Abstract

Acousto-optical coherence tomography (AOCT) is a variant of acousto-optic imaging (also called ultrasound modulated optical tomography) that makes possible to get resolution along the ultrasound propagation axis z. We present here AOCT experimental results, and we study how the z resolution depends on time step between phase jumps Tϕ, or on the correlation length Δz. By working at low resolution, we perform a quantitative comparison of the z measurements with the theoretical point spread function. We also present images recorded with different z resolution, and we qualitatively show how the image quality varies with Tϕ, or Δz.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Phys. B 204, 14–19 (1995).
    [CrossRef]
  2. L. Wang, S. L. Jacques, and X. Zhao, “Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media,” Opt. Lett. 20, 629–631 (1995).
    [CrossRef]
  3. M. Kempe, M. Larionov, D. Zaslavsky, and A. Z. Genack, “Acousto-optic tomography with multiply scattered light,” J. Opt. Soc. Am. A 14, 1151–1158 (1997).
    [CrossRef]
  4. S. Leveque, A. C. Boccara, M. Lebec, and H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
    [CrossRef]
  5. G. Yao and L. V. Wang, “Theoretical and experimental studies of ultrasound-modulated optical tomography in biological tissue,” Appl. Opt. 39, 659–664 (2000).
    [CrossRef]
  6. L. Wang and X. Zhao, “Ultrasound-modulated optical tomography of absorbing objects buried in dense tissue-simulating turbid media,” Appl. Opt. 36, 7277–7282 (1997).
    [CrossRef]
  7. M. Gross, P. Goy, and M. Al-Koussa, “Shot-noise detection of ultrasound-tagged photons in ultrasound-modulated optical imaging,” Opt. Lett. 28, 2482–2484 (2003).
    [CrossRef]
  8. F. Le Clerc, L. Collot, and M. Gross, “Numerical heterodyne holography with two-dimensional photodetector arrays,” Opt. Lett. 25, 716–718 (2000).
    [CrossRef]
  9. M. Gross and M. Atlan, “Digital holography with ultimate sensitivity,” Opt. Lett. 32, 909–911 (2007).
    [CrossRef]
  10. F. Verpillat, F. Joud, M. Atlan, and M. Gross, “Digital holography at shot noise level,” J. Display Technol. 6, 455–464 (2010).
    [CrossRef]
  11. M. Gross, P. Goy, B. C. Forget, M. Atlan, F. Ramaz, A. C. Boccara, and A. K. Dunn, “Heterodyne detection of multiply scattered monochromatic light with a multipixel detector,” Opt. Lett. 30, 1357–1359 (2005).
    [CrossRef]
  12. M. Atlan and M. Gross, “Spatiotemporal heterodyne detection,” J. Opt. Soc. Am. A 24, 2701–2709 (2007).
    [CrossRef]
  13. T. W. Murray, L. Sui, G. Maguluri, R. A. Roy, A. Nieva, F. Blonigen, and C. A. DiMarzio, “Detection of ultrasound-modulated photons in diffuse media using the photorefractive effect,” Opt. Lett. 29, 2509–2511 (2004).
    [CrossRef]
  14. L. Sui, R. A. Roy, C. A. DiMarzio, and T. W. Murray, “Imaging in diffuse media with pulsed-ultrasound-modulated light and the photorefractive effect,” Appl. Opt. 44, 4041–4048 (2005).
    [CrossRef]
  15. F. Ramaz, B. Forget, M. Atlan, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12, 5469–5474 (2004).
    [CrossRef]
  16. M. Lesaffre, F. Jean, F. Ramaz, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “In situ monitoring of the photorefractive response time in a self-adaptive wavefront holography setup developed for acousto-optic imaging,” Opt. Express 15, 1030–1042 (2007).
    [CrossRef]
  17. X. Xu, H. Zhang, P. Hemmer, D. Qing, C. Kim, and L. V. Wang, “Photorefractive detection of tissue optical and mechanical properties by ultrasound modulated optical tomography,” Opt. Lett. 32, 656–658 (2007).
    [CrossRef]
  18. A. Lev and B. G. Sfez, “Pulsed ultrasound-modulated light tomography,” Opt. Lett. 28, 1549–1551 (2003).
    [CrossRef]
  19. A. Lev, E. Rubanov, B. Sfez, S. Shany, and A. J. Foldes, “Ultrasound-modulated light tomography assessment of osteoporosis,” Opt. Lett. 30, 1692–1694 (2005).
    [CrossRef]
  20. M. Atlan, B. C. Forget, F. Ramaz, A. C. Boccara, and M. Gross, “Pulsed acousto-optic imaging in dynamic scattering media with heterodyne parallel speckle detection,” Opt. Lett. 30, 1360–1362 (2005).
    [CrossRef]
  21. S. Farahi, G. Montemezzani, A. A. Grabar, J. P. Huignard, and F. Ramaz, “Photorefractive acousto-optic imaging in thick scattering media at 790 nm with a Sn2P2S6:Te crystal,” Opt. Lett. 35, 1798–1800 (2010).
    [CrossRef]
  22. G. Rousseau, A. Blouin, and J. P. Monchalin, “Ultrasound-modulated optical imaging using a powerful long pulse laser,” Opt. Express 16, 12577–12590 (2008).
    [CrossRef]
  23. M. Lesaffre, S. Farahi, M. Gross, P. Delaye, C. Boccara, and F. Ramaz, “Acousto-optical coherence tomography using random phase jumps on ultrasound and light,” Opt. Express 17, 18211–18218 (2009).
    [CrossRef]
  24. M. Lesaffre, S. Farahi, A. C. Boccara, F. Ramaz, and M. Gross, “Theoretical study of acousto-optical coherence tomography using random phase jumps on ultrasound and light,” J. Opt. Soc. Am. A 28, 1436–1444 (2011).
    [CrossRef]
  25. T. Y. Chang, A. E. Chiou, and P. Yeh, “Cross-polarization photorefractive two-beam coupling in gallium arsenide,” J. Opt. Soc. Am. B 5, 1724–1729 (1988).
    [CrossRef]
  26. M. Gross, F. Ramaz, B. Forget, M. Atlan, A. Boccara, P. Delaye, and G. Roosen, “Theoretical description of the photorefractive detection of the ultrasound modulated photons in scattering media,” Opt. Express 13, 7097–7112 (2005).
    [CrossRef]
  27. E. B. la Guillaume, S. Farahi, E. Bossy, M. Gross, and F. Ramaz, “Acousto-optical coherence tomography with a digital holographic detection scheme,” Opt. Lett. 37, 3216–3218 (2012).
    [CrossRef]
  28. S. Farahi, A. A. Grabar, J. P. Huignard, and F. Ramaz, “Time resolved three-dimensional acousto-optic imaging of thick scattering media,” Opt. Lett. 37, 2754–2756 (2012).
    [CrossRef]
  29. “Medical electrical equipment: particular requirements for the safety of ultrasound diagnostic and monitoring equipment,” IEC 60601, part 2–37.
  30. “Information for manufacturers seeking marketing clearance of diagnostic ultrasound systems and transducers,” Division of Reproductive, Abdominal, Ear, Nose, Throat and Radiological Devices, Food and Drug Administration, 1997.

