H. H. Wang, X. M. Sun, and H. Y. Zhang, “Scattering by a spheroidal particle illuminated with a couple of on-axis Gaussian beam,” Opt. Laser Technol. 44, 1290–1293 (2012).

[CrossRef]

G. Gouesbet and J. J. Wang, “On the structures of some light scattering theories depending on whether or not the Bromwich formulation may be used, e.g., spherical versus spheroidal coordinates,” Opt. Commun. 285, 4200–4206 (2012).

[CrossRef]

J. J. Wang and G. Gouesbet, “Note on the use of localized beam models for light scattering theories in spherical coordinates,” Appl. Opt. 51, 3832–3836 (2012).

[CrossRef]

Y. P. Han, Z. W. Cui, and G. Gouesbet, “Numerical simulation of Gaussian beam scattering by complex particles of arbitrary shape and structure,” J. Quant. Spectrosc. Radiat. Transfer 113, 1719–1727 (2012).

[CrossRef]

A. Kamor, F. Mauger, C. Chandre, and T. Uzer, “Annular billiard dynamics in a circularly polarized strong laser field,” Phys. Rev. E 85, 016204 (2012).

[CrossRef]

L. P. Su, S. Y. Chen, W. J. Zhao, and D. M. Ren, “Scattering properties of ultrashort laser pulses by air bubbles in the sea water,” Proc. SPIE 8192, 81922K (2011).

[CrossRef]

Y. G. Du, Y. P. Han, G. X. Han, and J. J. Li, “Theoretical study on the rotation of particles driven by Gaussian beam,” Acta Phys. Sinica 60, 028702 (2011).

L. A. Ambrosio and H. E. Hernandez-Figueroa, “Integral localized approximation description of ordinary Bessel beams and application to optical trapping forces,” Biomed. Opt. Express 2, 1893–1906 (2011).

[CrossRef]

L. A. Ambrosio and H. E. Hernandez-Figueroa, “Radiation pressure cross sections and optical forces over negative refractive index spherical particles by ordinary Bessel beams,” Appl. Opt. 50, 4489–4498 (2011).

[CrossRef]

L. A. Ambrosio and H. E. Hernandez-Figueroa, “Spin angular momentum transfer from TEM00 focused Gaussian beams to negative refractive index spherical particles,” Biomed. Opt. Express 2, 2354–2363 (2011).

[CrossRef]

B. Yan, H. Y. Zhang, and C. H. Liu, “Gaussian beam scattering by a spheroidal particle with an embedded conducting sphere,” J. Infrared Millim. Terahertz Waves 32, 126–133(2011).

[CrossRef]

B. Yan, H. Y. Zhang, and C. H. Liu, “Scattering of a Gaussian beam by a spheroidal particle with a spherical inclusion at the center,” Opt. Commun. 284, 3811–3815 (2011).

[CrossRef]

H. Y. Zhang, Z. X. Huang, and Y. F. Sun, “Scattering of a Gaussian beam by a conducting spheroidal particle with non-confocal dielectric coating,” IEEE Trans. Antennas Propag. 59, 4371–4374 (2011).

[CrossRef]

H. Y. Zhang and T. Q. Liao, “Scattering of a Gaussian beam by a spherical particle with a spheroidal inclusion,” J. Quant. Spectrosc. Radiat. Transfer 112, 1486–1491 (2011).

[CrossRef]

L. Boyde, K. J. Chalut, and J. Guck, “Exact analytical expansion of an off-axis Gaussian laser beam using the translation theorems for the vector spherical harmonics,” Appl. Opt. 50, 1023–1033 (2011).

[CrossRef]

G. Gouesbet, J. A. Lock, J. J. Wang, and G. Gréhan, “Transformations of spherical beam shape coefficients in general Lorenz–Mie theories through rotations of coordinate system: V. Localized beam models,” Opt. Commun. 284, 411–417 (2011).

[CrossRef]

G. Gouesbet, F. Xu, and Y. P. Han, “Expanded description of electromagnetic arbitrary shaped beam in spheroidal coordinates for use in light scattering theories: A review,” J. Quant. Spectrosc. Radiat. Transfer 112, 2249–2267 (2011).

[CrossRef]

J. J. Wang, G. Gouesbet, Y. P. Han, and G. Gréhan, “Study of scattering from a sphere with an eccentrically located spherical inclusion by generalized Lorenz–Mie theory: internal and external field distributions,” J. Opt. Soc. Am. A 28, 24–39 (2011).

[CrossRef]

J. J. Wang, G. Gouesbet, G. Gréhan, and S. Saengkaew, “Morphology-dependent resonances in an eccentrically layered sphere illuminated by a tightly focused off-axis Gaussian beam,” J. Opt. Soc. Am. A 28, 1849–1859 (2011).

[CrossRef]

H. Y. Zhang, Y. F. Sun, and Z. X. Huang, “Scattering by a multilayered infinite cylinder arbitrarily illuminated with a shaped beam,” IEEE Trans. Antennas Propag. 59, 4369–4371 (2011).

[CrossRef]

L. Boyde, K. J. Chalut, and J. Guck, “Near- and far-field scattering from arbitrary three-dimensional aggregates of coated spheres using parallel computing,” Phys. Rev. E 83, 026701 (2011).

[CrossRef]

Z. S. Wu, Z. J. Li, H. Li, Q. K. Yuan, and H. Y. Li, “Off-axis Gaussian beam scattering by an anisotropic coated sphere,” IEEE Trans. Antennas Propag. 59, 4740–4748 (2011).

[CrossRef]

Z. J. Li, Z. S. Wu, and Q. C. Shang, “Calculation of radiation forces exerted on a uniaxial anisotropic sphere by an off-axis incident Gaussian beam,” Opt. Express 19, 16044–16057 (2011).

[CrossRef]

G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011).

[CrossRef]

G. Gouesbet, “T-matrix formulation and generalized Lorenz–Mie theories in spherical coordinates, “Opt. Commun. 283, 517–521 (2010).

[CrossRef]

F. Xu, J. Lock, and C. Tropea, “Debye series for light scattering by a spheroid,” J. Opt. Soc. Am. A 27, 671–686 (2010).

[CrossRef]

F. Xu, J. A. Lock, and G. Gouesbet, “Debye series for light scattering by a nonspherical particle,” Phys. Rev. A 81, 043824 (2010).

[CrossRef]

F. Xu and J. A. Lock, “Debye series for light scattering by a coated nonspherical particle,” Phys. Rev. A 81, 063812 (2010).

[CrossRef]

H. Y. Li, Z. S. Wu, and Z. J. Li, “Relation between Debye series and generalized Lorenz–Mie theory of laser beam scattering by multilayer cylinder,” Chin. Phys. B 19, 104202 (2010).

[CrossRef]

Q. K. Yuan, Z. S. Wu, and Z. J. Li, “Electromagnetic scattering for a uniaxial anisotropic sphere in an off-axis obliquely incident Gaussian beam,” J. Opt. Soc. Am. A 27, 1457–1465 (2010).

[CrossRef]

X. M. Sun, H. H. Wang, and H. Y. Zhang, “Scattering by an infinite cylinder arbitrarily illuminated with a couple of Gaussian beams,” J. Electromagn. Waves Appl. 24, 1329–1339 (2010).

[CrossRef]

G. X. Han and Y. P. Han, “Scattering of bi-sphere arbitrarily illuminated by a single beam and a dual beam,” Acta Phys. Sinica 59, 2434–2442 (2010).

H. Y. Li, Z. S. Wu, and L. Bai, “Scattering for charged multisphere structure located in plane wave/Gaussian beam,” J. Electromagn. Waves Appl. 24, 2037–2047 (2010).

X. M. Sun, H. H. Wang, and H. Y. Zhang, “Scattering of Gaussian beam by a conducting spheroidal particle with confocal dielectric coating,” J. Infrared Millim. Terahertz Waves 31, 1100–1108 (2010).

[CrossRef]

H. Y. Zhang and Y. F. Sun, “Scattering by a spheroidal particle illuminated with a Gaussian beam described by a localized beam model,” J. Opt. Soc. Am. B 27, 883–887(2010).

[CrossRef]

J. Chen, J. Ng, P. Wang, and Z. Lin, “Analytical partial wave expansion of vector Bessel beam and its application to optical binding,” Opt. Lett. 35, 1674–1676 (2010).

[CrossRef]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in general Lorenz–Mie theories through rotations of coordinate system. I General formulation,” Opt. Commun. 283, 3218–3225 (2010).

[CrossRef]

J. J. Wang, G. Gouesbet, and Y. P. Han, “Transformations of spherical beam shape coefficients in general Lorenz–Mie theories through rotations of coordinate system: II. Axisymmetric beams,” Opt. Commun. 283, 3226–3234 (2010).

[CrossRef]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in general Lorenz–Mie theories through rotations of coordinate system: III. Special values of Euler angles,” Opt. Commun. 283, 3235–3243 (2010).

[CrossRef]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in general Lorenz–Mie theories through rotations of coordinate system: IV. Plane waves,” Opt. Commun. 283, 3244–3254 (2010).

[CrossRef]

M. J. Mendes, I. Tobias, A. Marti, and A. Luque, “Near-field scattering by dielectric spheroidal particles with sizes on the order of the illuminating wavelength,” J. Opt. Soc. Am. B 27, 1221–1231 (2010).

[CrossRef]

Q. C. Shang, Z. S. Wu, Z. J. Li, and H. A. Li, “Radiation force on a chiral sphere by a Gaussian beam,” Proc. SPIE 7845, 78452B (2010).

[CrossRef]

R. X. Li, X. E. Han, and K. F. Ren, “Debye series analysis of radiation pressure force exerted on a multilayered sphere,” Appl. Opt. 49, 955–963 (2010).

[CrossRef]

L. A. Ambrosio and H. E. Hernandez-Figueroa, “Fundamentals of negative refractive index optical trapping: Forces and radiation pressures exerted by focused Gaussian beams using the generalized Lorenz–Mie theory,” Biomed. Opt. Express 1, 1284–1301 (2010).

[CrossRef]

F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Optical stress on the surface of a particle: I. Homogeneous sphere,” Phys. Rev. A 79, 053808 (2009).

[CrossRef]

L. Méès, G. Gouesbet, and G. Gréhan, “Transient internal and scattered fields from a multi-layered sphere illuminated by a pulsed laser,” Opt. Commun. 282, 4189–4193 (2009).

