).
[CrossRef]

Demos, S. G.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef]

Dovik, M.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[CrossRef]

Dubé, G.

M. Crisp, N. Boling, and G. Dubé, “Importance of Fresnel reflections in laser surface damage of transparent dielectrics,” Appl. Phys. Lett. 21, 364–366 (1972).
[CrossRef]

Edwards, D. F.

P. P. Hed, D. F. Edwards, and J. B. Davis, “Subsurface damage in optical materials: origin, measurement and removalreport UCRL-99548 (Lawrence Livermore National Laboratory, 1989), pp. 1–17.

Ehrmann, P. R.

T. I. Suratwala, P. E. Miller, P. R. Ehrmann, and R. A. Steele, “Polishing slurry induced surface haze on phosphate laser glasses,” J. Non-Cryst. Solids 351, 2091–2101 (2005).
[CrossRef]

T. I. Suratwala, J. H. Campbell, P. E. Miller, C. B. Thorsness, M. O. Riley, P. R. Ehrmann, and R. A. Steele, “Phosphate laser glass for NIF: production status, slab selection, and recent technical advances,” Proc. SPIE 5341, 102–113 (2004).
[CrossRef]

Feit, M.

A. V. Hamza, W. J. Siekhaus, A. M. Rubenchik, M. Feit, L. L. Chase, S. Demos, M. Savina, M. J. Pellin, M. J. Fluss, M. C. Nostrand, M. Runkel, B. W. Choi, M. Staggs, and I. D. Hutcheon, “Engineered defects for investigation of laser induced damage of fused silica at 355 nm,” Proc. SPIE 4679, 96–105 (2002).
[CrossRef]

Feit, M. D.

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35, 2702–2704 (2010).
[CrossRef]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef]

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–271 (2004).
[CrossRef]

F. Y. Génin, M. D. Feit, M. R. Kozlowski, A. M. Rubenchik, A. Salleo, and J. Yoshiyama, “Rear-surface laser damage on 355 nm silica optics owing to Fresnel diffraction on front-surface contamination particles,” Appl. Opt. 39, 3654–3663 (2000).
[CrossRef]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef]

Feldman, T.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94, 151114 (2009).
[CrossRef]

Fluss, M. J.

A. V. Hamza, W. J. Siekhaus, A. M. Rubenchik, M. Feit, L. L. Chase, S. Demos, M. Savina, M. J. Pellin, M. J. Fluss, M. C. Nostrand, M. Runkel, B. W. Choi, M. Staggs, and I. D. Hutcheon, “Engineered defects for investigation of laser induced damage of fused silica at 355 nm,” Proc. SPIE 4679, 96–105 (2002).
[CrossRef]

Génin, F. Y.

Hamza, A. V.

A. V. Hamza, W. J. Siekhaus, A. M. Rubenchik, M. Feit, L. L. Chase, S. Demos, M. Savina, M. J. Pellin, M. J. Fluss, M. C. Nostrand, M. Runkel, B. W. Choi, M. Staggs, and I. D. Hutcheon, “Engineered defects for investigation of laser induced damage of fused silica at 355 nm,” Proc. SPIE 4679, 96–105 (2002).
[CrossRef]

Hawley, D.

S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys. 54, 601–606 (1986).
[CrossRef]

Hed, P. P.

P. P. Hed, D. F. Edwards, and J. B. Davis, “Subsurface damage in optical materials: origin, measurement and removalreport UCRL-99548 (Lawrence Livermore National Laboratory, 1989), pp. 1–17.

Hutcheon, I. D.

A. V. Hamza, W. J. Siekhaus, A. M. Rubenchik, M. Feit, L. L. Chase, S. Demos, M. Savina, M. J. Pellin, M. J. Fluss, M. C. Nostrand, M. Runkel, B. W. Choi, M. Staggs, and I. D. Hutcheon, “Engineered defects for investigation of laser induced damage of fused silica at 355 nm,” Proc. SPIE 4679, 96–105 (2002).
[CrossRef]

Jiang, X.

L. Li, X. Xiang, X. Zu, X. Jiang, X. Yuan, and W. Zheng, “The electric field modulation by three-dimensional crack on fused silica subsurface,” Optik 122, 1423–1425 (2011).
[CrossRef]

Kozlowski, M. R.