2012 (2)

2011 (1)

2010 (2)

2009 (1)

2008 (1)

2007 (4)

2005 (5)

2004 (2)

2003 (2)

2000 (2)

1999 (1)

1997 (2)

1995 (2)

1988 (1)

Al-Koussa, M.

Atlan, M.

Blonigen, F.

Blouin, A.

Boccara, A.

Boccara, A. C.

Boccara, C.

Bossy, E.

Chang, T. Y.

Chiou, A. E.

Collot, L.

Delaye, P.

DiMarzio, C. A.

Dunn, A. K.

Farahi, S.

Foldes, A. J.

Forget, B.

Forget, B. C.

Genack, A. Z.

Goy, P.

Grabar, A. A.

Gross, M.

E. B. la Guillaume, S. Farahi, E. Bossy, M. Gross, and F. Ramaz, “Acousto-optical coherence tomography with a digital holographic detection scheme,” Opt. Lett. 37, 3216–3218 (2012).
[CrossRef]

M. Lesaffre, S. Farahi, A. C. Boccara, F. Ramaz, and M. Gross, “Theoretical study of acousto-optical coherence tomography using random phase jumps on ultrasound and light,” J. Opt. Soc. Am. A 28, 1436–1444 (2011).
[CrossRef]

F. Verpillat, F. Joud, M. Atlan, and M. Gross, “Digital holography at shot noise level,” J. Display Technol. 6, 455–464 (2010).
[CrossRef]

M. Lesaffre, S. Farahi, M. Gross, P. Delaye, C. Boccara, and F. Ramaz, “Acousto-optical coherence tomography using random phase jumps on ultrasound and light,” Opt. Express 17, 18211–18218 (2009).
[CrossRef]