[CrossRef]

S. Bakic, F. Xu, N. Damaschke, and C. Tropea, “Feasibility of extending rainbow refractometry to small particles using femtosecond laser pulses,” Part. Part. Syst. Charact. 26, 34–40 (2009).

[CrossRef]

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Whispering-gallery mode excitation in a microdroplet illuminated by a train of chirped ultrashort laser pulses,” Appl. Opt. 48, 5842–5848 (2009).

[CrossRef]

Y. P. Han, Y. Zhang, H. Y. Zhang, and G. X. Han, “Scattering of typical particles by beam shape in oblique illumination,” J. Quant. Spectrosc. Radiat. Transfer 110, 1375–1381(2009).

[CrossRef]

O. Pena and U. Pal, “Scattering of electromagnetic radiation by a multilayered sphere,” Comput. Phys. Commun. 180, 2348–2354 (2009).

[CrossRef]

H. Y. Li, Z. S. Wu, and Z. J. Li, “Scattering from a multi-layered sphere located in a high-order Hermite-Gaussian beam,” Chin. Phys. Lett. 26, 104203 (2009).

[CrossRef]

Z. S. Wu, Q. K. Yuan, Y. Peng, and Z. J. Li, “Internal and external electromagnetic fields for on-axis Gaussian beam scattering from a uniaxial anisotropic sphere,” J. Opt. Soc. Am. A 26, 1778–1787 (2009).

[CrossRef]

P. Y. Wei, X. M. Sun, J. Shen, and H. Y. Zhang, “Scattering by a conducting infinite cylinder illuminated with a shaped beam,” J. Infrared Millim. Terahertz Waves 30, 642–649(2009).

[CrossRef]

M. Wang, H. Zhang, Y. Han, and Y. Li, “Scattering of shaped beam by a conducting infinite cylinder with dielectric coating,” Appl. Phys. B 96, 105–109 (2009).

[CrossRef]

G. Gouesbet, “Generalized Lorenz–Mie theories, the third decade: a perspective,” J. Quant. Spectrosc. Radiat. Transfer 110, 1223–1238 (2009).

[CrossRef]

J. A. Lock and G. Gouesbet, “Generalized Lorenz–Mie theory and applications,” J. Quant. Spectrosc. Radiat. Transfer 110, 800–807 (2009).

[CrossRef]

G. X. Han and Y. P. Han, “Radiation force of a sphere with an eccentric inclusion illuminated by a laser beam,” Acta Phys. Sinica 58, 6167–6173 (2009).

B. Yan, X. Han, and K. F. Ren, “Scattering of a shaped beam by a spherical particle with an eccentric spherical inclusion,” J. Opt. A 11, 015705 (2009).

[CrossRef]

H. Y. Li and Z. S. Wu, “Electromagnetic scattering by multi-layered spheres in a 2D Gaussian beam,” Acta Phys. Sinica 57, 833–838 (2008).

G. X. Han, Y. P. Han, J. Y. Liu, and Y. Zhang, “Scattering of an eccentric sphere arbitrarily located in a shaped beam,” J. Opt. Soc. Am. B 25, 2064–2072 (2008).

[CrossRef]

H. Y. Zhang and Y. P. Han, “Addition theorem for the spherical vector wave functions and its application to the beam shape coefficients,” J. Opt. Soc. Am. B 25, 255–260 (2008).

[CrossRef]

H. Y. Zhang and Y. P. Han, “Scattering of shaped beam by an infinite cylinder of arbitrary orientation,” J. Opt. Soc. Am. B 25, 131–135 (2008).

[CrossRef]

F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Radiation torque exerted on a spheroid: analytical solution,” Phys. Rev. A 78, 013843 (2008).

[CrossRef]

C. Calba, L. Méès, C. Rozé, and T. Girasole, “Ultrashort pulse propagation through a strongly scattering medium: simulation and experiments,” J. Opt. Soc. Am. A 25, 1541–1550 (2008).

[CrossRef]

S. Bakic, C. Heinisch, N. Damaschke, T. Tschudi, and C. Tropea, “Time integrated detection of femtosecond laser pulses scattered by small droplets,” Appl. Opt. 47, 523–530(2008).

[CrossRef]

A. R. Jones, “Some calculations on the scattering efficiencies of a sphere illuminated by an optical pulse,” J. Phys. D 40, 7306–7312 (2007).

[CrossRef]

A. A. R. Neves, A. Fontes, C. L. Cesar, A. Camposeo, R. Cingolani, and D. Pisignano, “Axial optical trapping efficiency through a dielectric interface,” Phys. Rev. E 76, 061917 (2007).

[CrossRef]

F. Xu, K. F. Ren, and X. S. Cai, “Expansion of an arbitrarily oriented, located, and shaped beam in spheroidal coordinates,” J. Opt. Soc. Am. A 24, 109–118 (2007).

[CrossRef]

F. Xu, K. F. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz–Mie theory for an arbitrarily oriented, located and shaped beam scattering by a homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007).

[CrossRef]

F. Xu, K. F. Ren, G. Gouesbet, X. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007).

[CrossRef]

Y. P. Han, H. Zhang, and G. Han, “The expansion coefficients of arbitrary shaped beam in oblique illumination,” Opt. Express 15, 735–746 (2007).

[CrossRef]

M. Venkatapathi and E. D. Hirleman, “Effect of beam size parameters on internal fields in an infinite cylinder irradiated by an elliptical Gaussian beam,” J. Opt. Soc. Am. A 24, 3366–3370 (2007).

[CrossRef]

M. Venkatapathi, G. Gregori, K. Ragheb, J. P. Robinson, and E. D. Hirleman, “Measurement and analysis of angle-resolved scatter from small particles in a cylindrical microchannel,” Appl. Opt. 45, 2222–2231 (2006).

[CrossRef]

A. A. R. Neves, A. Fontes, L. A. Padilha, E. Rodriguez, C. H de Brito Cruz, L. C. Barbosa, and C. L. Cesar, “Exact partial wave expansion of optical beams with respect to an arbitrary origin,” Opt. Lett. 31, 2477–2479 (2006).

[CrossRef]

A. A. R. Neves, L. A. Padilha, A. Fontes, E. Rodriguez, C. H. B. Cruz, L. C. Barbosa, and C. L. Cesar, “Analytical results for a Bessel function times Legendre polynomials class integrals, J. Phys. A 39, L293–L296 (2006).

[CrossRef]

Y. Han, H. Zhang, and X. Sun, “Scattering of shaped beam by an arbitrarily oriented spheroid having layers with non-confocal boundaries,” Appl. Phys. B 84, 485–492 (2006).

[CrossRef]

Y. P. Han, L. Mees, G. Gouesbet, Z. S. Wu, and G. Gréhan, “Resonant spectra of a deformed spherical microcavity,” J. Opt. Soc. Am. B 23, 1390–1397 (2006).

[CrossRef]

J. A. Lock, Partial-wave expansions of angular spectra of plane waves,” J. Opt. Soc. Am. A 23, 2803–2809 (2006).

[CrossRef]

A. A. R. Neves, A. Fontes, L. D. Y. Pozzo, A. A. de Thomas, E. Chillce, E. Rodriguez, L. C. Barbosa, and C. L. Cesar, “Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric,” Opt. Express 14, 13101–13106 (2006).

[CrossRef]

J. A. Lock, S. Y. Wrbanek, and K. E. Weiland, “Scattering of a tightly focused beam by an optically trapped particle,” Appl. Opt. 45, 3634–3645 (2006).

[CrossRef]

Y. P. Han, L. Mees, K. F. Ren, G. Gréhan, Z. S. Wu, and G. Gouesbet, “Far scattered field from a spheroid under a femtosecond pulsed illumination in a generalized Lorenz–Mie theory framework,” Opt. Commun. 231, 71–77 (2004).

[CrossRef]

J. A. Lock, “Calculation of the radiation trap force for laser tweezers by use of generalized Lorenz–Mie theory: I. Localized model description of an on-axis tightly focused laser beam with spherical aberration,” Appl. Opt. 43, 2532–2544(2004).

[CrossRef]

J. A. Lock, “Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz–Mie theory: II. On-axis trapping force,” Appl. Opt. 43, 2545–2554 (2004).

[CrossRef]

Y. P. Han and Z. S. Wu, “Absorption and scattering by an oblate particle,” J. Opt. A 4, 74–77 (2002).

[CrossRef]

Y. P. Han, L. Mees, K. F. Ren, G. Gouesbet, S. Z. Wu, and G. Gréhan, “Scattering of light by spheroids: the far field case,” Opt. Commun. 210, 1–9 (2002).

[CrossRef]

A. Rohrbach and E. H. K. Stelzer, “Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations,” Appl. Opt. 41, 2494–2507 (2002).

[CrossRef]

S. R. Seshadri, “Nonparaxial corrections for the fundamental Gaussian beam,” J. Opt. Soc. Am. A 19, 2134–2141 (2002).

[CrossRef]

L. Méès, J. P. Wolf, G. Gouesbet, and G. Gréhan, “Two-photon absorption and fluorescence in a spherical micro-cavity illuminated by using two laser pulses: numerical simulations,” Opt. Commun. 208, 371–375 (2002).

[CrossRef]

L. Méès, G. Gouesbet, and G. Gréhan, “Numerical predictions of microcavity internal fields created by femtosecond pulses, with emphasis on whispering gallery modes,” J. Opt. A 4, 8150–8153 (2002).

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Morphologydependent resonances and/or whispering gallery modes for a two-dimensional dielectric cavity with an eccentrically located spherical inclusion, a Hamiltonian point of view with Hamiltonian (optical) chaos,” Opt. Commun. 201, 223–242 (2002).

[CrossRef]

M. Hentschel and K. Richter, “Quantum chaos in optical systems: The annular billiard,” Phys. Rev. E 66, 056207 (2002).

[CrossRef]

L. Méès, G. Gréhan, and G. Gouesbet, “Time-resolved scattering diagrams for a sphere illuminated by plane wave and focused short pulses,” Opt. Commun. 194, 59–65 (2001).

[CrossRef]

L. Méès, G. Gouesbet, and G. Gréhan, “Scattering of laser pulses (plane wave and focused Gaussian beams) by spheres,” Appl. Opt. 40, 2546–2550 (2001).

[CrossRef]

L. Méès, G. Gouesbet, and G. Gréhan, “Interaction between femtosecond pulses and a spherical microcavity: internal fields,” Opt. Commun. 199, 33–38 (2001).

[CrossRef]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Generalized Lorenz–Mie theory for a sphere with an eccentrically located spherical inclusion, and optical chaos,” Part. Part. Syst. Charact. 18, 190–195 (2001).

