Abstract

The author’s experimental activities in ocean optics that are related to the inherent optical properties of natural waters are discussed. The specific subjects discussed are (1) measurements of Mueller matrices for several ocean water regions; (2) measurements of the spectral absorption of pure water throughout the visible spectrum; (3) the development of an in situ absorption meter that provides higher accuracy than is available for any other inherent optical property; (4) a relatively simple expression for the refractive index of water as a function of temperature, salinity, and wavelength; and (5) development of the first instrument to directly determine the backscattering coefficient bb.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. F. Beardsley, “Mueller scattering matrix of sea water,” J. Opt. Soc. Am. 58, 52–57 (1968).
    [CrossRef]
  2. E. A. Kadyshevich, Y. S. Lyubovtseva, and G. V. Rozenberg, “Light-scattering matrices of Pacific and Atlantic Ocean waters,” Izv. Atmos. Ocean. Phys. 12, 106–111 (1976).
  3. Y. A. Kadyshevich, Y. S. Lyubovtseva, and I. N. Plakhina, “Measurement of matrices for light scattered by sea water,” Izv. Atmos. Ocean. Phys. 7, 367–371 (1971).
  4. Y. A. Kadyshevich, “Light-scattering matrices of inshore waters of the Baltic Sea,” Izv. Atmos. Ocean. Phys. 13, 77–78 (1977).
  5. K. J. Voss, “Measurement of the Mueller matrix for ocean water,” Ph.D. dissertation, Texas A&M University, College Station, Texas (1984).
  6. R. C. Thompson, J. R. Bottiger, and E. S. Fry, “Measurement of polarized light scattering interactions via the Mueller matrix,” Appl. Opt. 19, 1323–1332 (1980).
    [CrossRef]
  7. A. J. Hunt and D. R. Huffman, “A new polarization-modulated light scattering instrument,” Rev. Sci. Instrum. 44, 1753–1762 (1973).
    [CrossRef]
  8. K. J. Voss and E. S. Fry, “Measurement of the Mueller matrix for ocean water,” Appl. Opt. 23, 4427–4439 (1984).
    [CrossRef]
  9. R. A. J. Litjens, T. I. Quickenden, and C. G. Freeman, “Visible and near-ultraviolet absorption spectrum of liquid water,” Appl. Opt. 38, 1216–1223 (1999).
    [CrossRef]
  10. R. C. Smith and K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
    [CrossRef]
  11. A. Morel, “Optical properties of oceanic case I waters, revisited,” Proc. SPIE 2963, 108–114 (1997).
    [CrossRef]
  12. A. C. Tam and C. K. N. Patel, “Optical absorptions of light and heavy water by laser optoacoustic spectroscopy,” Appl. Opt. 18, 3348–3358 (1979).
    [CrossRef]
  13. H. Buiteveld, J. H. M. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE 2258, 174–183 (1994).
    [CrossRef]
  14. F. M. Sogandares, “The spectral absorption of pure water,” Ph.D. dissertation, Texas A&M University, College Station, Texas (1991).
  15. F. M. Sogandares and E. S. Fry, “Absorption spectrum (340–640 nm) of pure water. I. Photothermal measurements,” Appl. Opt. 36, 8699–8709 (1997).
    [CrossRef]
  16. P. Elterman, “Integrating cavity spectroscopy,” Appl. Opt. 9, 2141–2142 (1970).
  17. E. S. Fry, G. W. Kattawar, and R. M. Pope, “Integrating cavity absorption meter,” Appl. Opt. 31, 2055–2065 (1992).
    [CrossRef]
  18. R. M. Pope, “Optical absorption of pure water and sea water using the integrating cavity absorption meter,” Ph.D. dissertation, Texas A&M University, College Station, Texas (1993).
  19. E. S. Fry, J. Musser, G. W. Kattawar, and P.-W. Zhai, “Integrating cavities: temporal response,” Appl. Opt. 45, 9053–9065 (2006).
    [CrossRef]
  20. R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water: II. integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
    [CrossRef]
  21. Interational Ocean-Color Coordinating Group, “Remote sensing of ocean color in coastal, and other optically-complex, waters,” in Reports of the International Ocean-Color Coordinating Group, No. 3, S. Sathyendranath, ed. (IOCCG, 2000), p. 41.
  22. M. Cone, J. Musser, and E. S. Fry, are preparing a manuscript to be called “A new high reflectivity diffuse reflector for the UV to near infrared.”.
  23. R. A. Cruz, A. Marcano, C. Jacinto, and T. Catunda, “Ultrasensitive thermal lens spectroscopy of water,” Opt. Lett. 34, 1882–1884 (2009).
    [CrossRef]