F. Y. Génin, M. D. Feit, M. R. Kozlowski, A. M. Rubenchik, A. Salleo, and J. Yoshiyama, “Rear-surface laser damage on 355 nm silica optics owing to Fresnel diffraction on front-surface contamination particles,” Appl. Opt. 39, 3654–3663 (2000).
[CrossRef]

C. L. Battersby, L. M. Sheehan, and M. R. Kozlowski, “Effects of wet etch processing on laser-induced damage of fused silica surfaces,” Proc. SPIE 3578, 446–455 (1999).
[CrossRef]

A. Salleo, F. Y. Génin, J. Yoshiyama, C. J. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355 nm initiated at scratches,” Proc. SPIE 3244, 341–347 (1998).
[CrossRef]

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[CrossRef]

Lamaignere, L.

Laurence, T. A.

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35, 2702–2704 (2010).
[CrossRef]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94, 151114 (2009).
[CrossRef]

Lawn, B.

B. Lawn and R. Wilshaw, “Indentation fracture: principles and applications,” J. Mater. Sci. 10, 1049–1081 (1975).
[CrossRef]

Li, L.

L. Li, X. Xiang, X. Zu, X. Jiang, X. Yuan, and W. Zheng, “The electric field modulation by three-dimensional crack on fused silica subsurface,” Optik 122, 1423–1425 (2011).
[CrossRef]

Menapace, J.

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35, 2702–2704 (2010).
[CrossRef]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

Menapace, J. A.

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

Miller, P.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

Miller, P. E.

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35, 2702–2704 (2010).
[CrossRef]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94, 151114 (2009).
[CrossRef]

T. I. Suratwala, P. E. Miller, P. R. Ehrmann, and R. A. Steele, “Polishing slurry induced surface haze on phosphate laser glasses,” J. Non-Cryst. Solids 351, 2091–2101 (2005).
[CrossRef]

T. I. Suratwala, J. H. Campbell, P. E. Miller, C. B. Thorsness, M. O. Riley, P. R. Ehrmann, and R. A. Steele, “Phosphate laser glass for NIF: production status, slab selection, and recent technical advances,” Proc. SPIE 5341, 102–113 (2004).
[CrossRef]

Neauport, J.

Nichols, M. A.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[CrossRef]

Nostrand, M. C.

A. V. Hamza, W. J. Siekhaus, A. M. Rubenchik, M. Feit, L. L. Chase, S. Demos, M. Savina, M. J. Pellin, M. J. Fluss, M. C. Nostrand, M. Runkel, B. W. Choi, M. Staggs, and I. D. Hutcheon, “Engineered defects for investigation of laser induced damage of fused silica at 355 nm,” Proc. SPIE 4679, 96–105 (2002).
[CrossRef]

Pellin, M. J.

A. V. Hamza, W. J. Siekhaus, A. M. Rubenchik, M. Feit, L. L. Chase, S. Demos, M. Savina, M. J. Pellin, M. J. Fluss, M. C. Nostrand, M. Runkel, B. W. Choi, M. Staggs, and I. D. Hutcheon, “Engineered defects for investigation of laser induced damage of fused silica at 355 nm,” Proc. SPIE 4679, 96–105 (2002).
[CrossRef]

Perry, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef]

Pilon, F.

Pistor, T. V.

Radousky, H. B.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef]

Raether, R.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[CrossRef]

Riley, M. O.

T. I. Suratwala, J. H. Campbell, P. E. Miller, C. B. Thorsness, M. O. Riley, P. R. Ehrmann, and R. A. Steele, “Phosphate laser glass for NIF: production status, slab selection, and recent technical advances,” Proc. SPIE 5341, 102–113 (2004).
[CrossRef]

Roy, R.

S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys. 54, 601–606 (1986).
[CrossRef]

Rubenchik, A. M.

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–271 (2004).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef]

A. V. Hamza, W. J. Siekhaus, A. M. Rubenchik, M. Feit, L. L. Chase, S. Demos, M. Savina, M. J. Pellin, M. J. Fluss, M. C. Nostrand, M. Runkel, B. W. Choi, M. Staggs, and I. D. Hutcheon, “Engineered defects for investigation of laser induced damage of fused silica at 355 nm,” Proc. SPIE 4679, 96–105 (2002).
[CrossRef]

F. Y. Génin, M. D. Feit, M. R. Kozlowski, A. M. Rubenchik, A. Salleo, and J. Yoshiyama, “Rear-surface laser damage on 355 nm silica optics owing to Fresnel diffraction on front-surface contamination particles,” Appl. Opt. 39, 3654–3663 (2000).
[CrossRef]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef]

Runkel, M.

