Abstract

A review is presented on the theory, experiment, and application of the ultrafast fluorescence polarization dynamics and anisotropy with examples of two important medical dyes, namely Indocyanine Green and fluorescein. The time-resolved fluorescence polarization spectra of fluorescent dyes were measured with the excitation of a linearly polarized femtosecond laser pulse, and detected using a streak camera. The fluorescence emitted from the dyes is found to be partially oriented (polarized), and the degree of polarization of emission decreases with time. The decay of the fluorescence component polarized parallel to the excitation beam was found to be faster than that of the perpendicular one. Based on the physical model on the time-resolved polarized emission spectra in nanosecond range first described by Weber [J. Chem. Phys. 52, 1654 (1970)], a set of first-order linear differential equations was used to model fluorescence polarization dynamics and anistropy of dye in picoseconds range. Using this model, two important decay parameters were identified separately: the decay rate of total emission intensity and the decay rate of the emission polarization affected by the rotation of fluorescent molecules causing the transfer of emission polarization from one orthogonal component to another. These two decay rates were separated and extracted from the measured time-resolved fluorescence polarization spectra. The emission polarization difference among dyes arising from different molecular volumes was used to enhance the image contrast.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Jameson and J. A. Ross, “Fluorescence polarization/anisotropy in diagnostics and imaging,” Chem. Rev. 110, 2685–2708 (2010).
    [CrossRef]
  2. R. D. Spencer and G. Weber, “Measurements of subnanosecond fluorescence life-times with a cross-correlation phase fluorometer,” Ann. N. Y. Acad. Sci. 158, 361–376 (1969).
    [CrossRef]
  3. L. Stryer, “Fluorescence spectroscopy of proteins,” Science 162, 526–533 (1968).
    [CrossRef]
  4. G. R. Fleming, J. M. Morris, and G. W. Robinson, “Direct observation of rotational diffusion by pico-second spectroscopy,” Chem. Phys. 17, 91–100 (1976).
    [CrossRef]
  5. G. Porter, P. J. Sadkowski, and C. J. Tredwell, “Pico-second rotational diffusion in kinetic and steady state fluorescence spectroscopy,” Chem. Phys. Lett. 49, 416–420 (1977).
    [CrossRef]
  6. Y. Pu, W. B. Wang, B. B. Das, S. Achilefu, and R. R. Alfano, “Time-resolved fluorescence polarization dynamics and optical Imaging of Cytate: a prostate cancer receptor-targeted contrast agent,” Appl. Opt. 47, 2281–2289 (2008).
    [CrossRef]
  7. R. D. Spencer and G. Weber, “Influence of Brownian rotations and energy transfer upon the measurements of fluorescence lifetime,” J. Chem. Phys. 52, 1654–1663 (1970).
    [CrossRef]
  8. Scout Hell, “Size Matters: how big are molecules,” http://www.bbc.co.uk/dna/h2g2/A791246 .
  9. S. Achilefu, R. B. Dorshow, J. E. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescence contrast agent for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
    [CrossRef]
  10. W. B. Wang, J. H. Ali, R. B. Dorshow, M. A. McLoughlin, and R. R. Alfano, “Time-resolved fluorescence polarization dynamics and imaging of fluorescein dye attached to different molecular weight chains,” Proc. SPIE 3600, 227–229 (1999).
    [CrossRef]
  11. Y. Pu, W. B. Wang, S. Achilefu, B. B. Das, G. C. Tang, V. Sriramoju, and R. R. Alfano, “Time-resolved fluorescence polarization anisotropy and optical imaging of Cybesin in cancerous and normal prostate tissues,” Opt. Commun. 274, 260–267 (2007).
    [CrossRef]
  12. F. Perrin, “La fluorescence des solutions,” Ann. Phys. (Paris) 12, 169–275 (1929).
  13. D. V. O’Connor and D. Phillips, “Fluorescence, its time dependence and applications,” in Time-Correlated Single Photon Counting (Academic, 1984).
  14. A. Einstein, “Zur Theorie der Brownschen Bewegung,” Ann. Phys. 324, 371 (1906). Also translated into English: Investigations on the Theory of the Brownian Movement (Dover, 1956).
    [CrossRef]
  15. A. Szabo, “Theory of polarization fluorescent emission in uniaxial liquid crystals,” J. Chem. Phys. 72, 4620–4626 (1980).
    [CrossRef]
  16. L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast Kerrgate,” Science 253, 769–771 (1991).
    [CrossRef]
  17. Y. Pu, W. B. Wang, B. B. Das, and R. R. Alfano, “Time-resolved spectral wing emission kinetics and optical imaging of human cancerous and normal prostate tissues,” Opt. Commun. 282, 4308–4314 (2009).
    [CrossRef]
  18. X. Zhuang, “Bioimaging at the nanoscale: Single-molecule and super-resolution fluorescence microscopy,” in Biomedical Optics, OSA Technical Digest (Optical Society of America, 2012), paper BTu1A.2.
  19. Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429–436 (2005).
  20. W. Yu, F. Pellegrino, M. Grant, and R. R. Alfano, “Subnanosecond fluorescence quenching of dye molecules in solution,” J. Chem. Phys. 67, 1766 (1977).
    [CrossRef]
  21. B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227–292 (1997).
    [CrossRef]