  24. J. T. O. Kirk, “Point-source integrating-cavity absorption meter: theoretical principles and numerical modeling,” Appl. Opt. 36, 6123–6128 (1997).
    [CrossRef]
  25. R. A. Leathers, T. V. Downes, and C. O. Davis, “Analysis of a point-source integrating-cavity absorption meter,” Appl. Opt. 39, 6118–6127 (2000).
    [CrossRef]
  26. A. G. Dekker, V. E. Brando, P. J. Daniel, J. M. Anstee, and L. Clementson, “PSICAM—from myth to reality,” presented at Ocean Optics XVI, Santa Fe, New Mexico, 18–22 November2002, paper 108.
  27. R. Röttgers and R. Doerffer, “Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter,” Limnol. Oceanogr. Methods 5, 126–135 (2007).
    [CrossRef]
  28. R. Röttgers, C. Häse, and R. Doerffer, “Determination of particulate absorption of microalgae using a point source integrating cavity absorption meter,” Limnol. Oceanogr. Methods 5, 1–12 (2007).
    [CrossRef]
  29. R. D. Röttgers and S. Gehnke, “Measurement of light absorption by aquatic particles: improvement of the quantitative filter technique by use of an integrating sphere approach,” Appl. Opt. 51, 1336–1351 (2012).
    [CrossRef]
  30. M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, “Cavity ring-down spectroscopy,” J. Chem. Soc. Faraday Trans. 94, 337–351 (1998).
    [CrossRef]
  31. R. D. van Zee, J. T. Hodges, and J. P. Looney, “Pulsed, single-mode cavity ringdown spectroscopy,” Appl. Opt. 38, 3951–3960 (1999).
    [CrossRef]
  32. D. M. Hobbs and N. J. McCormick, “Design of an integrating cavity absorption meter,” Appl. Opt. 38, 456–461 (1999).
    [CrossRef]
  33. N. J. McCormick, “Design of a flow-through integrating cavity for measuring the optical absorption coefficient,” in OCEANS ’99 MTS/IEEE (IEEE, 1999), pp. 359–362.
  34. D. J. Gray, G. W. Kattawar, and E. S. Fry, “Design and analysis of a flow-through integrating cavity absorption meter,” Appl. Opt. 45, 8990–8998 (2006).
    [CrossRef]
  35. J. A. Musser, E. S. Fry, and D. J. Gray, “Flow-through integrating cavity absorption meter: experimental results,” Appl. Opt. 48, 3596–3602 (2009).
    [CrossRef]
  36. J. Crawford, “A new low cost in-situ multi-spectral absorption meter—ICAM,” presented at Ocean Optics XX, Anchorage, Alaska, 27 September–1 October2010, paper 100789.
  37. R. W. Austin and G. Halikas, “The index of refraction of seawater,” SIO Ref. 76-1 (Scripps Institution of Oceanography, 1976).
  38. W. Matthaus, “Empirical equations for refractive-index of sea-water,” Beitr. Meereskd. 33, 73–78 (1974).
  39. G. T. McNeil, “Metrical fundamentals of underwater lens system,” Opt. Eng. 16, 128–139 (1977).
    [CrossRef]
  40. P. D. T. Huibers, “Models for the wavelength dependence of the index of refraction of water,” Appl. Opt. 36, 3785–3787 (1997).
    [CrossRef]
  41. J. R. Frisvad, “Empirical formula for the refractive index of freezing brine,” Appl. Opt. 48, 2149–2153 (2009).
    [CrossRef]
  42. J.-F. Berthon, E. Shybanov, M. E.-G. Lee, and G. Zibordi, “Measurements and modeling of the volume scattering function in the coastal northern Adriatic Sea,” Appl. Opt. 46, 5189–5203 (2007).
    [CrossRef]
  43. A. G. Bogdan and E. S. Boss, “Evaluation of a compact sensor for backscattering and absorption,” Appl. Opt. 50, 3758–3772 (2011).
    [CrossRef]
  44. D. R. Dana and R. A. Maffione, “Determining the backward scattering coefficient with fixed-angle backscattering sensors-revisited,” presented at Ocean Optics XVI, Santa Fe, New Mexico, 18–22 November2002, paper 212.
  45. T. Oishi, “Significant relationship between the backward scattering coefficient of sea water and the scatterance at 120°,” Appl. Opt. 29, 4658–4665 (1990).
    [CrossRef]
  46. J. M. Sullivan and M. S. Twardowski, “Angular shape of the oceanic particulate volume scattering function in the backward direction,” Appl. Opt. 48, 6811–6819 (2009).
    [CrossRef]
  47. D. Haubrich, J. Musser, and E. S. Fry, “Instrumentation to measure the backscattering coefficient bb for arbitrary phase functions,” Appl. Opt. 50, 4134–4147 (2011).
    [CrossRef]
  48. T. J. Petzold, Volume Scattering Functions for Selected Ocean Waters (Scripps Institution of Oceanography Visibility Laboratory, 1972).
  49. D. J. Gray, Naval Research Laboratory–Code 7231, Washington, D.C. (personal communication, 2011).