A. V. Hamza, W. J. Siekhaus, A. M. Rubenchik, M. Feit, L. L. Chase, S. Demos, M. Savina, M. J. Pellin, M. J. Fluss, M. C. Nostrand, M. Runkel, B. W. Choi, M. Staggs, and I. D. Hutcheon, “Engineered defects for investigation of laser induced damage of fused silica at 355 nm,” Proc. SPIE 4679, 96–105 (2002).
[CrossRef]

Salleo, A.

Savina, M.

A. V. Hamza, W. J. Siekhaus, A. M. Rubenchik, M. Feit, L. L. Chase, S. Demos, M. Savina, M. J. Pellin, M. J. Fluss, M. C. Nostrand, M. Runkel, B. W. Choi, M. Staggs, and I. D. Hutcheon, “Engineered defects for investigation of laser induced damage of fused silica at 355 nm,” Proc. SPIE 4679, 96–105 (2002).
[CrossRef]

Sheehan, L. M.

C. L. Battersby, L. M. Sheehan, and M. R. Kozlowski, “Effects of wet etch processing on laser-induced damage of fused silica surfaces,” Proc. SPIE 3578, 446–455 (1999).
[CrossRef]

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[CrossRef]

Shen, N.

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35, 2702–2704 (2010).
[CrossRef]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94, 151114 (2009).
[CrossRef]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

Shore, B. W.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef]

Siekhaus, W. J.

A. V. Hamza, W. J. Siekhaus, A. M. Rubenchik, M. Feit, L. L. Chase, S. Demos, M. Savina, M. J. Pellin, M. J. Fluss, M. C. Nostrand, M. Runkel, B. W. Choi, M. Staggs, and I. D. Hutcheon, “Engineered defects for investigation of laser induced damage of fused silica at 355 nm,” Proc. SPIE 4679, 96–105 (2002).
[CrossRef]

Staggs, M.

A. V. Hamza, W. J. Siekhaus, A. M. Rubenchik, M. Feit, L. L. Chase, S. Demos, M. Savina, M. J. Pellin, M. J. Fluss, M. C. Nostrand, M. Runkel, B. W. Choi, M. Staggs, and I. D. Hutcheon, “Engineered defects for investigation of laser induced damage of fused silica at 355 nm,” Proc. SPIE 4679, 96–105 (2002).
[CrossRef]

Steele, R.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

Steele, R. A.

T. I. Suratwala, P. E. Miller, P. R. Ehrmann, and R. A. Steele, “Polishing slurry induced surface haze on phosphate laser glasses,” J. Non-Cryst. Solids 351, 2091–2101 (2005).
[CrossRef]

T. I. Suratwala, J. H. Campbell, P. E. Miller, C. B. Thorsness, M. O. Riley, P. R. Ehrmann, and R. A. Steele, “Phosphate laser glass for NIF: production status, slab selection, and recent technical advances,” Proc. SPIE 5341, 102–113 (2004).
[CrossRef]

Steele, W. A.

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35, 2702–2704 (2010).
[CrossRef]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94, 151114 (2009).
[CrossRef]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

Stolz, C. J.

A. Salleo, F. Y. Génin, J. Yoshiyama, C. J. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355 nm initiated at scratches,” Proc. SPIE 3244, 341–347 (1998).
[CrossRef]

Stuart, B. C.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef]

Suratwala, T.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94, 151114 (2009).
[CrossRef]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

Suratwala, T. I.

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35, 2702–2704 (2010).
[CrossRef]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

T. I. Suratwala, P. E. Miller, P. R. Ehrmann, and R. A. Steele, “Polishing slurry induced surface haze on phosphate laser glasses,” J. Non-Cryst. Solids 351, 2091–2101 (2005).
[CrossRef]

T. I. Suratwala, J. H. Campbell, P. E. Miller, C. B. Thorsness, M. O. Riley, P. R. Ehrmann, and R. A. Steele, “Phosphate laser glass for NIF: production status, slab selection, and recent technical advances,” Proc. SPIE 5341, 102–113 (2004).
[CrossRef]

J. H. Campbell, and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263–264, 318–341 (2000).
[CrossRef]

Thomas, I.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[CrossRef]

Thorsness, C. B.