M. Gross and M. Atlan, “Digital holography with ultimate sensitivity,” Opt. Lett. 32, 909–911 (2007).
[CrossRef]

M. Atlan and M. Gross, “Spatiotemporal heterodyne detection,” J. Opt. Soc. Am. A 24, 2701–2709 (2007).
[CrossRef]

M. Lesaffre, F. Jean, F. Ramaz, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “In situ monitoring of the photorefractive response time in a self-adaptive wavefront holography setup developed for acousto-optic imaging,” Opt. Express 15, 1030–1042 (2007).
[CrossRef]

M. Gross, P. Goy, B. C. Forget, M. Atlan, F. Ramaz, A. C. Boccara, and A. K. Dunn, “Heterodyne detection of multiply scattered monochromatic light with a multipixel detector,” Opt. Lett. 30, 1357–1359 (2005).
[CrossRef]

M. Gross, F. Ramaz, B. Forget, M. Atlan, A. Boccara, P. Delaye, and G. Roosen, “Theoretical description of the photorefractive detection of the ultrasound modulated photons in scattering media,” Opt. Express 13, 7097–7112 (2005).
[CrossRef]

M. Atlan, B. C. Forget, F. Ramaz, A. C. Boccara, and M. Gross, “Pulsed acousto-optic imaging in dynamic scattering media with heterodyne parallel speckle detection,” Opt. Lett. 30, 1360–1362 (2005).
[CrossRef]

F. Ramaz, B. Forget, M. Atlan, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12, 5469–5474 (2004).
[CrossRef]

M. Gross, P. Goy, and M. Al-Koussa, “Shot-noise detection of ultrasound-tagged photons in ultrasound-modulated optical imaging,” Opt. Lett. 28, 2482–2484 (2003).
[CrossRef]

F. Le Clerc, L. Collot, and M. Gross, “Numerical heterodyne holography with two-dimensional photodetector arrays,” Opt. Lett. 25, 716–718 (2000).
[CrossRef]

Hemmer, P.

Huignard, J. P.

Jacques, S. L.

Jean, F.

Joud, F.

Kempe, M.

Kim, C.

la Guillaume, E. B.

Larionov, M.

Le Clerc, F.

Lebec, M.

Lesaffre, M.

Leutz, W.

W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Phys. B 204, 14–19 (1995).
[CrossRef]

Lev, A.

Leveque, S.

Maguluri, G.

Maret, G.

W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Phys. B 204, 14–19 (1995).
[CrossRef]

Monchalin, J. P.

Montemezzani, G.

Murray, T. W.

Nieva, A.

Qing, D.

Ramaz, F.

S. Farahi, A. A. Grabar, J. P. Huignard, and F. Ramaz, “Time resolved three-dimensional acousto-optic imaging of thick scattering media,” Opt. Lett. 37, 2754–2756 (2012).
[CrossRef]

E. B. la Guillaume, S. Farahi, E. Bossy, M. Gross, and F. Ramaz, “Acousto-optical coherence tomography with a digital holographic detection scheme,” Opt. Lett. 37, 3216–3218 (2012).
[CrossRef]

M. Lesaffre, S. Farahi, A. C. Boccara, F. Ramaz, and M. Gross, “Theoretical study of acousto-optical coherence tomography using random phase jumps on ultrasound and light,” J. Opt. Soc. Am. A 28, 1436–1444 (2011).
[CrossRef]

S. Farahi, G. Montemezzani, A. A. Grabar, J. P. Huignard, and F. Ramaz, “Photorefractive acousto-optic imaging in thick scattering media at 790 nm with a Sn2P2S6:Te crystal,” Opt. Lett. 35, 1798–1800 (2010).
[CrossRef]

M. Lesaffre, S. Farahi, M. Gross, P. Delaye, C. Boccara, and F. Ramaz, “Acousto-optical coherence tomography using random phase jumps on ultrasound and light,” Opt. Express 17, 18211–18218 (2009).
[CrossRef]

M. Lesaffre, F. Jean, F. Ramaz, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “In situ monitoring of the photorefractive response time in a self-adaptive wavefront holography setup developed for acousto-optic imaging,” Opt. Express 15, 1030–1042 (2007).
[CrossRef]

M. Gross, P. Goy, B. C. Forget, M. Atlan, F. Ramaz, A. C. Boccara, and A. K. Dunn, “Heterodyne detection of multiply scattered monochromatic light with a multipixel detector,” Opt. Lett. 30, 1357–1359 (2005).
[CrossRef]