2012

2011

2009

2007

J.-F. Berthon, E. Shybanov, M. E.-G. Lee, and G. Zibordi, “Measurements and modeling of the volume scattering function in the coastal northern Adriatic Sea,” Appl. Opt. 46, 5189–5203 (2007).
[CrossRef]

R. Röttgers and R. Doerffer, “Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter,” Limnol. Oceanogr. Methods 5, 126–135 (2007).
[CrossRef]

R. Röttgers, C. Häse, and R. Doerffer, “Determination of particulate absorption of microalgae using a point source integrating cavity absorption meter,” Limnol. Oceanogr. Methods 5, 1–12 (2007).
[CrossRef]

2006

2000

1999

1998

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, “Cavity ring-down spectroscopy,” J. Chem. Soc. Faraday Trans. 94, 337–351 (1998).
[CrossRef]

1997

1994

H. Buiteveld, J. H. M. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE 2258, 174–183 (1994).
[CrossRef]

1992

1990

1984

1981

1980

1979

1977

Y. A. Kadyshevich, “Light-scattering matrices of inshore waters of the Baltic Sea,” Izv. Atmos. Ocean. Phys. 13, 77–78 (1977).

G. T. McNeil, “Metrical fundamentals of underwater lens system,” Opt. Eng. 16, 128–139 (1977).
[CrossRef]

1976

E. A. Kadyshevich, Y. S. Lyubovtseva, and G. V. Rozenberg, “Light-scattering matrices of Pacific and Atlantic Ocean waters,” Izv. Atmos. Ocean. Phys. 12, 106–111 (1976).

1974

W. Matthaus, “Empirical equations for refractive-index of sea-water,” Beitr. Meereskd. 33, 73–78 (1974).

1973

A. J. Hunt and D. R. Huffman, “A new polarization-modulated light scattering instrument,” Rev. Sci. Instrum. 44, 1753–1762 (1973).
[CrossRef]

1971

Y. A. Kadyshevich, Y. S. Lyubovtseva, and I. N. Plakhina, “Measurement of matrices for light scattered by sea water,” Izv. Atmos. Ocean. Phys. 7, 367–371 (1971).

1970

P. Elterman, “Integrating cavity spectroscopy,” Appl. Opt. 9, 2141–2142 (1970).

1968

Anstee, J. M.

A. G. Dekker, V. E. Brando, P. J. Daniel, J. M. Anstee, and L. Clementson, “PSICAM—from myth to reality,” presented at Ocean Optics XVI, Santa Fe, New Mexico, 18–22 November2002, paper 108.

Ashfold, M. N. R.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, “Cavity ring-down spectroscopy,” J. Chem. Soc. Faraday Trans. 94, 337–351 (1998).
[CrossRef]

Austin, R. W.

R. W. Austin and G. Halikas, “The index of refraction of seawater,” SIO Ref. 76-1 (Scripps Institution of Oceanography, 1976).

Baker, K. S.

Beardsley, G. F.

Berthon, J.-F.

Bogdan, A. G.

Boss, E. S.

Bottiger, J. R.

Brando, V. E.

A. G. Dekker, V. E. Brando, P. J. Daniel, J. M. Anstee, and L. Clementson, “PSICAM—from myth to reality,” presented at Ocean Optics XVI, Santa Fe, New Mexico, 18–22 November2002, paper 108.

Buiteveld, H.

H. Buiteveld, J. H. M. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE 2258, 174–183 (1994).
[CrossRef]

Catunda, T.

Clementson, L.