T. I. Suratwala, J. H. Campbell, P. E. Miller, C. B. Thorsness, M. O. Riley, P. R. Ehrmann, and R. A. Steele, “Phosphate laser glass for NIF: production status, slab selection, and recent technical advances,” Proc. SPIE 5341, 102–113 (2004).
[CrossRef]

Walmer, D.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

Wilshaw, R.

B. Lawn and R. Wilshaw, “Indentation fracture: principles and applications,” J. Mater. Sci. 10, 1049–1081 (1975).
[CrossRef]

Wong, L.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

Wong, L. L.

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35, 2702–2704 (2010).
[CrossRef]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

Xiang, X.

L. Li, X. Xiang, X. Zu, X. Jiang, X. Yuan, and W. Zheng, “The electric field modulation by three-dimensional crack on fused silica subsurface,” Optik 122, 1423–1425 (2011).
[CrossRef]

Yoshiyama, J.

F. Y. Génin, M. D. Feit, M. R. Kozlowski, A. M. Rubenchik, A. Salleo, and J. Yoshiyama, “Rear-surface laser damage on 355 nm silica optics owing to Fresnel diffraction on front-surface contamination particles,” Appl. Opt. 39, 3654–3663 (2000).
[CrossRef]

A. Salleo, F. Y. Génin, J. Yoshiyama, C. J. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355 nm initiated at scratches,” Proc. SPIE 3244, 341–347 (1998).
[CrossRef]

Yu, A. W.

S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys. 54, 601–606 (1986).
[CrossRef]

Yuan, X.

L. Li, X. Xiang, X. Zu, X. Jiang, X. Yuan, and W. Zheng, “The electric field modulation by three-dimensional crack on fused silica subsurface,” Optik 122, 1423–1425 (2011).
[CrossRef]

Zheng, W.

L. Li, X. Xiang, X. Zu, X. Jiang, X. Yuan, and W. Zheng, “The electric field modulation by three-dimensional crack on fused silica subsurface,” Optik 122, 1423–1425 (2011).
[CrossRef]

Zhu, S.

S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys. 54, 601–606 (1986).
[CrossRef]

Zu, X.

L. Li, X. Xiang, X. Zu, X. Jiang, X. Yuan, and W. Zheng, “The electric field modulation by three-dimensional crack on fused silica subsurface,” Optik 122, 1423–1425 (2011).
[CrossRef]

Am. J. Phys. (1)

S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys. 54, 601–606 (1986).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

M. Crisp, N. Boling, and G. Dubé, “Importance of Fresnel reflections in laser surface damage of transparent dielectrics,” Appl. Phys. Lett. 21, 364–366 (1972).
[CrossRef]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94, 151114 (2009).
[CrossRef]

Glass Sci. Technol. (1)

J. H. Campbell, “Damage resistant optical glasses for high power lasers: a continuing glass science and technology challenge,” Glass Sci. Technol. 75, 91–108 (2002).

IEEE J. Quantum Electron. (1)

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375–386 (1974).
[CrossRef]

J. Mater. Sci. (1)

B. Lawn and R. Wilshaw, “Indentation fracture: principles and applications,” J. Mater. Sci. 10, 1049–1081 (1975).
[CrossRef]

J. Non-Cryst. Solids (3)

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

J. H. Campbell, and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263–264, 318–341 (2000).
[CrossRef]

T. I. Suratwala, P. E. Miller, P. R. Ehrmann, and R. A. Steele, “Polishing slurry induced surface haze on phosphate laser glasses,” J. Non-Cryst. Solids 351, 2091–2101 (2005).
[CrossRef]

J. Opt. Soc. Am. A (1)

LLE Rev. (1)

Laboratory for Laser Energetics (LLE), “Subsurface damage in microgrinding optical glasses,” LLE Rev. 73, 45–49 (1997).

