Abstract

We propose a method of parallel full-range Fourier-domain optical coherence tomography (FDOCT) that is capable of acquiring an artifacts-free B-scan image by a single shot of a two-dimensional (2D) CCD camera. This method is based on a spatial carrier technique in which a spatial carrier-frequency is instantaneously introduced into the 2D spectral interferogram registered in parallel FDOCT by using a grating-generated line-reference beam. The spatial-carrier-contained 2D spectral interferogram is processed through Fourier transformation to obtain a complex 2D spectral interferogram, from which a full-range B-scan tomogram is reconstructed. The principle of our method is confirmed by imaging a tropical fish eye’s anterior chamber and a shrimp telson in vivo. The suppression ratio of the complex conjugate artifact can reach 36 dB.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef]
  2. R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
    [CrossRef]
  3. B. Liu and M. E. Brezinski, “Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography,” J. Biomed. Opt. 12, 044007 (2007).
    [CrossRef]
  4. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415–1417(2002).
    [CrossRef]
  5. M. Sarunic, M. A. Choma, C. Yang, and J. A. Izatt, “Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3×3 fiber couplers,” Opt. Express 13, 957–967 (2005).
    [CrossRef]
  6. B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation,” Opt. Lett. 31, 362–364 (2006).
    [CrossRef]
  7. K.-S. Lee, P. Meemon, W. Dallas, K. Hsu, and J. P. Rolland, “Dual detection full range frequency domain optical coherence tomography,” Opt. Lett. 35, 1058–1060 (2010).
    [CrossRef]
  8. A. Bradu and A. Gh. Podoleanu, “Attenuation of mirror image and enhancement of the signal-to-noise ratio in a Talbot bands optical coherence tomography system,” J. Biomed. Opt. 16, 076010 (2011).
    [CrossRef]
  9. P. Bu, X. Wang, and O. Sasaki, “Full-range parallel Fourier-domain optical coherence tomography using sinusoidal phase-modulating interferometry,” J. Opt. A 9, 422–426 (2007).
    [CrossRef]
  10. J. Zhang, J. S. Nelson, and Z. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator,” Opt. Lett. 30, 147–149(2005).
    [CrossRef]
  11. L. An, H. M. Subhash, and R. K. Wang, “Full range complex spectral domain optical coherence tomography for volumetric imaging at 47,000 A-scans per second,” J. Opt. 12, 084003 (2010).
    [CrossRef]
  12. Y. Nakamura, S. Makita, M. Yamanari, M. Itoh, T. Yatagai, and Y. Yasuno, “High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography,” Opt. Express 15, 7103–7116 (2007).
    [CrossRef]
  13. P. Bu, X. Wang, and O. Sasak, “One-shot parallel complex Fourier-domain optical coherence tomography using a spatial carrier frequency,” Opt. Eng. 47, 050502 (2008).
    [CrossRef]
  14. I. Zeylikovich, A. Gilerson, and R. R. Alfano, “Nonmechanical grating-generated scanning coherence microscopy,” Opt. Lett. 23, 1797–1799 (1998).
    [CrossRef]
  15. Y. Watanabe, F. Sajima, T. Itagaki, K. Watanabe, and Y. Shuto, “High-speed linear detection time domain optical coherence tomography with reflective grating-generated spatial reference delay,” Appl. Opt. 48, 3401–3405 (2009).
    [CrossRef]

2011 (1)

A. Bradu and A. Gh. Podoleanu, “Attenuation of mirror image and enhancement of the signal-to-noise ratio in a Talbot bands optical coherence tomography system,” J. Biomed. Opt. 16, 076010 (2011).
[CrossRef]

2010 (2)

L. An, H. M. Subhash, and R. K. Wang, “Full range complex spectral domain optical coherence tomography for volumetric imaging at 47,000 A-scans per second,” J. Opt. 12, 084003 (2010).
[CrossRef]

K.-S. Lee, P. Meemon, W. Dallas, K. Hsu, and J. P. Rolland, “Dual detection full range frequency domain optical coherence tomography,” Opt. Lett. 35, 1058–1060 (2010).
[CrossRef]

2009 (1)