A. G. Dekker, V. E. Brando, P. J. Daniel, J. M. Anstee, and L. Clementson, “PSICAM—from myth to reality,” presented at Ocean Optics XVI, Santa Fe, New Mexico, 18–22 November2002, paper 108.

Cone, M.

M. Cone, J. Musser, and E. S. Fry, are preparing a manuscript to be called “A new high reflectivity diffuse reflector for the UV to near infrared.”.

Crawford, J.

J. Crawford, “A new low cost in-situ multi-spectral absorption meter—ICAM,” presented at Ocean Optics XX, Anchorage, Alaska, 27 September–1 October2010, paper 100789.

Cruz, R. A.

Dana, D. R.

D. R. Dana and R. A. Maffione, “Determining the backward scattering coefficient with fixed-angle backscattering sensors-revisited,” presented at Ocean Optics XVI, Santa Fe, New Mexico, 18–22 November2002, paper 212.

Daniel, P. J.

A. G. Dekker, V. E. Brando, P. J. Daniel, J. M. Anstee, and L. Clementson, “PSICAM—from myth to reality,” presented at Ocean Optics XVI, Santa Fe, New Mexico, 18–22 November2002, paper 108.

Davis, C. O.

Dekker, A. G.

A. G. Dekker, V. E. Brando, P. J. Daniel, J. M. Anstee, and L. Clementson, “PSICAM—from myth to reality,” presented at Ocean Optics XVI, Santa Fe, New Mexico, 18–22 November2002, paper 108.

Doerffer, R.

R. Röttgers, C. Häse, and R. Doerffer, “Determination of particulate absorption of microalgae using a point source integrating cavity absorption meter,” Limnol. Oceanogr. Methods 5, 1–12 (2007).
[CrossRef]

R. Röttgers and R. Doerffer, “Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter,” Limnol. Oceanogr. Methods 5, 126–135 (2007).
[CrossRef]

Donze, M.

H. Buiteveld, J. H. M. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE 2258, 174–183 (1994).
[CrossRef]

Downes, T. V.

Elterman, P.

P. Elterman, “Integrating cavity spectroscopy,” Appl. Opt. 9, 2141–2142 (1970).

Freeman, C. G.

Frisvad, J. R.

Fry, E. S.

D. Haubrich, J. Musser, and E. S. Fry, “Instrumentation to measure the backscattering coefficient bb for arbitrary phase functions,” Appl. Opt. 50, 4134–4147 (2011).
[CrossRef]

J. A. Musser, E. S. Fry, and D. J. Gray, “Flow-through integrating cavity absorption meter: experimental results,” Appl. Opt. 48, 3596–3602 (2009).
[CrossRef]

D. J. Gray, G. W. Kattawar, and E. S. Fry, “Design and analysis of a flow-through integrating cavity absorption meter,” Appl. Opt. 45, 8990–8998 (2006).
[CrossRef]

E. S. Fry, J. Musser, G. W. Kattawar, and P.-W. Zhai, “Integrating cavities: temporal response,” Appl. Opt. 45, 9053–9065 (2006).
[CrossRef]

R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water: II. integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
[CrossRef]

F. M. Sogandares and E. S. Fry, “Absorption spectrum (340–640 nm) of pure water. I. Photothermal measurements,” Appl. Opt. 36, 8699–8709 (1997).
[CrossRef]

E. S. Fry, G. W. Kattawar, and R. M. Pope, “Integrating cavity absorption meter,” Appl. Opt. 31, 2055–2065 (1992).
[CrossRef]

K. J. Voss and E. S. Fry, “Measurement of the Mueller matrix for ocean water,” Appl. Opt. 23, 4427–4439 (1984).
[CrossRef]

R. C. Thompson, J. R. Bottiger, and E. S. Fry, “Measurement of polarized light scattering interactions via the Mueller matrix,” Appl. Opt. 19, 1323–1332 (1980).
[CrossRef]

M. Cone, J. Musser, and E. S. Fry, are preparing a manuscript to be called “A new high reflectivity diffuse reflector for the UV to near infrared.”.

Gehnke, S.

Gray, D. J.

Hakvoort, J. H. M.

H. Buiteveld, J. H. M. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE 2258, 174–183 (1994).
[CrossRef]

Halikas, G.

R. W. Austin and G. Halikas, “The index of refraction of seawater,” SIO Ref. 76-1 (Scripps Institution of Oceanography, 1976).

Häse, C.