2010 (1)

D. M. Jameson and J. A. Ross, “Fluorescence polarization/anisotropy in diagnostics and imaging,” Chem. Rev. 110, 2685–2708 (2010).
[CrossRef]

2009 (1)

Y. Pu, W. B. Wang, B. B. Das, and R. R. Alfano, “Time-resolved spectral wing emission kinetics and optical imaging of human cancerous and normal prostate tissues,” Opt. Commun. 282, 4308–4314 (2009).
[CrossRef]

2008 (1)

2007 (1)

Y. Pu, W. B. Wang, S. Achilefu, B. B. Das, G. C. Tang, V. Sriramoju, and R. R. Alfano, “Time-resolved fluorescence polarization anisotropy and optical imaging of Cybesin in cancerous and normal prostate tissues,” Opt. Commun. 274, 260–267 (2007).
[CrossRef]

2005 (1)

Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429–436 (2005).

2000 (1)

S. Achilefu, R. B. Dorshow, J. E. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescence contrast agent for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[CrossRef]

1999 (1)

W. B. Wang, J. H. Ali, R. B. Dorshow, M. A. McLoughlin, and R. R. Alfano, “Time-resolved fluorescence polarization dynamics and imaging of fluorescein dye attached to different molecular weight chains,” Proc. SPIE 3600, 227–229 (1999).
[CrossRef]

1997 (1)

B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227–292 (1997).
[CrossRef]

1991 (1)

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast Kerrgate,” Science 253, 769–771 (1991).
[CrossRef]

1980 (1)

A. Szabo, “Theory of polarization fluorescent emission in uniaxial liquid crystals,” J. Chem. Phys. 72, 4620–4626 (1980).
[CrossRef]

1977 (2)

W. Yu, F. Pellegrino, M. Grant, and R. R. Alfano, “Subnanosecond fluorescence quenching of dye molecules in solution,” J. Chem. Phys. 67, 1766 (1977).
[CrossRef]

G. Porter, P. J. Sadkowski, and C. J. Tredwell, “Pico-second rotational diffusion in kinetic and steady state fluorescence spectroscopy,” Chem. Phys. Lett. 49, 416–420 (1977).
[CrossRef]

1976 (1)

G. R. Fleming, J. M. Morris, and G. W. Robinson, “Direct observation of rotational diffusion by pico-second spectroscopy,” Chem. Phys. 17, 91–100 (1976).
[CrossRef]

1970 (1)

R. D. Spencer and G. Weber, “Influence of Brownian rotations and energy transfer upon the measurements of fluorescence lifetime,” J. Chem. Phys. 52, 1654–1663 (1970).
[CrossRef]

1969 (1)

R. D. Spencer and G. Weber, “Measurements of subnanosecond fluorescence life-times with a cross-correlation phase fluorometer,” Ann. N. Y. Acad. Sci. 158, 361–376 (1969).
[CrossRef]

1968 (1)

L. Stryer, “Fluorescence spectroscopy of proteins,” Science 162, 526–533 (1968).
[CrossRef]

1929 (1)

F. Perrin, “La fluorescence des solutions,” Ann. Phys. (Paris) 12, 169–275 (1929).

1906 (1)

A. Einstein, “Zur Theorie der Brownschen Bewegung,” Ann. Phys. 324, 371 (1906). Also translated into English: Investigations on the Theory of the Brownian Movement (Dover, 1956).
[CrossRef]

Achilefu, S.

Y. Pu, W. B. Wang, B. B. Das, S. Achilefu, and R. R. Alfano, “Time-resolved fluorescence polarization dynamics and optical Imaging of Cytate: a prostate cancer receptor-targeted contrast agent,” Appl. Opt. 47, 2281–2289 (2008).
[CrossRef]

Y. Pu, W. B. Wang, S. Achilefu, B. B. Das, G. C. Tang, V. Sriramoju, and R. R. Alfano, “Time-resolved fluorescence polarization anisotropy and optical imaging of Cybesin in cancerous and normal prostate tissues,” Opt. Commun. 274, 260–267 (2007).
[CrossRef]

Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429–436 (2005).

S. Achilefu, R. B. Dorshow, J. E. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescence contrast agent for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[CrossRef]

Alfano, R.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast Kerrgate,” Science 253, 769–771 (1991).
[CrossRef]

Alfano, R. R.