[CrossRef]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Periodic orbits in Hamiltonian chaos of the annular billiard,” Phys. Rev. E 65, 016212 (2001).

[CrossRef]

A. Rohrbach and E. H. K. Stelzer, “Optical trapping of dielectric particles in arbitrary fields,” J. Opt. Soc. Am. A 18, 839–853 (2001).

[CrossRef]

H. Polaert, G. Gouesbet, and G. Gréhan, “Laboratory determination of beam shape coefficients for use in generalized Lorenz–Mie theory,” Appl. Opt. 40, 1699–1706 (2001).

[CrossRef]

Y. P. Han and Z. S. Wu, “Scattering of a spheroidal particle illuminated by a Gaussian beam,” Appl. Opt. 40, 2501–2509 (2001).

[CrossRef]

Y. P. Han and Z. S. Wu, “The expansion coefficients of a spheroidal particle illuminated by Gaussian beam,” IEEE Trans. Antennas Propag. 49, 615–620 (2001).

[CrossRef]

J. Mroczka and D. Wysoczanski, “Plane-wave and Gaussian-beam scattering on an infinite cylinder,” Opt. Eng. 39, 763–770 (2000).

[CrossRef]

G. Gouesbet and G. Gréhan, “Generalized Lorenz–Mie theory for a sphere with an eccentrically located spherical inclusion,” J. Mod. Opt. 47, 821–837 (2000).

G. Gouesbet and G. Gréhan, “Generalized Lorenz–Mie theories, from past to future,” Atomization Sprays 10, 277–333 (2000).

[CrossRef]

G. Gouesbet, C. Rozé, and S. Meunier-Guttin-Cluzel, “Instabilities by local heating below an interface, a review,” J. Nonequilib. Thermodyn. 25, 337–379 (2000).

[CrossRef]

G. Gouesbet and G. Gréhan, “Generic formulation of a generalized Lorenz–Mie theory for a particle illuminated by laser pulses,” Part. Part. Syst. Charact. 17, 213–224 (2000).

[CrossRef]

G. Gouesbet, “Theory of distributions and its application to beam parametrization in light scattering,” Part. Part. Syst. Charact. 16, 147–159 (1999).

[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Description of arbitrary shaped beams in elliptical cylinder coordinates by using a plane wave spectrum approach,” Opt. Commun. 161, 63–78 (1999).

[CrossRef]

G. Gouesbet and G. Gréhan, “Generalized Lorenz–Mie theory for assemblies of spheres and aggregates,” J. Opt. A 1, 706–712 (1999).

[CrossRef]

G. Gouesbet and G. Gréhan, “Generalized Lorenz–Mie theory for assemblies of spheres and aggregates, J. Opt. A 1, 706–712 (1999).

[CrossRef]

J. P. Barton, “Internal and near-surface electromagnetic fields for an infinite cylinder illuminated by an arbitrary focused beam,” J. Opt. Soc. Am. A 16, 160–166(1999).

[CrossRef]

L. Méès, K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation: numerical results,” Appl. Opt. 38, 1867–1876 (1999).

[CrossRef]

G. Gouesbet and L. Méès, “Generalized Lorenz–Mie theory for infinitely long elliptical cylinders,” J. Opt. Soc. Am. A 16, 1333–1341 (1999).

[CrossRef]

G. Gouesbet and A. Berlemont, “Eulerian and Lagrangian approaches for predicting the behaviour of discrete particles in turbulent flows,” Prog. Energy Combust. Sci. 25, 133–159(1999).

[CrossRef]

G. Gouesbet, “Validity of the cylindrical localized approximation for arbitrary shaped beams in generalized Lorenz–Mie theory for circular cylinders,” J. Mod. Opt. 46, 1185–1200 (1999).

G. Gouesbet and L. Méès, “Validity of the elliptical cylinder localized approximation for arbitrary shaped beams in generalized Lorenz–Mie theory for elliptical cylinders,” J. Opt. Soc. Am. A 16, 2946–2958 (1999).

[CrossRef]

G. Gouesbet, “Validity of the localized approximation for arbitrary shaped beams in generalized Lorenz–Mie theory for spheres,” J. Opt. Soc. Am. A 16, 1641–1650 (1999).

[CrossRef]

G. Gouesbet, L. Méès, and G. Gréhan, “Partial-wave description of shaped beams in elliptical-cylinder coordinates,” J. Opt. Soc. Am. A 15, 3028–3038 (1998).

[CrossRef]

H. Polaert, G. Gréhan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155, 169–179 (1998).

[CrossRef]

K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral localized approximation in generalized Lorenz–Mie theory,” Appl. Opt. 37, 4218–4225 (1998).

[CrossRef]

H. Polaert, G. Gouesbet, and G. Gréhan, “Measurements of beam shape coefficients in the generalized Lorenz–Mie theory for the on-axis case: numerical simulations,” Appl. Opt. 37, 5005–5013 (1998).

[CrossRef]

G. Gouesbet,” Measurements of beam shape coefficients in generalized Lorenz–Mie theory and the density-matrix approach: I. Measurements,” Part. Part. Syst. Charact. 14, 12–20 (1997).

G. Gouesbet, “Measurements of beam shape coefficients in generalized Lorenz–Mie theory and the density-matrix approach: II. The density matrix approach,” Part. Part. Syst. Charact. 14, 88–92 (1997).

R. Botet, P. Rannou, and M. Cabane, “Mean-field approximation of Mie scattering by fractal aggregates of identical spheres,” Appl. Opt. 36, 8791–8797 (1997).

[CrossRef]

J. U. Nöckel and A. D. Stone, “Ray and wave chaos in asymmetric resonant optical cavities,” Lett. Nature 385, 45–47 (1997).

[CrossRef]

A. D. Stone and J. U. Nöckel, “Asymmetric resonant optical cavities,” Opt. Photon. News 8, 37–38 (1997).

[CrossRef]

A. Doicu and T. Wriedt, “Computation of the beam-shape-coefficients in the generalized Lorenz–Mie theory by using the translational addition theorem for spherical vector wave functions,” Appl. Opt. 36, 2971–2978 (1997).

[CrossRef]

J. A. Lock and C. L. Adler, “Debye-series analysis of the first-order rainbow produced in scattering of a diagonally incident plane wave by a circular cylinder,” J. Opt. Soc. Am. A 14, 1316–1328 (1997).

[CrossRef]

G. Gouesbet, “Interaction between an infinite cylinder and an arbitrary shaped beam,” Appl. Opt. 36, 4292–4304 (1997).

[CrossRef]

Z. S. Wu, L. X. Guo, K. F. Ren, G. Gouesbet, and G. Gréhan, “Improved algorithms for electromagnetic scattering of plane waves and shaped beams by multilayered spheres,” Appl. Opt. 36, 5188–5198 (1997).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of a GLMT, formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

J. A. Lock, “Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder,” J. Opt. Soc. Am. A 14, 640–652 (1997).

[CrossRef]

J. A. Lock, “Morphology-dependent resonances of an infinitely long circular cylinder illuminated by a diagonally incident plane wave or a focused Gaussian beam,” J. Opt. Soc. Am. A 14, 653–661 (1997).

[CrossRef]

R. P. Ratowsky, L. Yang, R. J. Deri, K. W. Chang, J. S. Kallman, and G. Trott, “Laser diode to single-mode fiber ball lens coupling efficiency: full-wave calculation and measurements,” Appl. Opt. 36, 3435–3438 (1997).

[CrossRef]

A. Doicu and T. Wriedt, “Plane wave spectrum of electromagnetic beams,” Opt. Commun. 136, 114–124 (1997).

[CrossRef]

G. Gouesbet, “Exact description of arbitrary shaped beams for use in light scattering theories,” J. Opt. Soc. Am. A 13, 2434–2440 (1996).

[CrossRef]

G. Gouesbet, “Partial wave expansions and properties of axisymmetric light beams,” Appl. Opt. 35, 1543–1555(1996).

[CrossRef]

G. Gouesbet, C. Letellier, K. F. Ren, and G. Gréhan, “Discussion of two quadrature methods of evaluating beam shape coefficients in generalized Lorenz–Mie theory,” Appl. Opt. 35, 1537–1542 (1996).

[CrossRef]

Y. Harada and T. Asakura,” Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).

[CrossRef]

J. A. Lock and J. T. Hodges, “Far-field scattering of an axisymmetric laser beam of arbitrary prole by an on-axis spherical particle,” Appl. Opt. 35, 4283–4290 (1996).

[CrossRef]

E. Lenglart and G. Gouesbet, “The separability ‘theorem’ in terms of distributions with discussion of electromagnetic scattering theory,” J. Math. Phys. 37, 4705–4710 (1996).

[CrossRef]

P. Torok, R. Varga, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: Structure of the electromagnetic field. I,” J. Opt. Soc. Am. A 12, 2136–2144 (1995).

[CrossRef]

P. Torok, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: An integral representation,” J. Opt. Soc. Am. A 12, 325–332 (1995).

[CrossRef]

G. Gouesbet, “ The separability theorem revisited with applications to light scattering theory,” J. Opt. 26, 123–135 (1995).

[CrossRef]

G. Gouesbet, “Interaction between Gaussian beams and infinite cylinders, by using the theory of distributions,” J. Opt. 26, 225–239 (1995).

[CrossRef]

J. T. Hodges, G. Gréhan, G. Gouesbet, and C. Presser, “Forward scattering of a Gaussian beam by a nonabsorbing sphere,” Appl. Opt. 34, 2120–2132 (1995).

[CrossRef]

A. Mekis, J. U. Nöckel, G. Chen, A. D. Stone, and R. K. Chang, “Ray chaos and Q spoiling in lasing droplets,” Phys. Rev. Lett. 75, 2682–2685 (1995).

[CrossRef]

F. Onofri, G. Gréhan, and G. Gouesbet, “Electromagnetic scattering from a multilayered sphere located in an arbitrary beam,” Appl. Opt. 34, 7113–7124 (1995).

[CrossRef]

J. A. Lock, “Improved Gaussian beam-scattering algorithm,” Appl. Opt. 34, 559–570 (1995).

[CrossRef]

R. P. Ratowsky, L. Yang, R. J. Deri, J. S. Kallman, and G. Trott, “Ball lens reflections by direct solution of Maxwell’s equations,” Opt. Lett. 20, 2048–2050 (1995).