Opt. Express (1)

Opt. Lett. (1)

Optik (1)

L. Li, X. Xiang, X. Zu, X. Jiang, X. Yuan, and W. Zheng, “The electric field modulation by three-dimensional crack on fused silica subsurface,” Optik 122, 1423–1425 (2011).
[CrossRef]

Phys. Rev. Lett. (2)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef]

Proc. SPIE (7)

A. Salleo, F. Y. Génin, J. Yoshiyama, C. J. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355 nm initiated at scratches,” Proc. SPIE 3244, 341–347 (1998).
[CrossRef]

C. L. Battersby, L. M. Sheehan, and M. R. Kozlowski, “Effects of wet etch processing on laser-induced damage of fused silica surfaces,” Proc. SPIE 3578, 446–455 (1999).
[CrossRef]

A. V. Hamza, W. J. Siekhaus, A. M. Rubenchik, M. Feit, L. L. Chase, S. Demos, M. Savina, M. J. Pellin, M. J. Fluss, M. C. Nostrand, M. Runkel, B. W. Choi, M. Staggs, and I. D. Hutcheon, “Engineered defects for investigation of laser induced damage of fused silica at 355 nm,” Proc. SPIE 4679, 96–105 (2002).
[CrossRef]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–271 (2004).
[CrossRef]

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[CrossRef]

T. I. Suratwala, J. H. Campbell, P. E. Miller, C. B. Thorsness, M. O. Riley, P. R. Ehrmann, and R. A. Steele, “Phosphate laser glass for NIF: production status, slab selection, and recent technical advances,” Proc. SPIE 5341, 102–113 (2004).
[CrossRef]

Other (1)

P. P. Hed, D. F. Edwards, and J. B. Davis, “Subsurface damage in optical materials: origin, measurement and removalreport UCRL-99548 (Lawrence Livermore National Laboratory, 1989), pp. 1–17.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of the cracks modeled: (a) Hertzian crack (or cone crack), (b) radial crack, and (c) lateral crack.

Fig. 2.
Fig. 2.

Light intensity distribution due to an ideal cone crack. The crack is d=3μm deep and has a w=0.5μm width opening and a=1μm for surface radius. The angle between the crack wall and the surface normal is θ=30°. X, Y, and Z represent the cross section containing the maximum light intensification perpendicular to the x, y, and z directions, respectively. For the rear surface, the incident beam travels along the +z direction, while for the front surface, it travels along the z direction.

Fig. 3.
Fig. 3.

Light intensification as a function of geometry parameters for a cone crack on the rear surface. (a) Plot of peak light intensification as a function of crack depth; crack angle θ=30°, opening width w=0.5μm, surface radius a=2.5μm. (b) Plot of peak light intensification as a function of crack opening width; crack depth d=5μm, angle θ=30°, surface radius a=2.5μm.

Fig. 4.
Fig. 4.

(a) Light intensity distribution due to a partial cone crack on the rear surface. The crack is 6 μm deep and has a 0.5 μm wide opening and a=2.5μm for surface radius. The angle between the crack wall and the surface normal is 30°, and the arc degree is π/2. The arc is perpendicular to the y direction. X, Y, and Z represent the cross section containing the maximum light intensification perpendicular to the x, y, and z directions, respectively. (b) Plot of peak light intensity as a function of arc degree for partial cone crack; crack depth d=5μm, width w=0.5μm, angle θ=30°, surface radius a=2.5μm. The red lines in the map indicate the location of the crack.

Fig. 5.
Fig. 5.

Light intensity distribution around a planar radial crack. The crack is 0.6 μm deep, 30 nm wide, and normal to the glass surface.

Fig. 6.
Fig. 6.

Light intensity distribution due to a lateral crack of half-flat ellipsoid shape. The crack is 2 μm deep and has a 10 μm surface width (i.e., 2a=10μm) and a 0.6 μm width opening. X, Y, and Z represent the cross section containing the maximum light intensification perpendicular to the x, y, and z directions, respectively

Fig. 7.
Fig. 7.

Light intensification as a function of geometry parameters for a lateral crack on the front surface. (a) Plot of peak light intensification as a function of crack opening width; crack depth d=2μm and surface width 2a=10μm. (b) Plot of peak light intensity as a function of crack depth; crack opening width w=0.4μm and surface width 2a=10μm. (c) Plot of peak light intensification as a function of crack surface width; crack depth d=2μm and opening width w=0.4μm.

Fig. 8.
Fig. 8.

Light intensity distribution due to a lateral crack of partial cylinder shape. The crack is 3 μm deep, 12 μm wide (i.e., 2a=12μm), and has a 0.5 μm width opening.

Tables (3)

Tables Icon

Table 1. Summary of Light Intensification for Small Radial Cracks Normal to the Air–Glass Interface under TE and TM Illuminations

Tables Icon

Table 2. Summary of Light Intensification for Lateral Cracks of Different Geometriesa

Tables Icon

Table 3. Summary of the Overall Light Intensification Induced by All of the Three Cracks on the Front and Rear Surfaces

Metrics