R. Röttgers, C. Häse, and R. Doerffer, “Determination of particulate absorption of microalgae using a point source integrating cavity absorption meter,” Limnol. Oceanogr. Methods 5, 1–12 (2007).
[CrossRef]

Haubrich, D.

Hobbs, D. M.

Hodges, J. T.

Huffman, D. R.

A. J. Hunt and D. R. Huffman, “A new polarization-modulated light scattering instrument,” Rev. Sci. Instrum. 44, 1753–1762 (1973).
[CrossRef]

Huibers, P. D. T.

Hunt, A. J.

A. J. Hunt and D. R. Huffman, “A new polarization-modulated light scattering instrument,” Rev. Sci. Instrum. 44, 1753–1762 (1973).
[CrossRef]

Jacinto, C.

Kadyshevich, E. A.

E. A. Kadyshevich, Y. S. Lyubovtseva, and G. V. Rozenberg, “Light-scattering matrices of Pacific and Atlantic Ocean waters,” Izv. Atmos. Ocean. Phys. 12, 106–111 (1976).

Kadyshevich, Y. A.

Y. A. Kadyshevich, “Light-scattering matrices of inshore waters of the Baltic Sea,” Izv. Atmos. Ocean. Phys. 13, 77–78 (1977).

Y. A. Kadyshevich, Y. S. Lyubovtseva, and I. N. Plakhina, “Measurement of matrices for light scattered by sea water,” Izv. Atmos. Ocean. Phys. 7, 367–371 (1971).

Kattawar, G. W.

Kirk, J. T. O.

Leathers, R. A.

Lee, M. E.-G.

Litjens, R. A. J.

Looney, J. P.

Lyubovtseva, Y. S.

E. A. Kadyshevich, Y. S. Lyubovtseva, and G. V. Rozenberg, “Light-scattering matrices of Pacific and Atlantic Ocean waters,” Izv. Atmos. Ocean. Phys. 12, 106–111 (1976).

Y. A. Kadyshevich, Y. S. Lyubovtseva, and I. N. Plakhina, “Measurement of matrices for light scattered by sea water,” Izv. Atmos. Ocean. Phys. 7, 367–371 (1971).

Maffione, R. A.

D. R. Dana and R. A. Maffione, “Determining the backward scattering coefficient with fixed-angle backscattering sensors-revisited,” presented at Ocean Optics XVI, Santa Fe, New Mexico, 18–22 November2002, paper 212.

Marcano, A.

Matthaus, W.

W. Matthaus, “Empirical equations for refractive-index of sea-water,” Beitr. Meereskd. 33, 73–78 (1974).

McCormick, N. J.

D. M. Hobbs and N. J. McCormick, “Design of an integrating cavity absorption meter,” Appl. Opt. 38, 456–461 (1999).
[CrossRef]

N. J. McCormick, “Design of a flow-through integrating cavity for measuring the optical absorption coefficient,” in OCEANS ’99 MTS/IEEE (IEEE, 1999), pp. 359–362.

McNeil, G. T.

G. T. McNeil, “Metrical fundamentals of underwater lens system,” Opt. Eng. 16, 128–139 (1977).
[CrossRef]

Morel, A.

A. Morel, “Optical properties of oceanic case I waters, revisited,” Proc. SPIE 2963, 108–114 (1997).
[CrossRef]

Musser, J.

Musser, J. A.

Newman, S. M.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, “Cavity ring-down spectroscopy,” J. Chem. Soc. Faraday Trans. 94, 337–351 (1998).
[CrossRef]

Oishi, T.

Orr-Ewing, A. J.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, “Cavity ring-down spectroscopy,” J. Chem. Soc. Faraday Trans. 94, 337–351 (1998).
[CrossRef]

Patel, C. K. N.

Petzold, T. J.

T. J. Petzold, Volume Scattering Functions for Selected Ocean Waters (Scripps Institution of Oceanography Visibility Laboratory, 1972).

Plakhina, I. N.

Y. A. Kadyshevich, Y. S. Lyubovtseva, and I. N. Plakhina, “Measurement of matrices for light scattered by sea water,” Izv. Atmos. Ocean. Phys. 7, 367–371 (1971).

Pope, R. M.

Quickenden, T. I.

Röttgers, R.

R. Röttgers, C. Häse, and R. Doerffer, “Determination of particulate absorption of microalgae using a point source integrating cavity absorption meter,” Limnol. Oceanogr. Methods 5, 1–12 (2007).
[CrossRef]

R. Röttgers and R. Doerffer, “Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter,” Limnol. Oceanogr. Methods 5, 126–135 (2007).
[CrossRef]

Röttgers, R. D.