[CrossRef]

G. Gouesbet, J. A. Lock, and G. Gréhan, “Partial wave representations of laser beams for use in light scattering calculations,” Appl. Opt. 34, 2133–2143 (1995).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Electromagnetic field expression of a laser sheet and the order of approximation,” J. Opt. 25, 165–176 (1994).

[CrossRef]

D. W. Mackowski, “Calculation of total cross sections of multiple-sphere clusters,” J. Opt. Soc. Am. A 11, 2851–2861 (1994).

[CrossRef]

K. A. Fuller, “Scattering and absorption cross sections of compound spheres. I. Theory for external aggregation,” J. Opt. Soc. Am. A 11, 3251–3260 (1994).

[CrossRef]

E. E. M. Khaled, S. C. Hill, and P. W. Barber, “Internal electric energy in a spherical particle illuminated with a plane wave or off-axis Gaussian beam,” Appl. Opt. 33, 524–532 (1994).

[CrossRef]

J. A. Lock and G. Gouesbet, “Rigorous justication of the localized approximation to the beam shape coefficients in generalized Lorenz–Mie. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

[CrossRef]

G. Gouesbet and J. A. Lock, “Rigorous justication of the localized approximation to the beam shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994).

[CrossRef]

G. Gréhan, G. Gouesbet, A. Naqwi, and F. Durst, “Trajectory ambiguities in phase-Doppler systems: study of a near-forward and a near-backward geometry,” Part. Part. Syst. Charact. 11, 133–144 (1994).

[CrossRef]

G. Gréhan, K. F. Ren, G. Gouesbet, A. Naqwi, and F. Durst, “Evaluation of a particle sizing technique based on laser sheets,” Part. Part. Syst. Charact. 11, 101–106 (1994).

[CrossRef]

G. Gouesbet and G. Gréhan, “Interaction between shaped beams and an infinite cylinder, including a discussion of Gaussian beams,” Part. Part. Syst. Charact. 11, 299–308 (1994).

[CrossRef]

G. Gouesbet, “Generalized Lorenz–Mie theory and applications,” Part. Part. Syst. Charact. 11, 22–34 (1994).

[CrossRef]

J. U. Nöckel, A. D. Stone, and R. K. Chang, “Q-spoiling and directionality in deformed ring cavities,” Opt. Lett. 19, 1693–1695 (1994).

[CrossRef]

J. M. Jensen, Chaotic scattering of light by a dielectric cylinder,” J. Opt. Soc. Am. A 10, 1204–1208 (1993).

[CrossRef]

V. Daniels, M. Vallières, and J. M. Yuan, “Chaotic scattering on a double well: periodic orbits, symbolic dynamics, and scaling,” Chaos 3, 475–485 (1993).

[CrossRef]

G. Gréhan, G. Gouesbet, A. Naqwi, and F. Durst, “Particle trajectory effects in phase-Doppler systems: computations and experiments,” Part. Part. Syst. Charact. 10, 332–338 (1993).

[CrossRef]

E. E. M. Khaled, S. C. Hill, and P. W. Barber, “Scattered and internal intensity of a sphere illuminated with a Gaussian beam,” IEEE Trans. Antennas Propag. 41, 295–303 (1993).

[CrossRef]

J. A. Lock, “Contribution of high-order rainbows to the scattering of a Gaussian laser beam by a spherical particle,” J. Opt. Soc. Am. A 10, 693–706 (1993).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Laser sheet scattering by spherical particles,” Part. Part. Syst. Charact. 10, 146–151 (1993).

[CrossRef]

E. E. M. Khaled, S. C. Hill, P. W. Barber, and D. Q. Chowdhury, “Near-resonance excitation of dielectric spheres with plane waves and off-axis Gaussian beams,” Appl. Opt. 31, 1166–1169 (1992).

[CrossRef]

A. Ashkin, “Forces on a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).

[CrossRef]

A. Wünsche, “Transition from the paraxial approximation to exact solutions of the wave equation and application to Gaussian beams,” J. Opt. Soc. Am. A 9, 765–774 (1992).

[CrossRef]

F. Corbin, G. Gréhan, and G. Gouesbet, “Top-hat beam technique: improvements and application to bubble measurements,” Part. Part. Syst. Charact. 8, 222–228 (1991).

[CrossRef]

S. R. Mishra, “A vector wave analysis of a Bessel beam,” Opt. Commun. 85159–161 (1991).

[CrossRef]

G. Gouesbet, G. Gréhan, and B. Maheu, “A localized approximation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990).

[CrossRef]

S. Bleher, C. Grebogi, and E. Ott, “Bifurcation to chaotic scattering,” Phys. D 46, 87–121 (1990).

[CrossRef]

J. B. Guidt, G. Gouesbet, and J. N. Le Toulouzan, “An accurate validation of visible infra-red double extinction simultaneous measurements of particle sizes and number-densities by using densely laden standard media,” Appl. Opt. 29, 1011–1022 (1990).

[CrossRef]

C. Jung and S. Pott, “Classical cross section for chaotic potential scattering,” J. Phys. A 22, 2925–2938 (1989).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).

[CrossRef]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[CrossRef]

B. Maheu, G. Gouesbet, and G. Gréhan, “A concise presentation of the generalized Lorenz–Mie theory for arbitrary location of the scatterer in an arbitrary incident profile,” J. Opt. 19, 59–67 (1988).

[CrossRef]

G. Gouesbet, G. Gréhan, and B. Maheu, “Computations of the gn coefficients in the generalized Lorenz–Mie theory using three different methods,” Appl. Opt. 27, 4874–4883 (1988).

[CrossRef]

G. Gouesbet, G. Gréhan, and B. Maheu, “Expressions to compute the coefficients gnm in the generalized Lorenz–Mie theory, using finite series,” J. Opt. 19, 35–48 (1988).

[CrossRef]

G. Gréhan, B. Maheu, and G. Gouesbet, “Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation,” Appl. Opt. 25, 3539–3548 (1986).

[CrossRef]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).

[CrossRef]

J. S. Kim and S. S. Lee, “Scattering of laser beam and the optical potential well for a homogeneous sphere,” J. Opt. Soc. Am. A 73, 303–312 (1983).

[CrossRef]

J. H. Bruning and Y. T. Lo, “Multiple scattering of EM waves by spheres part 1—Multipole expansion and ray-optical solutions,” IEEE Trans. Antennas Propag. AP-19, 378–389 (1971).

[CrossRef]

Y. Yeh and H. Cummins, “Localized fluid flow measurements with a He–Ne laser spectrometer,” Appl. Phys. Lett. 4, 176–178 (1964).

[CrossRef]

C. Yeh, “The diffraction of waves by a penetrable ribbon,” J. Math. Phys. 4, 65–71 (1963).

[CrossRef]

V. Twersky, “On scattering of waves by random distributions. I. Free-space scatterer formalism,” J. Math. Phys. 3, 700–715 (1962).

[CrossRef]

E. Wolf, “Electromagnetic diffraction in optical systems. I. An integral representation of the image field,” Proc. R. Soc. London Ser. A 253, 349–357 (1959).

[CrossRef]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959).

[CrossRef]

L. C. Biedenharn and M. E. Rose, “Theory of angular correlations of nuclear radiations,” Rev. Mod. Phys. 25, 729–777 (1953).

[CrossRef]

G. Gortzel, “Angular correlation of gamma rays,” Phys. Rev., Appendix 1 70, 897–909 (1946).

[CrossRef]

L. L. Foldy, “The multiple scattering of waves,” Phys. Rev. E 67, 107–119 (1945).

[CrossRef]

F. E. Borgnis, “Elektromagnetische Eigenschwingungen dielektrischer Raüme,” Ann. Phys. 35, 359–384 (1939).

[CrossRef]

T. J. Bromwich, “Electromagnetic waves,” Philos. Mag. 38, 143–164 (1919).

[CrossRef]

P. Debye, “Das elektromagnetische Feld um einen Zylinder und die Theorie des Regenbogens,” Phys. Zeitung 9, 775–778(1908).

H. E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement (Springer, 2003).

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).

[CrossRef]

L. A. Ambrosio and H. E. Hernandez-Figueroa, “Integral localized approximation description of ordinary Bessel beams and application to optical trapping forces,” Biomed. Opt. Express 2, 1893–1906 (2011).

[CrossRef]

L. A. Ambrosio and H. E. Hernandez-Figueroa, “Radiation pressure cross sections and optical forces over negative refractive index spherical particles by ordinary Bessel beams,” Appl. Opt. 50, 4489–4498 (2011).

[CrossRef]

L. A. Ambrosio and H. E. Hernandez-Figueroa, “Spin angular momentum transfer from TEM00 focused Gaussian beams to negative refractive index spherical particles,” Biomed. Opt. Express 2, 2354–2363 (2011).

[CrossRef]

L. A. Ambrosio and H. E. Hernandez-Figueroa, “Fundamentals of negative refractive index optical trapping: Forces and radiation pressures exerted by focused Gaussian beams using the generalized Lorenz–Mie theory,” Biomed. Opt. Express 1, 1284–1301 (2010).

[CrossRef]

Y. Harada and T. Asakura,” Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).

[CrossRef]

H. Y. Li, Z. S. Wu, and L. Bai, “Scattering for charged multisphere structure located in plane wave/Gaussian beam,” J. Electromagn. Waves Appl. 24, 2037–2047 (2010).

S. Bakic, F. Xu, N. Damaschke, and C. Tropea, “Feasibility of extending rainbow refractometry to small particles using femtosecond laser pulses,” Part. Part. Syst. Charact. 26, 34–40 (2009).

[CrossRef]

S. Bakic, C. Heinisch, N. Damaschke, T. Tschudi, and C. Tropea, “Time integrated detection of femtosecond laser pulses scattered by small droplets,” Appl. Opt. 47, 523–530(2008).

[CrossRef]

E. E. M. Khaled, S. C. Hill, and P. W. Barber, “Internal electric energy in a spherical particle illuminated with a plane wave or off-axis Gaussian beam,” Appl. Opt. 33, 524–532 (1994).

[CrossRef]

E. E. M. Khaled, S. C. Hill, and P. W. Barber, “Scattered and internal intensity of a sphere illuminated with a Gaussian beam,” IEEE Trans. Antennas Propag. 41, 295–303 (1993).

[CrossRef]

E. E. M. Khaled, S. C. Hill, P. W. Barber, and D. Q. Chowdhury, “Near-resonance excitation of dielectric spheres with plane waves and off-axis Gaussian beams,” Appl. Opt. 31, 1166–1169 (1992).