Y. Pu, W. B. Wang, B. B. Das, and R. R. Alfano, “Time-resolved spectral wing emission kinetics and optical imaging of human cancerous and normal prostate tissues,” Opt. Commun. 282, 4308–4314 (2009).
[CrossRef]

Y. Pu, W. B. Wang, B. B. Das, S. Achilefu, and R. R. Alfano, “Time-resolved fluorescence polarization dynamics and optical Imaging of Cytate: a prostate cancer receptor-targeted contrast agent,” Appl. Opt. 47, 2281–2289 (2008).
[CrossRef]

Y. Pu, W. B. Wang, S. Achilefu, B. B. Das, G. C. Tang, V. Sriramoju, and R. R. Alfano, “Time-resolved fluorescence polarization anisotropy and optical imaging of Cybesin in cancerous and normal prostate tissues,” Opt. Commun. 274, 260–267 (2007).
[CrossRef]

Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429–436 (2005).

W. B. Wang, J. H. Ali, R. B. Dorshow, M. A. McLoughlin, and R. R. Alfano, “Time-resolved fluorescence polarization dynamics and imaging of fluorescein dye attached to different molecular weight chains,” Proc. SPIE 3600, 227–229 (1999).
[CrossRef]

B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227–292 (1997).
[CrossRef]

W. Yu, F. Pellegrino, M. Grant, and R. R. Alfano, “Subnanosecond fluorescence quenching of dye molecules in solution,” J. Chem. Phys. 67, 1766 (1977).
[CrossRef]

Ali, J. H.

W. B. Wang, J. H. Ali, R. B. Dorshow, M. A. McLoughlin, and R. R. Alfano, “Time-resolved fluorescence polarization dynamics and imaging of fluorescein dye attached to different molecular weight chains,” Proc. SPIE 3600, 227–229 (1999).
[CrossRef]

Bugaj, J. E.

S. Achilefu, R. B. Dorshow, J. E. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescence contrast agent for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[CrossRef]

Das, B. B.

Y. Pu, W. B. Wang, B. B. Das, and R. R. Alfano, “Time-resolved spectral wing emission kinetics and optical imaging of human cancerous and normal prostate tissues,” Opt. Commun. 282, 4308–4314 (2009).
[CrossRef]

Y. Pu, W. B. Wang, B. B. Das, S. Achilefu, and R. R. Alfano, “Time-resolved fluorescence polarization dynamics and optical Imaging of Cytate: a prostate cancer receptor-targeted contrast agent,” Appl. Opt. 47, 2281–2289 (2008).
[CrossRef]

Y. Pu, W. B. Wang, S. Achilefu, B. B. Das, G. C. Tang, V. Sriramoju, and R. R. Alfano, “Time-resolved fluorescence polarization anisotropy and optical imaging of Cybesin in cancerous and normal prostate tissues,” Opt. Commun. 274, 260–267 (2007).
[CrossRef]

B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227–292 (1997).
[CrossRef]

Dorshow, R. B.

S. Achilefu, R. B. Dorshow, J. E. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescence contrast agent for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[CrossRef]

W. B. Wang, J. H. Ali, R. B. Dorshow, M. A. McLoughlin, and R. R. Alfano, “Time-resolved fluorescence polarization dynamics and imaging of fluorescein dye attached to different molecular weight chains,” Proc. SPIE 3600, 227–229 (1999).
[CrossRef]

Einstein, A.

A. Einstein, “Zur Theorie der Brownschen Bewegung,” Ann. Phys. 324, 371 (1906). Also translated into English: Investigations on the Theory of the Brownian Movement (Dover, 1956).
[CrossRef]

Fleming, G. R.

G. R. Fleming, J. M. Morris, and G. W. Robinson, “Direct observation of rotational diffusion by pico-second spectroscopy,” Chem. Phys. 17, 91–100 (1976).
[CrossRef]

Grant, M.

W. Yu, F. Pellegrino, M. Grant, and R. R. Alfano, “Subnanosecond fluorescence quenching of dye molecules in solution,” J. Chem. Phys. 67, 1766 (1977).
[CrossRef]

Ho, P. P.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast Kerrgate,” Science 253, 769–771 (1991).
[CrossRef]

Jameson, D. M.

D. M. Jameson and J. A. Ross, “Fluorescence polarization/anisotropy in diagnostics and imaging,” Chem. Rev. 110, 2685–2708 (2010).
[CrossRef]

Liu, C.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast Kerrgate,” Science 253, 769–771 (1991).
[CrossRef]

Liu, F.

B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227–292 (1997).
[CrossRef]

Lombardo, J. M.

Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429–436 (2005).

McLoughlin, M. A.