Rozenberg, G. V.

E. A. Kadyshevich, Y. S. Lyubovtseva, and G. V. Rozenberg, “Light-scattering matrices of Pacific and Atlantic Ocean waters,” Izv. Atmos. Ocean. Phys. 12, 106–111 (1976).

Shybanov, E.

Smith, R. C.

Sogandares, F. M.

F. M. Sogandares and E. S. Fry, “Absorption spectrum (340–640 nm) of pure water. I. Photothermal measurements,” Appl. Opt. 36, 8699–8709 (1997).
[CrossRef]

F. M. Sogandares, “The spectral absorption of pure water,” Ph.D. dissertation, Texas A&M University, College Station, Texas (1991).

Sullivan, J. M.

Tam, A. C.

Thompson, R. C.

Twardowski, M. S.

van Zee, R. D.

Voss, K. J.

K. J. Voss and E. S. Fry, “Measurement of the Mueller matrix for ocean water,” Appl. Opt. 23, 4427–4439 (1984).
[CrossRef]

K. J. Voss, “Measurement of the Mueller matrix for ocean water,” Ph.D. dissertation, Texas A&M University, College Station, Texas (1984).

Wheeler, M. D.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, “Cavity ring-down spectroscopy,” J. Chem. Soc. Faraday Trans. 94, 337–351 (1998).
[CrossRef]

Zhai, P.-W.

Zibordi, G.

Appl. Opt.

P. Elterman, “Integrating cavity spectroscopy,” Appl. Opt. 9, 2141–2142 (1970).

A. C. Tam and C. K. N. Patel, “Optical absorptions of light and heavy water by laser optoacoustic spectroscopy,” Appl. Opt. 18, 3348–3358 (1979).
[CrossRef]

R. C. Thompson, J. R. Bottiger, and E. S. Fry, “Measurement of polarized light scattering interactions via the Mueller matrix,” Appl. Opt. 19, 1323–1332 (1980).
[CrossRef]

R. C. Smith and K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
[CrossRef]

K. J. Voss and E. S. Fry, “Measurement of the Mueller matrix for ocean water,” Appl. Opt. 23, 4427–4439 (1984).
[CrossRef]

E. S. Fry, G. W. Kattawar, and R. M. Pope, “Integrating cavity absorption meter,” Appl. Opt. 31, 2055–2065 (1992).
[CrossRef]

J. T. O. Kirk, “Point-source integrating-cavity absorption meter: theoretical principles and numerical modeling,” Appl. Opt. 36, 6123–6128 (1997).
[CrossRef]

P. D. T. Huibers, “Models for the wavelength dependence of the index of refraction of water,” Appl. Opt. 36, 3785–3787 (1997).
[CrossRef]

D. M. Hobbs and N. J. McCormick, “Design of an integrating cavity absorption meter,” Appl. Opt. 38, 456–461 (1999).
[CrossRef]

R. D. van Zee, J. T. Hodges, and J. P. Looney, “Pulsed, single-mode cavity ringdown spectroscopy,” Appl. Opt. 38, 3951–3960 (1999).
[CrossRef]

R. A. J. Litjens, T. I. Quickenden, and C. G. Freeman, “Visible and near-ultraviolet absorption spectrum of liquid water,” Appl. Opt. 38, 1216–1223 (1999).
[CrossRef]

R. A. Leathers, T. V. Downes, and C. O. Davis, “Analysis of a point-source integrating-cavity absorption meter,” Appl. Opt. 39, 6118–6127 (2000).
[CrossRef]

F. M. Sogandares and E. S. Fry, “Absorption spectrum (340–640 nm) of pure water. I. Photothermal measurements,” Appl. Opt. 36, 8699–8709 (1997).
[CrossRef]

R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water: II. integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
[CrossRef]

T. Oishi, “Significant relationship between the backward scattering coefficient of sea water and the scatterance at 120°,” Appl. Opt. 29, 4658–4665 (1990).
[CrossRef]

D. J. Gray, G. W. Kattawar, and E. S. Fry, “Design and analysis of a flow-through integrating cavity absorption meter,” Appl. Opt. 45, 8990–8998 (2006).
[CrossRef]

E. S. Fry, J. Musser, G. W. Kattawar, and P.-W. Zhai, “Integrating cavities: temporal response,” Appl. Opt. 45, 9053–9065 (2006).
[CrossRef]