[CrossRef]

C. W. Yeh, S. Colak, and P. W. Barber, “Scattering of sharply focused beam by arbitrarily shaped dielectric particles: an exact solution,” Appl. Opt. 21, 4426–4433 (1982).

[CrossRef]

A. A. R. Neves, A. Fontes, L. A. Padilha, E. Rodriguez, C. H de Brito Cruz, L. C. Barbosa, and C. L. Cesar, “Exact partial wave expansion of optical beams with respect to an arbitrary origin,” Opt. Lett. 31, 2477–2479 (2006).

[CrossRef]

A. A. R. Neves, A. Fontes, L. D. Y. Pozzo, A. A. de Thomas, E. Chillce, E. Rodriguez, L. C. Barbosa, and C. L. Cesar, “Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric,” Opt. Express 14, 13101–13106 (2006).

[CrossRef]

A. A. R. Neves, L. A. Padilha, A. Fontes, E. Rodriguez, C. H. B. Cruz, L. C. Barbosa, and C. L. Cesar, “Analytical results for a Bessel function times Legendre polynomials class integrals, J. Phys. A 39, L293–L296 (2006).

[CrossRef]

J. P. Barton, “Internal and near-surface electromagnetic fields for an infinite cylinder illuminated by an arbitrary focused beam,” J. Opt. Soc. Am. A 16, 160–166(1999).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).

[CrossRef]

G. Gouesbet and A. Berlemont, “Eulerian and Lagrangian approaches for predicting the behaviour of discrete particles in turbulent flows,” Prog. Energy Combust. Sci. 25, 133–159(1999).

[CrossRef]

L. C. Biedenharn and M. E. Rose, “Theory of angular correlations of nuclear radiations,” Rev. Mod. Phys. 25, 729–777 (1953).

[CrossRef]

S. Bleher, C. Grebogi, and E. Ott, “Bifurcation to chaotic scattering,” Phys. D 46, 87–121 (1990).

[CrossRef]

P. Torok, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: An integral representation,” J. Opt. Soc. Am. A 12, 325–332 (1995).

[CrossRef]

P. Torok, R. Varga, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: Structure of the electromagnetic field. I,” J. Opt. Soc. Am. A 12, 2136–2144 (1995).

[CrossRef]

F. E. Borgnis, “Elektromagnetische Eigenschwingungen dielektrischer Raüme,” Ann. Phys. 35, 359–384 (1939).

[CrossRef]

H. E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement (Springer, 2003).

L. Boyde, K. J. Chalut, and J. Guck, “Near- and far-field scattering from arbitrary three-dimensional aggregates of coated spheres using parallel computing,” Phys. Rev. E 83, 026701 (2011).

[CrossRef]

L. Boyde, K. J. Chalut, and J. Guck, “Exact analytical expansion of an off-axis Gaussian laser beam using the translation theorems for the vector spherical harmonics,” Appl. Opt. 50, 1023–1033 (2011).

[CrossRef]

T. J. Bromwich, “Electromagnetic waves,” Philos. Mag. 38, 143–164 (1919).

[CrossRef]

J. H. Bruning and Y. T. Lo, “Multiple scattering of EM waves by spheres part 1—Multipole expansion and ray-optical solutions,” IEEE Trans. Antennas Propag. AP-19, 378–389 (1971).

[CrossRef]

F. Xu, K. F. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz–Mie theory for an arbitrarily oriented, located and shaped beam scattering by a homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007).

[CrossRef]

F. Xu, K. F. Ren, G. Gouesbet, X. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007).

[CrossRef]

A. A. R. Neves, A. Fontes, C. L. Cesar, A. Camposeo, R. Cingolani, and D. Pisignano, “Axial optical trapping efficiency through a dielectric interface,” Phys. Rev. E 76, 061917 (2007).

[CrossRef]

A. A. R. Neves, A. Fontes, C. L. Cesar, A. Camposeo, R. Cingolani, and D. Pisignano, “Axial optical trapping efficiency through a dielectric interface,” Phys. Rev. E 76, 061917 (2007).

[CrossRef]

A. A. R. Neves, L. A. Padilha, A. Fontes, E. Rodriguez, C. H. B. Cruz, L. C. Barbosa, and C. L. Cesar, “Analytical results for a Bessel function times Legendre polynomials class integrals, J. Phys. A 39, L293–L296 (2006).

[CrossRef]

A. A. R. Neves, A. Fontes, L. D. Y. Pozzo, A. A. de Thomas, E. Chillce, E. Rodriguez, L. C. Barbosa, and C. L. Cesar, “Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric,” Opt. Express 14, 13101–13106 (2006).

[CrossRef]

A. A. R. Neves, A. Fontes, L. A. Padilha, E. Rodriguez, C. H de Brito Cruz, L. C. Barbosa, and C. L. Cesar, “Exact partial wave expansion of optical beams with respect to an arbitrary origin,” Opt. Lett. 31, 2477–2479 (2006).

[CrossRef]

L. Boyde, K. J. Chalut, and J. Guck, “Near- and far-field scattering from arbitrary three-dimensional aggregates of coated spheres using parallel computing,” Phys. Rev. E 83, 026701 (2011).

[CrossRef]

L. Boyde, K. J. Chalut, and J. Guck, “Exact analytical expansion of an off-axis Gaussian laser beam using the translation theorems for the vector spherical harmonics,” Appl. Opt. 50, 1023–1033 (2011).

[CrossRef]

A. Kamor, F. Mauger, C. Chandre, and T. Uzer, “Annular billiard dynamics in a circularly polarized strong laser field,” Phys. Rev. E 85, 016204 (2012).

[CrossRef]

A. Mekis, J. U. Nöckel, G. Chen, A. D. Stone, and R. K. Chang, “Ray chaos and Q spoiling in lasing droplets,” Phys. Rev. Lett. 75, 2682–2685 (1995).

[CrossRef]

J. U. Nöckel, A. D. Stone, and R. K. Chang, “Q-spoiling and directionality in deformed ring cavities,” Opt. Lett. 19, 1693–1695 (1994).

[CrossRef]

A. Mekis, J. U. Nöckel, G. Chen, A. D. Stone, and R. K. Chang, “Ray chaos and Q spoiling in lasing droplets,” Phys. Rev. Lett. 75, 2682–2685 (1995).

[CrossRef]

L. P. Su, S. Y. Chen, W. J. Zhao, and D. M. Ren, “Scattering properties of ultrashort laser pulses by air bubbles in the sea water,” Proc. SPIE 8192, 81922K (2011).

[CrossRef]

A. A. R. Neves, A. Fontes, L. D. Y. Pozzo, A. A. de Thomas, E. Chillce, E. Rodriguez, L. C. Barbosa, and C. L. Cesar, “Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric,” Opt. Express 14, 13101–13106 (2006).

[CrossRef]

A. A. R. Neves, A. Fontes, C. L. Cesar, A. Camposeo, R. Cingolani, and D. Pisignano, “Axial optical trapping efficiency through a dielectric interface,” Phys. Rev. E 76, 061917 (2007).

[CrossRef]

C. W. Yeh, S. Colak, and P. W. Barber, “Scattering of sharply focused beam by arbitrarily shaped dielectric particles: an exact solution,” Appl. Opt. 21, 4426–4433 (1982).

[CrossRef]

S. Colak, C. Yeh, and L. W. Casperson, “Scattering of focused beams by tenuous particles,” Appl. Opt. 18, 294–302(1979).

[CrossRef]

F. Corbin, G. Gréhan, and G. Gouesbet, “Top-hat beam technique: improvements and application to bubble measurements,” Part. Part. Syst. Charact. 8, 222–228 (1991).

[CrossRef]

A. A. R. Neves, L. A. Padilha, A. Fontes, E. Rodriguez, C. H. B. Cruz, L. C. Barbosa, and C. L. Cesar, “Analytical results for a Bessel function times Legendre polynomials class integrals, J. Phys. A 39, L293–L296 (2006).

[CrossRef]

Y. P. Han, Z. W. Cui, and G. Gouesbet, “Numerical simulation of Gaussian beam scattering by complex particles of arbitrary shape and structure,” J. Quant. Spectrosc. Radiat. Transfer 113, 1719–1727 (2012).

[CrossRef]

Y. Yeh and H. Cummins, “Localized fluid flow measurements with a He–Ne laser spectrometer,” Appl. Phys. Lett. 4, 176–178 (1964).

[CrossRef]

S. Bakic, F. Xu, N. Damaschke, and C. Tropea, “Feasibility of extending rainbow refractometry to small particles using femtosecond laser pulses,” Part. Part. Syst. Charact. 26, 34–40 (2009).

[CrossRef]

S. Bakic, C. Heinisch, N. Damaschke, T. Tschudi, and C. Tropea, “Time integrated detection of femtosecond laser pulses scattered by small droplets,” Appl. Opt. 47, 523–530(2008).

[CrossRef]

H. E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement (Springer, 2003).

V. Daniels, M. Vallières, and J. M. Yuan, “Chaotic scattering on a double well: periodic orbits, symbolic dynamics, and scaling,” Chaos 3, 475–485 (1993).

[CrossRef]

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. 19, 1177–1179 (1979).

[CrossRef]

A. A. R. Neves, A. Fontes, L. D. Y. Pozzo, A. A. de Thomas, E. Chillce, E. Rodriguez, L. C. Barbosa, and C. L. Cesar, “Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric,” Opt. Express 14, 13101–13106 (2006).

[CrossRef]

P. Debye, “Das elektromagnetische Feld um einen Zylinder und die Theorie des Regenbogens,” Phys. Zeitung 9, 775–778(1908).

R. P. Ratowsky, L. Yang, R. J. Deri, K. W. Chang, J. S. Kallman, and G. Trott, “Laser diode to single-mode fiber ball lens coupling efficiency: full-wave calculation and measurements,” Appl. Opt. 36, 3435–3438 (1997).

[CrossRef]

R. P. Ratowsky, L. Yang, R. J. Deri, J. S. Kallman, and G. Trott, “Ball lens reflections by direct solution of Maxwell’s equations,” Opt. Lett. 20, 2048–2050 (1995).

[CrossRef]

A. Doicu and T. Wriedt, “Computation of the beam-shape-coefficients in the generalized Lorenz–Mie theory by using the translational addition theorem for spherical vector wave functions,” Appl. Opt. 36, 2971–2978 (1997).