W. B. Wang, J. H. Ali, R. B. Dorshow, M. A. McLoughlin, and R. R. Alfano, “Time-resolved fluorescence polarization dynamics and imaging of fluorescein dye attached to different molecular weight chains,” Proc. SPIE 3600, 227–229 (1999).
[CrossRef]

Morris, J. M.

G. R. Fleming, J. M. Morris, and G. W. Robinson, “Direct observation of rotational diffusion by pico-second spectroscopy,” Chem. Phys. 17, 91–100 (1976).
[CrossRef]

O’Connor, D. V.

D. V. O’Connor and D. Phillips, “Fluorescence, its time dependence and applications,” in Time-Correlated Single Photon Counting (Academic, 1984).

Pellegrino, F.

W. Yu, F. Pellegrino, M. Grant, and R. R. Alfano, “Subnanosecond fluorescence quenching of dye molecules in solution,” J. Chem. Phys. 67, 1766 (1977).
[CrossRef]

Perrin, F.

F. Perrin, “La fluorescence des solutions,” Ann. Phys. (Paris) 12, 169–275 (1929).

Peters, S.

Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429–436 (2005).

Phillips, D.

D. V. O’Connor and D. Phillips, “Fluorescence, its time dependence and applications,” in Time-Correlated Single Photon Counting (Academic, 1984).

Porter, G.

G. Porter, P. J. Sadkowski, and C. J. Tredwell, “Pico-second rotational diffusion in kinetic and steady state fluorescence spectroscopy,” Chem. Phys. Lett. 49, 416–420 (1977).
[CrossRef]

Pu, Y.

Y. Pu, W. B. Wang, B. B. Das, and R. R. Alfano, “Time-resolved spectral wing emission kinetics and optical imaging of human cancerous and normal prostate tissues,” Opt. Commun. 282, 4308–4314 (2009).
[CrossRef]

Y. Pu, W. B. Wang, B. B. Das, S. Achilefu, and R. R. Alfano, “Time-resolved fluorescence polarization dynamics and optical Imaging of Cytate: a prostate cancer receptor-targeted contrast agent,” Appl. Opt. 47, 2281–2289 (2008).
[CrossRef]

Y. Pu, W. B. Wang, S. Achilefu, B. B. Das, G. C. Tang, V. Sriramoju, and R. R. Alfano, “Time-resolved fluorescence polarization anisotropy and optical imaging of Cybesin in cancerous and normal prostate tissues,” Opt. Commun. 274, 260–267 (2007).
[CrossRef]

Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429–436 (2005).

Rajagopalan, R.

S. Achilefu, R. B. Dorshow, J. E. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescence contrast agent for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[CrossRef]

Robinson, G. W.

G. R. Fleming, J. M. Morris, and G. W. Robinson, “Direct observation of rotational diffusion by pico-second spectroscopy,” Chem. Phys. 17, 91–100 (1976).
[CrossRef]

Ross, J. A.

D. M. Jameson and J. A. Ross, “Fluorescence polarization/anisotropy in diagnostics and imaging,” Chem. Rev. 110, 2685–2708 (2010).
[CrossRef]

Sadkowski, P. J.

G. Porter, P. J. Sadkowski, and C. J. Tredwell, “Pico-second rotational diffusion in kinetic and steady state fluorescence spectroscopy,” Chem. Phys. Lett. 49, 416–420 (1977).
[CrossRef]

Sawczuk, I.

Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429–436 (2005).

Spencer, R. D.

R. D. Spencer and G. Weber, “Influence of Brownian rotations and energy transfer upon the measurements of fluorescence lifetime,” J. Chem. Phys. 52, 1654–1663 (1970).
[CrossRef]

R. D. Spencer and G. Weber, “Measurements of subnanosecond fluorescence life-times with a cross-correlation phase fluorometer,” Ann. N. Y. Acad. Sci. 158, 361–376 (1969).
[CrossRef]

Sriramoju, V.

Y. Pu, W. B. Wang, S. Achilefu, B. B. Das, G. C. Tang, V. Sriramoju, and R. R. Alfano, “Time-resolved fluorescence polarization anisotropy and optical imaging of Cybesin in cancerous and normal prostate tissues,” Opt. Commun. 274, 260–267 (2007).
[CrossRef]

Stryer, L.

L. Stryer, “Fluorescence spectroscopy of proteins,” Science 162, 526–533 (1968).
[CrossRef]

Szabo, A.

A. Szabo, “Theory of polarization fluorescent emission in uniaxial liquid crystals,” J. Chem. Phys. 72, 4620–4626 (1980).
[CrossRef]

Tang, G. C.

Y. Pu, W. B. Wang, S. Achilefu, B. B. Das, G. C. Tang, V. Sriramoju, and R. R. Alfano, “Time-resolved fluorescence polarization anisotropy and optical imaging of Cybesin in cancerous and normal prostate tissues,” Opt. Commun. 274, 260–267 (2007).
[CrossRef]

Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429–436 (2005).