J.-F. Berthon, E. Shybanov, M. E.-G. Lee, and G. Zibordi, “Measurements and modeling of the volume scattering function in the coastal northern Adriatic Sea,” Appl. Opt. 46, 5189–5203 (2007).
[CrossRef]

J. R. Frisvad, “Empirical formula for the refractive index of freezing brine,” Appl. Opt. 48, 2149–2153 (2009).
[CrossRef]

J. A. Musser, E. S. Fry, and D. J. Gray, “Flow-through integrating cavity absorption meter: experimental results,” Appl. Opt. 48, 3596–3602 (2009).
[CrossRef]

J. M. Sullivan and M. S. Twardowski, “Angular shape of the oceanic particulate volume scattering function in the backward direction,” Appl. Opt. 48, 6811–6819 (2009).
[CrossRef]

A. G. Bogdan and E. S. Boss, “Evaluation of a compact sensor for backscattering and absorption,” Appl. Opt. 50, 3758–3772 (2011).
[CrossRef]

D. Haubrich, J. Musser, and E. S. Fry, “Instrumentation to measure the backscattering coefficient bb for arbitrary phase functions,” Appl. Opt. 50, 4134–4147 (2011).
[CrossRef]

R. D. Röttgers and S. Gehnke, “Measurement of light absorption by aquatic particles: improvement of the quantitative filter technique by use of an integrating sphere approach,” Appl. Opt. 51, 1336–1351 (2012).
[CrossRef]

Beitr. Meereskd.

W. Matthaus, “Empirical equations for refractive-index of sea-water,” Beitr. Meereskd. 33, 73–78 (1974).

Izv. Atmos. Ocean. Phys.

E. A. Kadyshevich, Y. S. Lyubovtseva, and G. V. Rozenberg, “Light-scattering matrices of Pacific and Atlantic Ocean waters,” Izv. Atmos. Ocean. Phys. 12, 106–111 (1976).

Y. A. Kadyshevich, Y. S. Lyubovtseva, and I. N. Plakhina, “Measurement of matrices for light scattered by sea water,” Izv. Atmos. Ocean. Phys. 7, 367–371 (1971).

Y. A. Kadyshevich, “Light-scattering matrices of inshore waters of the Baltic Sea,” Izv. Atmos. Ocean. Phys. 13, 77–78 (1977).

J. Chem. Soc. Faraday Trans.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, “Cavity ring-down spectroscopy,” J. Chem. Soc. Faraday Trans. 94, 337–351 (1998).
[CrossRef]

J. Opt. Soc. Am.

Limnol. Oceanogr. Methods

R. Röttgers and R. Doerffer, “Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter,” Limnol. Oceanogr. Methods 5, 126–135 (2007).
[CrossRef]

R. Röttgers, C. Häse, and R. Doerffer, “Determination of particulate absorption of microalgae using a point source integrating cavity absorption meter,” Limnol. Oceanogr. Methods 5, 1–12 (2007).
[CrossRef]

Opt. Eng.

G. T. McNeil, “Metrical fundamentals of underwater lens system,” Opt. Eng. 16, 128–139 (1977).
[CrossRef]

Opt. Lett.

Proc. SPIE

A. Morel, “Optical properties of oceanic case I waters, revisited,” Proc. SPIE 2963, 108–114 (1997).
[CrossRef]

H. Buiteveld, J. H. M. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE 2258, 174–183 (1994).
[CrossRef]

Rev. Sci. Instrum.

A. J. Hunt and D. R. Huffman, “A new polarization-modulated light scattering instrument,” Rev. Sci. Instrum. 44, 1753–1762 (1973).
[CrossRef]

Other

J. Crawford, “A new low cost in-situ multi-spectral absorption meter—ICAM,” presented at Ocean Optics XX, Anchorage, Alaska, 27 September–1 October2010, paper 100789.

R. W. Austin and G. Halikas, “The index of refraction of seawater,” SIO Ref. 76-1 (Scripps Institution of Oceanography, 1976).

F. M. Sogandares, “The spectral absorption of pure water,” Ph.D. dissertation, Texas A&M University, College Station, Texas (1991).

N. J. McCormick, “Design of a flow-through integrating cavity for measuring the optical absorption coefficient,” in OCEANS ’99 MTS/IEEE (IEEE, 1999), pp. 359–362.