[CrossRef]

A. Doicu and T. Wriedt, “Plane wave spectrum of electromagnetic beams,” Opt. Commun. 136, 114–124 (1997).

[CrossRef]

A. Doicu, T. Wriedt, and Y. A. Eremin, Light Scattering by Systems of Particles (Springer, 2006).

L. E. Drain, The Laser Doppler Technique (Wiley, 1980).

Y. G. Du, Y. P. Han, G. X. Han, and J. J. Li, “Theoretical study on the rotation of particles driven by Gaussian beam,” Acta Phys. Sinica 60, 028702 (2011).

G. Gréhan, G. Gouesbet, A. Naqwi, and F. Durst, “Trajectory ambiguities in phase-Doppler systems: study of a near-forward and a near-backward geometry,” Part. Part. Syst. Charact. 11, 133–144 (1994).

[CrossRef]

G. Gréhan, K. F. Ren, G. Gouesbet, A. Naqwi, and F. Durst, “Evaluation of a particle sizing technique based on laser sheets,” Part. Part. Syst. Charact. 11, 101–106 (1994).

[CrossRef]

G. Gréhan, G. Gouesbet, A. Naqwi, and F. Durst, “Particle trajectory effects in phase-Doppler systems: computations and experiments,” Part. Part. Syst. Charact. 10, 332–338 (1993).

[CrossRef]

F. Durst, A. Melling, and J. H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry (Academic, 1981).

A. Doicu, T. Wriedt, and Y. A. Eremin, Light Scattering by Systems of Particles (Springer, 2006).

C. Flammer, “Spheroidal Wave Functions (Dover, 2005).

L. L. Foldy, “The multiple scattering of waves,” Phys. Rev. E 67, 107–119 (1945).

[CrossRef]

A. A. R. Neves, A. Fontes, C. L. Cesar, A. Camposeo, R. Cingolani, and D. Pisignano, “Axial optical trapping efficiency through a dielectric interface,” Phys. Rev. E 76, 061917 (2007).

[CrossRef]

A. A. R. Neves, L. A. Padilha, A. Fontes, E. Rodriguez, C. H. B. Cruz, L. C. Barbosa, and C. L. Cesar, “Analytical results for a Bessel function times Legendre polynomials class integrals, J. Phys. A 39, L293–L296 (2006).

[CrossRef]

A. A. R. Neves, A. Fontes, L. D. Y. Pozzo, A. A. de Thomas, E. Chillce, E. Rodriguez, L. C. Barbosa, and C. L. Cesar, “Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric,” Opt. Express 14, 13101–13106 (2006).

[CrossRef]

A. A. R. Neves, A. Fontes, L. A. Padilha, E. Rodriguez, C. H de Brito Cruz, L. C. Barbosa, and C. L. Cesar, “Exact partial wave expansion of optical beams with respect to an arbitrary origin,” Opt. Lett. 31, 2477–2479 (2006).

[CrossRef]

G. Gortzel, “Angular correlation of gamma rays,” Phys. Rev., Appendix 1 70, 897–909 (1946).

[CrossRef]

G. Gouesbet and J. J. Wang, “On the structures of some light scattering theories depending on whether or not the Bromwich formulation may be used, e.g., spherical versus spheroidal coordinates,” Opt. Commun. 285, 4200–4206 (2012).

[CrossRef]

Y. P. Han, Z. W. Cui, and G. Gouesbet, “Numerical simulation of Gaussian beam scattering by complex particles of arbitrary shape and structure,” J. Quant. Spectrosc. Radiat. Transfer 113, 1719–1727 (2012).

[CrossRef]

J. J. Wang and G. Gouesbet, “Note on the use of localized beam models for light scattering theories in spherical coordinates,” Appl. Opt. 51, 3832–3836 (2012).

[CrossRef]

J. J. Wang, G. Gouesbet, Y. P. Han, and G. Gréhan, “Study of scattering from a sphere with an eccentrically located spherical inclusion by generalized Lorenz–Mie theory: internal and external field distributions,” J. Opt. Soc. Am. A 28, 24–39 (2011).

[CrossRef]

J. J. Wang, G. Gouesbet, G. Gréhan, and S. Saengkaew, “Morphology-dependent resonances in an eccentrically layered sphere illuminated by a tightly focused off-axis Gaussian beam,” J. Opt. Soc. Am. A 28, 1849–1859 (2011).

[CrossRef]

G. Gouesbet, J. A. Lock, J. J. Wang, and G. Gréhan, “Transformations of spherical beam shape coefficients in general Lorenz–Mie theories through rotations of coordinate system: V. Localized beam models,” Opt. Commun. 284, 411–417 (2011).

[CrossRef]

G. Gouesbet, F. Xu, and Y. P. Han, “Expanded description of electromagnetic arbitrary shaped beam in spheroidal coordinates for use in light scattering theories: A review,” J. Quant. Spectrosc. Radiat. Transfer 112, 2249–2267 (2011).

[CrossRef]

G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011).

[CrossRef]

G. Gouesbet, “T-matrix formulation and generalized Lorenz–Mie theories in spherical coordinates, “Opt. Commun. 283, 517–521 (2010).

[CrossRef]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in general Lorenz–Mie theories through rotations of coordinate system. I General formulation,” Opt. Commun. 283, 3218–3225 (2010).

[CrossRef]

J. J. Wang, G. Gouesbet, and Y. P. Han, “Transformations of spherical beam shape coefficients in general Lorenz–Mie theories through rotations of coordinate system: II. Axisymmetric beams,” Opt. Commun. 283, 3226–3234 (2010).

[CrossRef]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in general Lorenz–Mie theories through rotations of coordinate system: III. Special values of Euler angles,” Opt. Commun. 283, 3235–3243 (2010).

[CrossRef]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in general Lorenz–Mie theories through rotations of coordinate system: IV. Plane waves,” Opt. Commun. 283, 3244–3254 (2010).

[CrossRef]

F. Xu, J. A. Lock, and G. Gouesbet, “Debye series for light scattering by a nonspherical particle,” Phys. Rev. A 81, 043824 (2010).

[CrossRef]

J. A. Lock and G. Gouesbet, “Generalized Lorenz–Mie theory and applications,” J. Quant. Spectrosc. Radiat. Transfer 110, 800–807 (2009).

[CrossRef]

G. Gouesbet, “Generalized Lorenz–Mie theories, the third decade: a perspective,” J. Quant. Spectrosc. Radiat. Transfer 110, 1223–1238 (2009).

[CrossRef]

F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Optical stress on the surface of a particle: I. Homogeneous sphere,” Phys. Rev. A 79, 053808 (2009).

[CrossRef]

L. Méès, G. Gouesbet, and G. Gréhan, “Transient internal and scattered fields from a multi-layered sphere illuminated by a pulsed laser,” Opt. Commun. 282, 4189–4193 (2009).

[CrossRef]

F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Radiation torque exerted on a spheroid: analytical solution,” Phys. Rev. A 78, 013843 (2008).

[CrossRef]

F. Xu, K. F. Ren, G. Gouesbet, X. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007).

[CrossRef]

F. Xu, K. F. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz–Mie theory for an arbitrarily oriented, located and shaped beam scattering by a homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007).

[CrossRef]

Y. P. Han, L. Mees, G. Gouesbet, Z. S. Wu, and G. Gréhan, “Resonant spectra of a deformed spherical microcavity,” J. Opt. Soc. Am. B 23, 1390–1397 (2006).

[CrossRef]

G. Gouesbet and L. Méès, “Generalized Lorenz–Mie theory for infinitely long cylinders with elliptical cross-sections. Erratum,” J. Opt. Soc. Am. A 22, 574–575 (2005).

[CrossRef]

Y. P. Han, L. Mees, K. F. Ren, G. Gréhan, Z. S. Wu, and G. Gouesbet, “Far scattered field from a spheroid under a femtosecond pulsed illumination in a generalized Lorenz–Mie theory framework,” Opt. Commun. 231, 71–77 (2004).

[CrossRef]

G. Gouesbet, “Debye series formulation for generalized Lorenz–Mie theory with the Bromwich method,” Part. Part. Syst. Charact. 20, 382–386 (2003).

[CrossRef]

Y. P. Han, G. Gréhan, and G. Gouesbet, “Generalized Lorenz–Mie theory for a spheroidal particle with off-axis Gaussian beam illumination,” Appl. Opt. 42, 6621–6629 (2003).

[CrossRef]

L. Méès, G. Gouesbet, and G. Gréhan, “Numerical predictions of microcavity internal fields created by femtosecond pulses, with emphasis on whispering gallery modes,” J. Opt. A 4, 8150–8153 (2002).

L. Méès, J. P. Wolf, G. Gouesbet, and G. Gréhan, “Two-photon absorption and fluorescence in a spherical micro-cavity illuminated by using two laser pulses: numerical simulations,” Opt. Commun. 208, 371–375 (2002).

[CrossRef]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Morphologydependent resonances and/or whispering gallery modes for a two-dimensional dielectric cavity with an eccentrically located spherical inclusion, a Hamiltonian point of view with Hamiltonian (optical) chaos,” Opt. Commun. 201, 223–242 (2002).

[CrossRef]

Y. P. Han, L. Mees, K. F. Ren, G. Gouesbet, S. Z. Wu, and G. Gréhan, “Scattering of light by spheroids: the far field case,” Opt. Commun. 210, 1–9 (2002).

[CrossRef]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Periodic orbits in Hamiltonian chaos of the annular billiard,” Phys. Rev. E 65, 016212 (2001).

[CrossRef]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Generalized Lorenz–Mie theory for a sphere with an eccentrically located spherical inclusion, and optical chaos,” Part. Part. Syst. Charact. 18, 190–195 (2001).

[CrossRef]

L. Méès, G. Gréhan, and G. Gouesbet, “Time-resolved scattering diagrams for a sphere illuminated by plane wave and focused short pulses,” Opt. Commun. 194, 59–65 (2001).

[CrossRef]

L. Méès, G. Gouesbet, and G. Gréhan, “Interaction between femtosecond pulses and a spherical microcavity: internal fields,” Opt. Commun. 199, 33–38 (2001).

[CrossRef]

L. Méès, G. Gouesbet, and G. Gréhan, “Scattering of laser pulses (plane wave and focused Gaussian beams) by spheres,” Appl. Opt. 40, 2546–2550 (2001).

[CrossRef]

H. Polaert, G. Gouesbet, and G. Gréhan, “Laboratory determination of beam shape coefficients for use in generalized Lorenz–Mie theory,” Appl. Opt. 40, 1699–1706 (2001).