Tredwell, C. J.

G. Porter, P. J. Sadkowski, and C. J. Tredwell, “Pico-second rotational diffusion in kinetic and steady state fluorescence spectroscopy,” Chem. Phys. Lett. 49, 416–420 (1977).
[CrossRef]

Vitenson, J. H.

Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429–436 (2005).

Wang, L.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast Kerrgate,” Science 253, 769–771 (1991).
[CrossRef]

Wang, W. B.

Y. Pu, W. B. Wang, B. B. Das, and R. R. Alfano, “Time-resolved spectral wing emission kinetics and optical imaging of human cancerous and normal prostate tissues,” Opt. Commun. 282, 4308–4314 (2009).
[CrossRef]

Y. Pu, W. B. Wang, B. B. Das, S. Achilefu, and R. R. Alfano, “Time-resolved fluorescence polarization dynamics and optical Imaging of Cytate: a prostate cancer receptor-targeted contrast agent,” Appl. Opt. 47, 2281–2289 (2008).
[CrossRef]

Y. Pu, W. B. Wang, S. Achilefu, B. B. Das, G. C. Tang, V. Sriramoju, and R. R. Alfano, “Time-resolved fluorescence polarization anisotropy and optical imaging of Cybesin in cancerous and normal prostate tissues,” Opt. Commun. 274, 260–267 (2007).
[CrossRef]

Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429–436 (2005).

W. B. Wang, J. H. Ali, R. B. Dorshow, M. A. McLoughlin, and R. R. Alfano, “Time-resolved fluorescence polarization dynamics and imaging of fluorescein dye attached to different molecular weight chains,” Proc. SPIE 3600, 227–229 (1999).
[CrossRef]

Weber, G.

R. D. Spencer and G. Weber, “Influence of Brownian rotations and energy transfer upon the measurements of fluorescence lifetime,” J. Chem. Phys. 52, 1654–1663 (1970).
[CrossRef]

R. D. Spencer and G. Weber, “Measurements of subnanosecond fluorescence life-times with a cross-correlation phase fluorometer,” Ann. N. Y. Acad. Sci. 158, 361–376 (1969).
[CrossRef]

Yu, W.

W. Yu, F. Pellegrino, M. Grant, and R. R. Alfano, “Subnanosecond fluorescence quenching of dye molecules in solution,” J. Chem. Phys. 67, 1766 (1977).
[CrossRef]

Zeng, F.

Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429–436 (2005).

Zhang, G.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast Kerrgate,” Science 253, 769–771 (1991).
[CrossRef]

Zhuang, X.

X. Zhuang, “Bioimaging at the nanoscale: Single-molecule and super-resolution fluorescence microscopy,” in Biomedical Optics, OSA Technical Digest (Optical Society of America, 2012), paper BTu1A.2.

Ann. N. Y. Acad. Sci. (1)

R. D. Spencer and G. Weber, “Measurements of subnanosecond fluorescence life-times with a cross-correlation phase fluorometer,” Ann. N. Y. Acad. Sci. 158, 361–376 (1969).
[CrossRef]

Ann. Phys. (1)

A. Einstein, “Zur Theorie der Brownschen Bewegung,” Ann. Phys. 324, 371 (1906). Also translated into English: Investigations on the Theory of the Brownian Movement (Dover, 1956).
[CrossRef]

Ann. Phys. (Paris) (1)

F. Perrin, “La fluorescence des solutions,” Ann. Phys. (Paris) 12, 169–275 (1929).

Appl. Opt. (1)

Chem. Phys. (1)

G. R. Fleming, J. M. Morris, and G. W. Robinson, “Direct observation of rotational diffusion by pico-second spectroscopy,” Chem. Phys. 17, 91–100 (1976).
[CrossRef]

Chem. Phys. Lett. (1)

G. Porter, P. J. Sadkowski, and C. J. Tredwell, “Pico-second rotational diffusion in kinetic and steady state fluorescence spectroscopy,” Chem. Phys. Lett. 49, 416–420 (1977).
[CrossRef]

Chem. Rev. (1)

D. M. Jameson and J. A. Ross, “Fluorescence polarization/anisotropy in diagnostics and imaging,” Chem. Rev. 110, 2685–2708 (2010).
[CrossRef]

Invest. Radiol. (1)

S. Achilefu, R. B. Dorshow, J. E. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescence contrast agent for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[CrossRef]

J. Chem. Phys. (3)

R. D. Spencer and G. Weber, “Influence of Brownian rotations and energy transfer upon the measurements of fluorescence lifetime,” J. Chem. Phys. 52, 1654–1663 (1970).
[CrossRef]