D. R. Dana and R. A. Maffione, “Determining the backward scattering coefficient with fixed-angle backscattering sensors-revisited,” presented at Ocean Optics XVI, Santa Fe, New Mexico, 18–22 November2002, paper 212.

T. J. Petzold, Volume Scattering Functions for Selected Ocean Waters (Scripps Institution of Oceanography Visibility Laboratory, 1972).

D. J. Gray, Naval Research Laboratory–Code 7231, Washington, D.C. (personal communication, 2011).

K. J. Voss, “Measurement of the Mueller matrix for ocean water,” Ph.D. dissertation, Texas A&M University, College Station, Texas (1984).

R. M. Pope, “Optical absorption of pure water and sea water using the integrating cavity absorption meter,” Ph.D. dissertation, Texas A&M University, College Station, Texas (1993).

Interational Ocean-Color Coordinating Group, “Remote sensing of ocean color in coastal, and other optically-complex, waters,” in Reports of the International Ocean-Color Coordinating Group, No. 3, S. Sathyendranath, ed. (IOCCG, 2000), p. 41.

M. Cone, J. Musser, and E. S. Fry, are preparing a manuscript to be called “A new high reflectivity diffuse reflector for the UV to near infrared.”.

A. G. Dekker, V. E. Brando, P. J. Daniel, J. M. Anstee, and L. Clementson, “PSICAM—from myth to reality,” presented at Ocean Optics XVI, Santa Fe, New Mexico, 18–22 November2002, paper 108.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Average normalized Mueller matrix from over 60 Pacific and Atlantic Ocean water samples in 1983. For all matrix elements, the abscissa is 0° to 180° and the ordinate is 1 to +1 (as shown for S41). The vertical bars on each data point represent ±1 standard deviation in the variability over the entire set of water samples. The frequency at which each matrix element appears in the scattered intensity is in the lower left corners.

Fig. 2.
Fig. 2.

Absorption of pure water. Large arrows labeled with a boldface integer n indicate the predicted position of a shoulder due to the nth harmonic of the O–H stretch; small arrows with mode assignments j, 1 indicate the predicted position of a combination of the jth harmonic of the O–H stretch with the fundamental of the scissors mode. The vertical bars on each data point represent ±1 standard deviation.

Fig. 3.
Fig. 3.

FT-ICAM geometry. The shaded regions A are the diffuse reflector, and region B is the air gap between the inner and outer diffuse reflectors.

Fig. 4.
Fig. 4.

FT-ICAM response at 526 nm for solutions of fixed absorption but with various amounts of scattering produced by the addition of polystyrene beads. For each absorbing sample, the point at which the observed absorption deviated the most from the true value is labeled with that deviation.

Fig. 5.
Fig. 5.

Measured absorption as a function of the scattering coefficient at three different wavelengths with two values of higher absorption than in Fig. 4 at each of the wavelengths.

Fig. 6.
Fig. 6.

Comparison between the dynamic ranges for absorption of the FT-ICAM and the WET Labs ac-s at 635 nm. (a) Full range of absorption that was tested. (b) Expanded scale for the 0 to 50m1 range.

Fig. 7.
Fig. 7.

Conceptual sketch of a true bb meter. There is cylindrical symmetry around the z axis. The laser beam of cross-sectional area A and irradiance E0 enters the water at z=0 and propagates along the z axis.

Fig. 8.
Fig. 8.

Detection solid angle for an aperture defined by R=1.0cm and Z0=0.1cm. The open area of the aperture is 4πRZ0=1.26cm2.

Tables (1)

Tables Icon

Table 1. Deviations Δ from the Measured bb that would be Observed with this Instrument for a Wide Variety of Natural Water Samples and Microsphere Suspensions. The Aperture Parameters for Determining Δ are R=1.0cm and Z0=0.1cm

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n(S,T,λ)=n0+(n1+n2T+n3T2)S+n4T2+n5+n6S+n7Tλ+n8λ2+n9λ3,
n0=1.31405,n1=1.779×104,n2=1.05×106,n3=1.6×108n4=2.02×106,n5=15.868,n6=0.01155,n7=0.00423n8=4382,n9=1.1455×106
bb(λ)2ππ/2πβ(λ,θ)sinθdθ,
P=2πAE00dzθ1θ2β(θ)sinθdθ.
P=2ππ/2πβ(θ)sinθdθ+πθ10π/2β(θ)sinθdθππ/2θ20β(θ)sinθdθπRZ0θ10θ20β(θ)cosθdθ,
χ(θ)=bb2πβ(θ);

Metrics