[CrossRef]

G. Gouesbet and G. Gréhan, “Generic formulation of a generalized Lorenz–Mie theory for a particle illuminated by laser pulses,” Part. Part. Syst. Charact. 17, 213–224 (2000).

[CrossRef]

G. Gouesbet, C. Rozé, and S. Meunier-Guttin-Cluzel, “Instabilities by local heating below an interface, a review,” J. Nonequilib. Thermodyn. 25, 337–379 (2000).

[CrossRef]

G. Gouesbet and G. Gréhan, “Generalized Lorenz–Mie theories, from past to future,” Atomization Sprays 10, 277–333 (2000).

[CrossRef]

G. Gouesbet and G. Gréhan, “Generalized Lorenz–Mie theory for a sphere with an eccentrically located spherical inclusion,” J. Mod. Opt. 47, 821–837 (2000).

G. Gouesbet and A. Berlemont, “Eulerian and Lagrangian approaches for predicting the behaviour of discrete particles in turbulent flows,” Prog. Energy Combust. Sci. 25, 133–159(1999).

[CrossRef]

G. Gouesbet and G. Gréhan, “Generalized Lorenz–Mie theory for assemblies of spheres and aggregates,” J. Opt. A 1, 706–712 (1999).

[CrossRef]

G. Gouesbet, “Validity of the cylindrical localized approximation for arbitrary shaped beams in generalized Lorenz–Mie theory for circular cylinders,” J. Mod. Opt. 46, 1185–1200 (1999).

G. Gouesbet, “Theory of distributions and its application to beam parametrization in light scattering,” Part. Part. Syst. Charact. 16, 147–159 (1999).

[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Description of arbitrary shaped beams in elliptical cylinder coordinates by using a plane wave spectrum approach,” Opt. Commun. 161, 63–78 (1999).

[CrossRef]

G. Gouesbet, “Validity of the localized approximation for arbitrary shaped beams in generalized Lorenz–Mie theory for spheres,” J. Opt. Soc. Am. A 16, 1641–1650 (1999).

[CrossRef]

L. Méès, K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation: numerical results,” Appl. Opt. 38, 1867–1876 (1999).

[CrossRef]

G. Gouesbet and L. Méès, “Generalized Lorenz–Mie theory for infinitely long elliptical cylinders,” J. Opt. Soc. Am. A 16, 1333–1341 (1999).

[CrossRef]

G. Gouesbet and L. Méès, “Validity of the elliptical cylinder localized approximation for arbitrary shaped beams in generalized Lorenz–Mie theory for elliptical cylinders,” J. Opt. Soc. Am. A 16, 2946–2958 (1999).

[CrossRef]

H. Polaert, G. Gouesbet, and G. Gréhan, “Measurements of beam shape coefficients in the generalized Lorenz–Mie theory for the on-axis case: numerical simulations,” Appl. Opt. 37, 5005–5013 (1998).

[CrossRef]

K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral localized approximation in generalized Lorenz–Mie theory,” Appl. Opt. 37, 4218–4225 (1998).

[CrossRef]

G. Gouesbet, L. Méès, and G. Gréhan, “Partial-wave description of shaped beams in elliptical-cylinder coordinates,” J. Opt. Soc. Am. A 15, 3028–3038 (1998).

[CrossRef]

H. Polaert, G. Gréhan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155, 169–179 (1998).

[CrossRef]

G. Gouesbet,” Measurements of beam shape coefficients in generalized Lorenz–Mie theory and the density-matrix approach: I. Measurements,” Part. Part. Syst. Charact. 14, 12–20 (1997).

G. Gouesbet, “Measurements of beam shape coefficients in generalized Lorenz–Mie theory and the density-matrix approach: II. The density matrix approach,” Part. Part. Syst. Charact. 14, 88–92 (1997).

Z. S. Wu, L. X. Guo, K. F. Ren, G. Gouesbet, and G. Gréhan, “Improved algorithms for electromagnetic scattering of plane waves and shaped beams by multilayered spheres,” Appl. Opt. 36, 5188–5198 (1997).

[CrossRef]

G. Gouesbet, “Interaction between an infinite cylinder and an arbitrary shaped beam,” Appl. Opt. 36, 4292–4304 (1997).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of a GLMT, formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

G. Gouesbet, “Exact description of arbitrary shaped beams for use in light scattering theories,” J. Opt. Soc. Am. A 13, 2434–2440 (1996).

[CrossRef]

G. Gouesbet, C. Letellier, K. F. Ren, and G. Gréhan, “Discussion of two quadrature methods of evaluating beam shape coefficients in generalized Lorenz–Mie theory,” Appl. Opt. 35, 1537–1542 (1996).

[CrossRef]

G. Gouesbet, “Partial wave expansions and properties of axisymmetric light beams,” Appl. Opt. 35, 1543–1555(1996).

[CrossRef]

E. Lenglart and G. Gouesbet, “The separability ‘theorem’ in terms of distributions with discussion of electromagnetic scattering theory,” J. Math. Phys. 37, 4705–4710 (1996).

[CrossRef]

G. Gouesbet, “ The separability theorem revisited with applications to light scattering theory,” J. Opt. 26, 123–135 (1995).

[CrossRef]

G. Gouesbet, “Interaction between Gaussian beams and infinite cylinders, by using the theory of distributions,” J. Opt. 26, 225–239 (1995).

[CrossRef]

J. T. Hodges, G. Gréhan, G. Gouesbet, and C. Presser, “Forward scattering of a Gaussian beam by a nonabsorbing sphere,” Appl. Opt. 34, 2120–2132 (1995).

[CrossRef]

G. Gouesbet, J. A. Lock, and G. Gréhan, “Partial wave representations of laser beams for use in light scattering calculations,” Appl. Opt. 34, 2133–2143 (1995).

[CrossRef]

F. Onofri, G. Gréhan, and G. Gouesbet, “Electromagnetic scattering from a multilayered sphere located in an arbitrary beam,” Appl. Opt. 34, 7113–7124 (1995).

[CrossRef]

J. A. Lock and G. Gouesbet, “Rigorous justication of the localized approximation to the beam shape coefficients in generalized Lorenz–Mie. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

[CrossRef]

G. Gouesbet and J. A. Lock, “Rigorous justication of the localized approximation to the beam shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Electromagnetic field expression of a laser sheet and the order of approximation,” J. Opt. 25, 165–176 (1994).

[CrossRef]

G. Gréhan, G. Gouesbet, A. Naqwi, and F. Durst, “Trajectory ambiguities in phase-Doppler systems: study of a near-forward and a near-backward geometry,” Part. Part. Syst. Charact. 11, 133–144 (1994).

[CrossRef]

G. Gréhan, K. F. Ren, G. Gouesbet, A. Naqwi, and F. Durst, “Evaluation of a particle sizing technique based on laser sheets,” Part. Part. Syst. Charact. 11, 101–106 (1994).

[CrossRef]

G. Gouesbet and G. Gréhan, “Interaction between shaped beams and an infinite cylinder, including a discussion of Gaussian beams,” Part. Part. Syst. Charact. 11, 299–308 (1994).

[CrossRef]

G. Gouesbet, “Generalized Lorenz–Mie theory and applications,” Part. Part. Syst. Charact. 11, 22–34 (1994).

[CrossRef]

G. Gréhan, G. Gouesbet, A. Naqwi, and F. Durst, “Particle trajectory effects in phase-Doppler systems: computations and experiments,” Part. Part. Syst. Charact. 10, 332–338 (1993).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Laser sheet scattering by spherical particles,” Part. Part. Syst. Charact. 10, 146–151 (1993).

[CrossRef]

F. Corbin, G. Gréhan, and G. Gouesbet, “Top-hat beam technique: improvements and application to bubble measurements,” Part. Part. Syst. Charact. 8, 222–228 (1991).

[CrossRef]

J. B. Guidt, G. Gouesbet, and J. N. Le Toulouzan, “An accurate validation of visible infra-red double extinction simultaneous measurements of particle sizes and number-densities by using densely laden standard media,” Appl. Opt. 29, 1011–1022 (1990).

[CrossRef]

G. Gouesbet, G. Gréhan, and B. Maheu, “A localized approximation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990).

[CrossRef]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[CrossRef]

G. Gouesbet, G. Gréhan, and B. Maheu, “Computations of the gn coefficients in the generalized Lorenz–Mie theory using three different methods,” Appl. Opt. 27, 4874–4883 (1988).

[CrossRef]

B. Maheu, G. Gouesbet, and G. Gréhan, “A concise presentation of the generalized Lorenz–Mie theory for arbitrary location of the scatterer in an arbitrary incident profile,” J. Opt. 19, 59–67 (1988).

[CrossRef]

G. Gouesbet, G. Gréhan, and B. Maheu, “Expressions to compute the coefficients gnm in the generalized Lorenz–Mie theory, using finite series,” J. Opt. 19, 35–48 (1988).

[CrossRef]

G. Gréhan, B. Maheu, and G. Gouesbet, “Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation,” Appl. Opt. 25, 3539–3548 (1986).

[CrossRef]

G. Gouesbet and G. Gréhan, “Sur la généralisation de la théorie de Lorenz–Mie,” J. Opt. 13, 97–103 (1982).

[CrossRef]

G. Gouesbet and G. Gréhan, Generalized Lorenz–Mie Theories (Springer, 2011).

G. Gouesbet, “A scientific and sociological story of generalized Lorenz–Mie theories,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

G. Gouesbet, G. Gréhan, and B. Maheu, “Generalized Lorenz–Mie theory and applications to optical sizing,” in Combustion Measurements, N. Chigier, ed. (Hemisphere, 1991), pp. 339–384.

G. Gouesbet, S. Meunier-Guttin-Cluzel, and O. Ménard, “Global reconstruction of equations of motion from data series, and validation techniques, a review,” in Chaos and Its Reconstruction (Novascience, 2003), pp. 1–160.

G. Gouesbet, L. Mees, and G. Gréhan, “Generic formulation of a generalized Lorenz–Mie theory for pulsed laser illumination,” in Laser Techniques for Fluid Mechanics, R. J. Adrian, D.F.G. Durao, Durst, M. V. Heitor, M. Maeda, C. Tropea, and J. H. Whitelaw, eds. (Springer, 2002), pp. 175–188.

S. Bleher, C. Grebogi, and E. Ott, “Bifurcation to chaotic scattering,” Phys. D 46, 87–121 (1990).

[CrossRef]

G. Gouesbet, J. A. Lock, J. J. Wang, and G. Gréhan, “Transformations of spherical beam shape coefficients in general Lorenz–Mie theories through rotations of coordinate system: V. Localized beam models,” Opt. Commun. 284, 411–417 (2011).