A. Szabo, “Theory of polarization fluorescent emission in uniaxial liquid crystals,” J. Chem. Phys. 72, 4620–4626 (1980).
[CrossRef]

W. Yu, F. Pellegrino, M. Grant, and R. R. Alfano, “Subnanosecond fluorescence quenching of dye molecules in solution,” J. Chem. Phys. 67, 1766 (1977).
[CrossRef]

Opt. Commun. (2)

Y. Pu, W. B. Wang, B. B. Das, and R. R. Alfano, “Time-resolved spectral wing emission kinetics and optical imaging of human cancerous and normal prostate tissues,” Opt. Commun. 282, 4308–4314 (2009).
[CrossRef]

Y. Pu, W. B. Wang, S. Achilefu, B. B. Das, G. C. Tang, V. Sriramoju, and R. R. Alfano, “Time-resolved fluorescence polarization anisotropy and optical imaging of Cybesin in cancerous and normal prostate tissues,” Opt. Commun. 274, 260–267 (2007).
[CrossRef]

Proc. SPIE (1)

W. B. Wang, J. H. Ali, R. B. Dorshow, M. A. McLoughlin, and R. R. Alfano, “Time-resolved fluorescence polarization dynamics and imaging of fluorescein dye attached to different molecular weight chains,” Proc. SPIE 3600, 227–229 (1999).
[CrossRef]

Rep. Prog. Phys. (1)

B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227–292 (1997).
[CrossRef]

Science (2)

L. Stryer, “Fluorescence spectroscopy of proteins,” Science 162, 526–533 (1968).
[CrossRef]

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast Kerrgate,” Science 253, 769–771 (1991).
[CrossRef]

Technol. Cancer Res. Treat. (1)

Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429–436 (2005).

Other (3)

X. Zhuang, “Bioimaging at the nanoscale: Single-molecule and super-resolution fluorescence microscopy,” in Biomedical Optics, OSA Technical Digest (Optical Society of America, 2012), paper BTu1A.2.

D. V. O’Connor and D. Phillips, “Fluorescence, its time dependence and applications,” in Time-Correlated Single Photon Counting (Academic, 1984).

Scout Hell, “Size Matters: how big are molecules,” http://www.bbc.co.uk/dna/h2g2/A791246 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Temporal polarized intensity profiles and polarization anisotropy of light emitted from ICG in aqueous solution. (a) Profiles of the time-resolved emission components having a polarization direction parallel (dotted curve) and perpendicular (dashed curve) to the polarization direction of the exciting light. The fitting curves are obtained by using Eq. (20) in the text and the corresponding data in Table 1. (b) Comparison of the decay rate among the normalized perpendicular component (thin dashed curve), the total fluorescence intensity (thin dotted curve), and the normalized parallel component (thin solid curve). The fitting curve of temporal total fluorescence intensity (thick curve) is calculated using Eq. (21) in Fig. 1(a).

Fig. 2.
Fig. 2.

Orthogonal coordinate system used to study the influence of molecular rotation on the fluorescence decay rate. The fluorescent molecule is placed at the origin. The exciting light pulses of an arbitrary linear polarization at angle ϕ e propagate at the Y O direction, and the angle ϕ d defines the polarizer introduced in the fluorescence beam. μ⃗ a and μ⃗ e represent the orientation of the absorption and the emission moments, respectively. δ is the angle between the absorption and emission dipoles.

Fig. 3.
Fig. 3.

Temporal profiles of polarization anisotropy (thin curve) of light emitted from ICG in aqueous solution. Time-dependent polarization anisotropy calculated using the measured data shown in Fig. 1(a) and Eq. (10) in the text, and the fitting curve (thick curve) calculated using Eq. (16) and the experimental data of r ( t ) in Fig. 3.

Fig. 4.
Fig. 4.

Influence of the rotation on the decay rate of ICG. The schematic temporal contributions of rotation to parallel and perpendicular components are obtained use Eq. (23) in the text. The thin dotted curves stand for the experimental data, and the thick solid curves are fitting from the theoretical calculation (each is pointed out in graph, respectively). The trend of the influence of the rotation to I ( t ) evidently rises up while that to I ( t ) drops.

Fig. 5.
Fig. 5.

Time-dependent fluorescence intensity profiles of parallel (solid curve) and perpendicular (dotted curve) components of emission from conjugated fluorescein–polymer of MV at (a)  707 and (b)  3200 Å 3 . The temporal profiles of the polarization anisotropy of conjugated fluorescein–polymer of MV at (c)  707 and (d)  3200 Å 3 .

Fig. 6.
Fig. 6.

Rotation time obtained by theoretical calculation (dotted line) and by fitting the experimental data (solid line) of the fluorescein dye–polymer conjugate as a function of molecular volume.

Fig. 7.
Fig. 7.