2008 (1)

P. Bu, X. Wang, and O. Sasak, “One-shot parallel complex Fourier-domain optical coherence tomography using a spatial carrier frequency,” Opt. Eng. 47, 050502 (2008).
[CrossRef]

2007 (3)

Y. Nakamura, S. Makita, M. Yamanari, M. Itoh, T. Yatagai, and Y. Yasuno, “High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography,” Opt. Express 15, 7103–7116 (2007).
[CrossRef]

P. Bu, X. Wang, and O. Sasaki, “Full-range parallel Fourier-domain optical coherence tomography using sinusoidal phase-modulating interferometry,” J. Opt. A 9, 422–426 (2007).
[CrossRef]

B. Liu and M. E. Brezinski, “Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography,” J. Biomed. Opt. 12, 044007 (2007).
[CrossRef]

2006 (1)

2005 (2)

2003 (1)

2002 (1)

1998 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Alfano, R. R.

An, L.

L. An, H. M. Subhash, and R. K. Wang, “Full range complex spectral domain optical coherence tomography for volumetric imaging at 47,000 A-scans per second,” J. Opt. 12, 084003 (2010).
[CrossRef]

Bouma, B. E.

Bradu, A.

A. Bradu and A. Gh. Podoleanu, “Attenuation of mirror image and enhancement of the signal-to-noise ratio in a Talbot bands optical coherence tomography system,” J. Biomed. Opt. 16, 076010 (2011).
[CrossRef]

Brezinski, M. E.

B. Liu and M. E. Brezinski, “Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography,” J. Biomed. Opt. 12, 044007 (2007).
[CrossRef]

Bu, P.

P. Bu, X. Wang, and O. Sasak, “One-shot parallel complex Fourier-domain optical coherence tomography using a spatial carrier frequency,” Opt. Eng. 47, 050502 (2008).
[CrossRef]

P. Bu, X. Wang, and O. Sasaki, “Full-range parallel Fourier-domain optical coherence tomography using sinusoidal phase-modulating interferometry,” J. Opt. A 9, 422–426 (2007).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Chen, Z.

Choma, M. A.

Dallas, W.

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Fujimoto, J.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Gilerson, A.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Hitzenberger, C. K.

Hsu, K.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Itagaki, T.

Itoh, M.

Izatt, J. A.

Kowalczyk, A.

Lee, K.-S.

Leitgeb, R.

Leitgeb, R. A.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Liu, B.

B. Liu and M. E. Brezinski, “Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography,” J. Biomed. Opt. 12, 044007 (2007).
[CrossRef]

Makita, S.

Meemon, P.

Nakamura, Y.

Nelson, J. S.

Podoleanu, A. Gh.

A. Bradu and A. Gh. Podoleanu, “Attenuation of mirror image and enhancement of the signal-to-noise ratio in a Talbot bands optical coherence tomography system,” J. Biomed. Opt. 16, 076010 (2011).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Rolland, J. P.

Sajima, F.

Sarunic, M.

Sasak, O.

P. Bu, X. Wang, and O. Sasak, “One-shot parallel complex Fourier-domain optical coherence tomography using a spatial carrier frequency,” Opt. Eng. 47, 050502 (2008).
[CrossRef]

Sasaki, O.

P. Bu, X. Wang, and O. Sasaki, “Full-range parallel Fourier-domain optical coherence tomography using sinusoidal phase-modulating interferometry,” J. Opt. A 9, 422–426 (2007).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Shuto, Y.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Subhash, H. M.

L. An, H. M. Subhash, and R. K. Wang, “Full range complex spectral domain optical coherence tomography for volumetric imaging at 47,000 A-scans per second,” J. Opt. 12, 084003 (2010).
[CrossRef]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Tearney, G. J.

Vakoc, B. J.

Wang, R. K.

L. An, H. M. Subhash, and R. K. Wang, “Full range complex spectral domain optical coherence tomography for volumetric imaging at 47,000 A-scans per second,” J. Opt. 12, 084003 (2010).
[CrossRef]

Wang, X.