M. Gross, F. Ramaz, B. Forget, M. Atlan, A. Boccara, P. Delaye, and G. Roosen, “Theoretical description of the photorefractive detection of the ultrasound modulated photons in scattering media,” Opt. Express 13, 7097–7112 (2005).
[CrossRef]

M. Atlan, B. C. Forget, F. Ramaz, A. C. Boccara, and M. Gross, “Pulsed acousto-optic imaging in dynamic scattering media with heterodyne parallel speckle detection,” Opt. Lett. 30, 1360–1362 (2005).
[CrossRef]

F. Ramaz, B. Forget, M. Atlan, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12, 5469–5474 (2004).
[CrossRef]

Roosen, G.

Rousseau, G.

Roy, R. A.

Rubanov, E.

Saint-Jalmes, H.

Sfez, B.

Sfez, B. G.

Shany, S.

Sui, L.

Verpillat, F.

Wang, L.

Wang, L. V.

Xu, X.

Yao, G.

Yeh, P.

Zaslavsky, D.

Zhang, H.

Zhao, X.

Appl. Opt. (3)

J. Display Technol. (1)

J. Opt. Soc. Am. A (3)

J. Opt. Soc. Am. B (1)

Opt. Express (5)

Opt. Lett. (14)

X. Xu, H. Zhang, P. Hemmer, D. Qing, C. Kim, and L. V. Wang, “Photorefractive detection of tissue optical and mechanical properties by ultrasound modulated optical tomography,” Opt. Lett. 32, 656–658 (2007).
[CrossRef]

A. Lev and B. G. Sfez, “Pulsed ultrasound-modulated light tomography,” Opt. Lett. 28, 1549–1551 (2003).
[CrossRef]

A. Lev, E. Rubanov, B. Sfez, S. Shany, and A. J. Foldes, “Ultrasound-modulated light tomography assessment of osteoporosis,” Opt. Lett. 30, 1692–1694 (2005).
[CrossRef]

M. Atlan, B. C. Forget, F. Ramaz, A. C. Boccara, and M. Gross, “Pulsed acousto-optic imaging in dynamic scattering media with heterodyne parallel speckle detection,” Opt. Lett. 30, 1360–1362 (2005).
[CrossRef]

S. Farahi, G. Montemezzani, A. A. Grabar, J. P. Huignard, and F. Ramaz, “Photorefractive acousto-optic imaging in thick scattering media at 790 nm with a Sn2P2S6:Te crystal,” Opt. Lett. 35, 1798–1800 (2010).
[CrossRef]

S. Leveque, A. C. Boccara, M. Lebec, and H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
[CrossRef]

L. Wang, S. L. Jacques, and X. Zhao, “Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media,” Opt. Lett. 20, 629–631 (1995).
[CrossRef]

M. Gross, P. Goy, and M. Al-Koussa, “Shot-noise detection of ultrasound-tagged photons in ultrasound-modulated optical imaging,” Opt. Lett. 28, 2482–2484 (2003).
[CrossRef]

F. Le Clerc, L. Collot, and M. Gross, “Numerical heterodyne holography with two-dimensional photodetector arrays,” Opt. Lett. 25, 716–718 (2000).
[CrossRef]

M. Gross and M. Atlan, “Digital holography with ultimate sensitivity,” Opt. Lett. 32, 909–911 (2007).
[CrossRef]

E. B. la Guillaume, S. Farahi, E. Bossy, M. Gross, and F. Ramaz, “Acousto-optical coherence tomography with a digital holographic detection scheme,” Opt. Lett. 37, 3216–3218 (2012).
[CrossRef]

S. Farahi, A. A. Grabar, J. P. Huignard, and F. Ramaz, “Time resolved three-dimensional acousto-optic imaging of thick scattering media,” Opt. Lett. 37, 2754–2756 (2012).
[CrossRef]

T. W. Murray, L. Sui, G. Maguluri, R. A. Roy, A. Nieva, F. Blonigen, and C. A. DiMarzio, “Detection of ultrasound-modulated photons in diffuse media using the photorefractive effect,” Opt. Lett. 29, 2509–2511 (2004).
[CrossRef]

M. Gross, P. Goy, B. C. Forget, M. Atlan, F. Ramaz, A. C. Boccara, and A. K. Dunn, “Heterodyne detection of multiply scattered monochromatic light with a multipixel detector,” Opt. Lett. 30, 1357–1359 (2005).
[CrossRef]

Phys. B (1)

W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Phys. B 204, 14–19 (1995).
[CrossRef]

Other (2)

“Medical electrical equipment: particular requirements for the safety of ultrasound diagnostic and monitoring equipment,” IEC 60601, part 2–37.