(a) Parallel and (b) perpendicular polarization images of fluorescein dye–polymer conjugates of MV at 707 (left) and 3200 (right) Å 3 . Figure 7(c) is the polarization difference image obtained by subtracting Fig. 7(b) from Fig. 7(a). Figs. 7(d)–7(f) are the digital spatial cross-section intensity distributions of the images shown in Figs. 7(a)–7(c), respectively.

Tables (2)

Tables Icon

Table 1 Comparison of the Experimental and Theoretical Parameters of ICG in Solution

Tables Icon

Table 2 Comparison of Image Contrast and FWHM of , , and FPDI Images with Molecular Volumes of 707 and 3200 Å 3

Equations (40)

Equations on this page are rendered with MathJax. Learn more.

d I x / d t = P x ( t ) ( α + 2 D x y + 2 D x z ) I x + 2 D y x I y + 2 D z x I z , d I y / d t = P y ( t ) + 2 D x y I x ( α + 2 D y x + 2 D y z ) I y + 2 D z y I z , d I z / d t = P z ( t ) + 2 D x z I x + 2 D y z I y ( α + 2 D z y + 2 D z x ) I z ,
d I x / d t = P x ( t ) ( α + 4 D ) I x + 2 D I y + 2 D I z , d I y / d t = P y ( t ) + 2 D I x ( α + 4 D ) I y + 2 D I z , d I z / d t = P z ( t ) + 2 D I x + 2 D I y ( α + 4 D ) I z .
d I / d t = d ( I x + I y + I z ) / d t = P ( t ) α ( I x + I y + I z ) = P ( t ) α I ,
I ( t ) = I 0 e α t ,
| d / d t + α + 4 D 2 D 2 D 2 D d / d t + α + 4 D 2 D 2 D 2 D d / d t + α + 4 D | | I x I y I z | = | κ x P ( t ) κ y P ( t ) κ z P ( t ) | .
I i = [ κ i ( d d t + α ) + 2 D ] P ( t ) ( d d t + α ) ( d d t + α + 6 D ) .
d 2 I i d t + a d I i d t + b I i = ( κ i α + 2 D ) P ( t ) + κ i d P ( t ) d t where a = 2 α + 6 D ; b = α ( α + 6 D ) .
d I i ( 0 ) / d t = ( α + 4 D ) I i ( 0 ) + 2 [ I 0 I i ( 0 ) ] D , where I 0 = I x ( 0 ) + I y ( 0 ) + I x ( 0 ) .
I i ( t ) = 1 3 I 0 e α t + ( I i ( 0 ) 1 3 I 0 ) e ( α + 6 D ) t .
r = I x I y I x + I y + I z .
r ( t ) = I ( t ) I ( t ) I ( t ) + 2 I ( t ) .
κ x = I x I x + I y + I z | t = 0 = I I + 2 I | t = 0 = 1 3 · I + 2 I + 2 ( I I ) I + 2 I | t = 0 = 1 3 ( 1 + 2 r 0 ) , κ y = κ z = I y I x + I y + I z | t = 0 = I I + 2 I | t = 0 = 1 3 · I + 2 I ( I I ) I + 2 I | t = 0 = 1 3 ( 1 r 0 ) ·
I ( t ) = I 0 3 exp ( α t ) ( 1 + 2 r 0 exp ( 6 D t ) ) , I ( t ) = I 0 3 exp ( α t ) ( 1 r 0 exp ( 6 D t ) ) .
r ( t ) = r 0 exp ( 6 D t ) .
t = 0 t I ( t ) d t 0 I ( t ) d t , and t = 0 t I ( t ) d t 0 I ( t ) d t .
t = α 1 1 + 2 r 0 [ α / ( α + 6 D ) ] 2 1 + 2 r 0 [ α / ( α + 6 D ) ] , t = α 1 1 r 0 [ α / ( α + 6 D ) ] 2 1 r 0 [ α / ( α + 6 D ) ] .
r ( t ) = r 0 exp ( 6 D t ) = r 0 exp ( t τ rot ) .
τ rot = ( 6 D ) 1 = η V k T = 4 π η a 3 3 k T .
r 0 = ( 2 P 2 2 + P 2 1 + 2 P 2 ) P 2 ( cos δ ) ,