P. Bu, X. Wang, and O. Sasak, “One-shot parallel complex Fourier-domain optical coherence tomography using a spatial carrier frequency,” Opt. Eng. 47, 050502 (2008).
[CrossRef]

P. Bu, X. Wang, and O. Sasaki, “Full-range parallel Fourier-domain optical coherence tomography using sinusoidal phase-modulating interferometry,” J. Opt. A 9, 422–426 (2007).
[CrossRef]

Watanabe, K.

Watanabe, Y.

Wojtkowski, M.

Yamanari, M.

Yang, C.

Yasuno, Y.

Yatagai, T.

Yun, S. H.

Zeylikovich, I.

Zhang, J.

Appl. Opt. (1)

J. Biomed. Opt. (2)

B. Liu and M. E. Brezinski, “Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography,” J. Biomed. Opt. 12, 044007 (2007).
[CrossRef]

A. Bradu and A. Gh. Podoleanu, “Attenuation of mirror image and enhancement of the signal-to-noise ratio in a Talbot bands optical coherence tomography system,” J. Biomed. Opt. 16, 076010 (2011).
[CrossRef]

J. Opt. (1)

L. An, H. M. Subhash, and R. K. Wang, “Full range complex spectral domain optical coherence tomography for volumetric imaging at 47,000 A-scans per second,” J. Opt. 12, 084003 (2010).
[CrossRef]

J. Opt. A (1)

P. Bu, X. Wang, and O. Sasaki, “Full-range parallel Fourier-domain optical coherence tomography using sinusoidal phase-modulating interferometry,” J. Opt. A 9, 422–426 (2007).
[CrossRef]

Opt. Eng. (1)

P. Bu, X. Wang, and O. Sasak, “One-shot parallel complex Fourier-domain optical coherence tomography using a spatial carrier frequency,” Opt. Eng. 47, 050502 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the parallel full-range FDOCT. (b) Horizontal and (c) vertical view of optics. SLD, super-luminescent diode; L1, collimation lens; L2--L6, achromatic lenses; CL, achromatic cylindrical lens; BS, cube beam splitter; and DG1--DG2, diffraction grating.

Fig. 2.
Fig. 2.

Illustration shows the spatial frequency spectrum of interference signal: (a) without and (b) with a carrier frequency f0.

Fig. 3.
Fig. 3.

Cross-sectional images of scotch tape obtained by (a) straightforward FDOCT, (b) mirror-based parallel complex FDOCT, and (c) grating-based parallel complex FDOCT.

Fig. 4.
Fig. 4.

Lateral position dependence of the sensitivity at a depth of 50 μm.

Fig. 5.
Fig. 5.

(a) USAF 1951 resolution target. (b) OCT tomogram of group 6 pattern. (c) Transverse intensity profile from point A to point B.

Fig. 6.
Fig. 6.

Cross-sectional images of tropical fish eye’s anterior chamber, shrimp’s telson and a pearl obtained by (a), (c), (e) straightforward FDOCT and (b), (d), (f) single-shot parallel full range complex FDOCT.

Fig. 7.
Fig. 7.

Illustration shows the chirp of spatial carrier frequency. (a) Different diffraction angle θ and (b) different spatial carrier frequency fx0 relative to different wavelength λ.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

θ0=sin1(mλ0/2p),
f0=2tanθ0/λ,
g(k,x)=g0(k,x)+2nS(k)αn(x)β0cos[2k(zn(x)+x·tanθ0)],
g(k,x)=g0(k,x)+nbn(k,x)exp(i2πf0x)+nbn*(k,x)exp(i2πf0x),
G(k,fx)=G0(k,fx)+nBn(k,fxf0)+nBn*(k,fx+f0),
gcomp(k,x)=nbn(k,x)=nS(k)αn(x)β0exp[i2kzn(x)].
fmax=M/(2d),
f0(opt)=fmax/2=M/(4d).
θmax_mir=tan1(L/F)2,
S(z)=S0(sinζζ)2,
θ=sin1(mλpmλ02p).
fx0=tanθ+tanθ0λ.
Δfx0=fx0maxfx0min=tanθmax+tanθ0λmaxtanθmin+tanθ0λmin,
δfx0=M480×d,

Metrics