“Information for manufacturers seeking marketing clearance of diagnostic ultrasound systems and transducers,” Division of Reproductive, Abdominal, Ear, Nose, Throat and Radiological Devices, Food and Drug Administration, 1997.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

AOCT experimental setup. Laser, Nd:YAG laser (1 W at 1064 nm); amplifier, optical amplifier 5W-doped Yb; IO, optical isolator Faraday; λ/2, half-wave plate; AOM1,2, acousto-optic modulators; M, mirror; BS, polarizing beam splitter; X, radio frequency (RF) 80MHz double balanced mixer; A, RF amplifier; GaAs, photorefractive GaAs crystal; PL1,2, linear polarizers; Si, silicon photodiode (0.3cm2); L in, Lock-in amplifier; PC, personal computer; PZT, piezoelectric acoustic transductor (2MHz). H(t): 0, π random phase modulation at frequency ωmod=3kHz, and with duty cycle r=0.24; ψUS, ψP: random sequence of phase.

Fig. 2.
Fig. 2.

Plot of correlation function g̲1(τ) (a) and its square g̲12(τ) (b). The horizontal axis units is either τ/TΦ (for time correlation) or z/Δz with Δz=cUSTΦ (for z resolution).

Fig. 3.
Fig. 3.

Photodiode Lock-in acousto-optic signal as a function of the longitudinal coordinate z for Δz=10.0, 6.0, 4.0, 2.0, 1.6, 1.2, 0.8, 0.6, 0.4, and 0.2 cm.

Fig. 4.
Fig. 4.

Experimental profiles (black circles) made with (a) Δz=10.0 and (b) 6.0 cm. Theoretical shape g̲12 (red curves) made by adjusting Δz in order to get the best fit with experiment. Fit yields (a) Δz=10.27 and (b) 6.09 cm.

Fig. 5.
Fig. 5.

Photodiode Lock-in signal SPD as a function of the PZT location along the x axis. Experimental data (cross), and exp(x2/wg2) fit with wg=10.2mm (dashed curve).

Fig. 6.
Fig. 6.

Colored curves: experimental profiles SPD(z); red curves: theoretical profiles Ag̲12(x)exp(x2/wg2) where is the convolution operator. Δz is 10, 4, 2, 1, 0.5, and 0.3 cm.

Fig. 7.
Fig. 7.

AOCT image (x,z) of a scattering sample without absorbing inclusion (e=3.2cm, μs=6cm1).

Fig. 8.
Fig. 8.

Profiles of the AOCT photodiode Lock-in signal of the sample of Fig. 7 along (a) x and (b) z directions.

Fig. 9.
Fig. 9.

Photographs of the nonscattering sample (e=3.0cm, μs=0) having two absorbing inclusions (diameter: 3 mm, spacing: 2 mm).

Fig. 10.
Fig. 10.

AOCT xz images of the sample of Fig. 9 with (a) Δz=11.4mm, (b) 5.7 mm, (c) 2.9 mm, and (d) 1.4 mm.

Fig. 11.
Fig. 11.

Profiles of the AOCT photodiode Lock-in signal (crosses and blues curves) of the sample of Fig. 9 along the z direction with (a) Δz=11.4mm, (b) 5.7 mm, (c) 2.9 mm, and (d) 1.4 mm, and theoretical profiles (dashed curves) calculated with totally (black) and partially (red) absorbing inclusions.

Fig. 12.
Fig. 12.

Pictures of the diffusing sample (e=2cm, μs=10cm1) with two absorbing (3 mm diameter, 2 mm spacing) at mid-thickness in the plane (yz).

Fig. 13.
Fig. 13.

AOCT xz images of the sample of Fig. 12 with (a) Δz=11.4mm, (b) 5.7 mm, (c) 2.9 mm, and (d) 1.4 mm.

Fig. 14.
Fig. 14.

Profiles of the acousto-optic AOCT photodiode Lock-in signal of the sample of Fig. 12 along the z direction with Δz of (a) 11.4 mm, (b) 5.7 mm, (c) 2.9 mm, and (d) 1.4 mm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

g̲1(τ)=ejψP(t)ejψP(tτ)=ejψUS(t)ejψUS(tτ).
ψP(t)=ψUS(tτ)
TΦTmodτPR.
H(t)=+1for0<t/Tmod<r=1forr<t/Tmod<1.

Metrics