P 2 P 2 ( cos θ ) = 0 π sin θ d θ f ( θ ) P 2 ( cos θ ) .
I ( t ) = I 0 3 exp ( t τ F ) ( 1 + 2 r 0 exp ( t τ rot ) ) , I ( t ) = I 0 3 exp ( t τ F ) ( 1 r 0 exp ( t τ rot ) ) .
I ( t ) = I ( t ) + 2 I ( t ) = I 0 exp ( t τ F ) .
t = τ F 1 + 2 r 0 [ τ rot / ( τ rot + τ F ) ] 2 1 + 2 r 0 [ τ rot / ( τ rot + τ F ) ] , t = τ F 1 r 0 [ τ rot / ( τ rot + τ F ) ] 2 1 r 0 [ τ rot / ( τ rot + τ F ) ] .
rc ( t ) = 3 I ( t ) I ( t ) = I 0 exp ( t τ F ) ( 1 + 2 r 0 exp ( t τ rot ) ) I 0 exp ( t τ F ) = 1 + 2 r 0 exp ( t τ rot ) , rc ( t ) = 3 I ( t ) I ( t ) = I 0 exp ( t τ F ) ( 1 r 0 exp ( t τ rot ) ) I 0 exp ( t τ rot ) = 1 r 0 exp ( t τ rot ) .
C = I max I background I max + I background ,
I i = [ κ i ( d d t + α ) + 2 D ] P ( t ) ( d d t + α ) ( d d t + α + 6 D ) .
d 2 I i d t + a d I i d t + b I i = ( κ i α + 2 D ) P ( t ) + κ i d P ( t ) d t , where a = 2 α + 6 D ; b = α ( α + 6 D ) .
d 2 I i ( t ) d t + a d I i ( t ) d t + b I i ( t ) = 0 .
z 2 + ( 2 α + 6 D ) z + α ( α + 6 D ) = 0 .
z = ( 2 α + 6 D ) ± ( 2 α + 6 D ) 2 4 α ( α + 6 D ) 2 = ( 2 α + 6 D ) ± ( 4 α 2 + 24 α D + 36 D 2 ) ( 4 α 2 + 24 α D ) 2 = ( 2 α + 6 D ) ± 36 D 2 2 .
I i ( t ) = C 1 e α t + C 2 e ( α + 6 D ) t .
I i ( 0 ) = C 1 e α 0 + C 2 e ( α + 6 D ) 0 = C 1 + C 2 C 1 = I i ( 0 ) C 2 d I i ( 0 ) / d t = ( α + 4 D ) I i ( 0 ) + 2 [ I 0 I i ( 0 ) ] D = α I i ( 0 ) 4 D I i ( 0 ) + 2 D I 0 2 D I i ( 0 ) = α I i ( 0 ) 6 D I i ( 0 ) + 2 D I 0 ,
d I i ( 0 ) / d t = α C 1 e α 0 ( α + 6 D ) C 2 e ( α + 6 D ) 0 = α C 1 ( α + 6 D ) C 2 .
α ( I i ( 0 ) C 2 ) ( α + 6 D ) C 2 = α I i ( 0 ) 6 D I i ( 0 ) + 2 D I 0 , α I i ( 0 ) + α C 2 α C 2 6 D C 2 = α I i ( 0 ) 6 D I i ( 0 ) + 2 D I 0 .
I i ( t ) = 1 3 I 0 e α t + ( I i ( 0 ) 1 3 I 0 ) e ( α + 6 D ) t .
r 0 = ( 2 P 2 2 + P 2 1 + 2 P 2 ) P 2 ( cos δ ) .
P 2 = 0.5 ( 3 x 2 1 ) .
P 2 P 2 ( cos θ ) = 0 π sin θ d θ f ( θ ) P 2 ( cos θ ) = 0 π d ( cos θ ) 1 2 · 1 2 ( 3 cos 2 θ 1 ) = 3 4 0 π d ( cos 2 θ ) + 1 4 0 π d ( cos θ ) = 3 4 · 1 3 cos 3 θ | 0 π + 1 4 cos θ | 0 π = 1 4 ( 1 1 ) + 1 4 ( 1 1 ) = 0.
P 2 2 P 2 2 ( cos θ ) = 0 π sin θ d θ f ( θ ) [ P 2 ( cos θ ) ] 2 = 0 π d ( cos θ ) 1 2 · [ 1 2 ( 3 cos 2 θ 1 ) ] 2 = 1 8 0 π d ( cos θ ) ( 9 cos 4 θ 6 cos 2 θ + 1 ) = 9 8 0 π cos 4 θ d ( cos θ ) + 6 8 0 π cos 2 θ d ( cos θ ) 1 8 0 π cos θ d ( cos θ ) = 9 8 · 1 5 cos 5 θ | 0 π + 6 8 · 1 3 cos 3 θ | 0 π 1 8 cos θ | 0 π = 9 40 ( 1 1 ) + 1 4 ( 1 1 ) 1 8 ( 1 1 ) = 9 20 1 2 + 1 4 = 9 10 + 5 20 = 4 20 = 0.2.
r 0 = ( 2 P 2 2 + P 2 1 + 2 P 2 ) P 2 ( cos δ ) = ( 2 × 0.2 + 0 1 + 2 × 0 ) · 1 = 0.4 .

Metrics