[CrossRef]

G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011).

[CrossRef]

J. J. Wang, G. Gouesbet, G. Gréhan, and S. Saengkaew, “Morphology-dependent resonances in an eccentrically layered sphere illuminated by a tightly focused off-axis Gaussian beam,” J. Opt. Soc. Am. A 28, 1849–1859 (2011).

[CrossRef]

J. J. Wang, G. Gouesbet, Y. P. Han, and G. Gréhan, “Study of scattering from a sphere with an eccentrically located spherical inclusion by generalized Lorenz–Mie theory: internal and external field distributions,” J. Opt. Soc. Am. A 28, 24–39 (2011).

[CrossRef]

L. Méès, G. Gouesbet, and G. Gréhan, “Transient internal and scattered fields from a multi-layered sphere illuminated by a pulsed laser,” Opt. Commun. 282, 4189–4193 (2009).

[CrossRef]

F. Xu, K. F. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz–Mie theory for an arbitrarily oriented, located and shaped beam scattering by a homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007).

[CrossRef]

F. Xu, K. F. Ren, G. Gouesbet, X. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007).

[CrossRef]

Y. P. Han, L. Mees, G. Gouesbet, Z. S. Wu, and G. Gréhan, “Resonant spectra of a deformed spherical microcavity,” J. Opt. Soc. Am. B 23, 1390–1397 (2006).

[CrossRef]

Y. P. Han, L. Mees, K. F. Ren, G. Gréhan, Z. S. Wu, and G. Gouesbet, “Far scattered field from a spheroid under a femtosecond pulsed illumination in a generalized Lorenz–Mie theory framework,” Opt. Commun. 231, 71–77 (2004).

[CrossRef]

Y. P. Han, G. Gréhan, and G. Gouesbet, “Generalized Lorenz–Mie theory for a spheroidal particle with off-axis Gaussian beam illumination,” Appl. Opt. 42, 6621–6629 (2003).

[CrossRef]

L. Méès, G. Gouesbet, and G. Gréhan, “Numerical predictions of microcavity internal fields created by femtosecond pulses, with emphasis on whispering gallery modes,” J. Opt. A 4, 8150–8153 (2002).

L. Méès, J. P. Wolf, G. Gouesbet, and G. Gréhan, “Two-photon absorption and fluorescence in a spherical micro-cavity illuminated by using two laser pulses: numerical simulations,” Opt. Commun. 208, 371–375 (2002).

[CrossRef]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Morphologydependent resonances and/or whispering gallery modes for a two-dimensional dielectric cavity with an eccentrically located spherical inclusion, a Hamiltonian point of view with Hamiltonian (optical) chaos,” Opt. Commun. 201, 223–242 (2002).

[CrossRef]

Y. P. Han, L. Mees, K. F. Ren, G. Gouesbet, S. Z. Wu, and G. Gréhan, “Scattering of light by spheroids: the far field case,” Opt. Commun. 210, 1–9 (2002).

[CrossRef]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Generalized Lorenz–Mie theory for a sphere with an eccentrically located spherical inclusion, and optical chaos,” Part. Part. Syst. Charact. 18, 190–195 (2001).

[CrossRef]

L. Méès, G. Gouesbet, and G. Gréhan, “Interaction between femtosecond pulses and a spherical microcavity: internal fields,” Opt. Commun. 199, 33–38 (2001).

[CrossRef]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Periodic orbits in Hamiltonian chaos of the annular billiard,” Phys. Rev. E 65, 016212 (2001).

[CrossRef]

L. Méès, G. Gréhan, and G. Gouesbet, “Time-resolved scattering diagrams for a sphere illuminated by plane wave and focused short pulses,” Opt. Commun. 194, 59–65 (2001).

[CrossRef]

L. Méès, G. Gouesbet, and G. Gréhan, “Scattering of laser pulses (plane wave and focused Gaussian beams) by spheres,” Appl. Opt. 40, 2546–2550 (2001).

[CrossRef]

H. Polaert, G. Gouesbet, and G. Gréhan, “Laboratory determination of beam shape coefficients for use in generalized Lorenz–Mie theory,” Appl. Opt. 40, 1699–1706 (2001).

[CrossRef]

G. Gouesbet and G. Gréhan, “Generic formulation of a generalized Lorenz–Mie theory for a particle illuminated by laser pulses,” Part. Part. Syst. Charact. 17, 213–224 (2000).

[CrossRef]

G. Gouesbet and G. Gréhan, “Generalized Lorenz–Mie theories, from past to future,” Atomization Sprays 10, 277–333 (2000).

[CrossRef]

G. Gouesbet and G. Gréhan, “Generalized Lorenz–Mie theory for a sphere with an eccentrically located spherical inclusion,” J. Mod. Opt. 47, 821–837 (2000).

G. Gouesbet and G. Gréhan, “Generalized Lorenz–Mie theory for assemblies of spheres and aggregates,” J. Opt. A 1, 706–712 (1999).

[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Description of arbitrary shaped beams in elliptical cylinder coordinates by using a plane wave spectrum approach,” Opt. Commun. 161, 63–78 (1999).

[CrossRef]

L. Méès, K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation: numerical results,” Appl. Opt. 38, 1867–1876 (1999).

[CrossRef]

K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral localized approximation in generalized Lorenz–Mie theory,” Appl. Opt. 37, 4218–4225 (1998).

[CrossRef]

H. Polaert, G. Gouesbet, and G. Gréhan, “Measurements of beam shape coefficients in the generalized Lorenz–Mie theory for the on-axis case: numerical simulations,” Appl. Opt. 37, 5005–5013 (1998).

[CrossRef]

G. Gouesbet, L. Méès, and G. Gréhan, “Partial-wave description of shaped beams in elliptical-cylinder coordinates,” J. Opt. Soc. Am. A 15, 3028–3038 (1998).

[CrossRef]

H. Polaert, G. Gréhan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155, 169–179 (1998).

[CrossRef]

Z. S. Wu, L. X. Guo, K. F. Ren, G. Gouesbet, and G. Gréhan, “Improved algorithms for electromagnetic scattering of plane waves and shaped beams by multilayered spheres,” Appl. Opt. 36, 5188–5198 (1997).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of a GLMT, formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

G. Gouesbet, C. Letellier, K. F. Ren, and G. Gréhan, “Discussion of two quadrature methods of evaluating beam shape coefficients in generalized Lorenz–Mie theory,” Appl. Opt. 35, 1537–1542 (1996).

[CrossRef]

F. Onofri, G. Gréhan, and G. Gouesbet, “Electromagnetic scattering from a multilayered sphere located in an arbitrary beam,” Appl. Opt. 34, 7113–7124 (1995).

[CrossRef]

G. Gouesbet, J. A. Lock, and G. Gréhan, “Partial wave representations of laser beams for use in light scattering calculations,” Appl. Opt. 34, 2133–2143 (1995).

[CrossRef]

J. T. Hodges, G. Gréhan, G. Gouesbet, and C. Presser, “Forward scattering of a Gaussian beam by a nonabsorbing sphere,” Appl. Opt. 34, 2120–2132 (1995).

[CrossRef]

G. Gréhan, K. F. Ren, G. Gouesbet, A. Naqwi, and F. Durst, “Evaluation of a particle sizing technique based on laser sheets,” Part. Part. Syst. Charact. 11, 101–106 (1994).

[CrossRef]

G. Gouesbet and G. Gréhan, “Interaction between shaped beams and an infinite cylinder, including a discussion of Gaussian beams,” Part. Part. Syst. Charact. 11, 299–308 (1994).

[CrossRef]

G. Gréhan, G. Gouesbet, A. Naqwi, and F. Durst, “Trajectory ambiguities in phase-Doppler systems: study of a near-forward and a near-backward geometry,” Part. Part. Syst. Charact. 11, 133–144 (1994).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Electromagnetic field expression of a laser sheet and the order of approximation,” J. Opt. 25, 165–176 (1994).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Laser sheet scattering by spherical particles,” Part. Part. Syst. Charact. 10, 146–151 (1993).

[CrossRef]

G. Gréhan, G. Gouesbet, A. Naqwi, and F. Durst, “Particle trajectory effects in phase-Doppler systems: computations and experiments,” Part. Part. Syst. Charact. 10, 332–338 (1993).

[CrossRef]

F. Corbin, G. Gréhan, and G. Gouesbet, “Top-hat beam technique: improvements and application to bubble measurements,” Part. Part. Syst. Charact. 8, 222–228 (1991).

[CrossRef]

G. Gouesbet, G. Gréhan, and B. Maheu, “A localized approximation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990).

[CrossRef]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[CrossRef]

G. Gouesbet, G. Gréhan, and B. Maheu, “Computations of the gn coefficients in the generalized Lorenz–Mie theory using three different methods,” Appl. Opt. 27, 4874–4883 (1988).

[CrossRef]

B. Maheu, G. Gouesbet, and G. Gréhan, “A concise presentation of the generalized Lorenz–Mie theory for arbitrary location of the scatterer in an arbitrary incident profile,” J. Opt. 19, 59–67 (1988).

[CrossRef]

G. Gouesbet, G. Gréhan, and B. Maheu, “Expressions to compute the coefficients gnm in the generalized Lorenz–Mie theory, using finite series,” J. Opt. 19, 35–48 (1988).

[CrossRef]

G. Gréhan, B. Maheu, and G. Gouesbet, “Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation,” Appl. Opt. 25, 3539–3548 (1986).

[CrossRef]

G. Gouesbet and G. Gréhan, “Sur la généralisation de la théorie de Lorenz–Mie,” J. Opt. 13, 97–103 (1982).

[CrossRef]

G. Gouesbet and G. Gréhan, Generalized Lorenz–Mie Theories (Springer, 2011).

G. Gouesbet, G. Gréhan, and B. Maheu, “Generalized Lorenz–Mie theory and applications to optical sizing,” in Combustion Measurements, N. Chigier, ed. (Hemisphere, 1991), pp. 339–384.

G. Gouesbet, L. Mees, and G. Gréhan, “Generic formulation of a generalized Lorenz–Mie theory for pulsed laser illumination,” in Laser Techniques for Fluid Mechanics, R. J. Adrian, D.F.G. Durao, Durst, M. V. Heitor, M. Maeda, C. Tropea, and J. H. Whitelaw, eds. (Springer, 2002), pp. 175–188.

L. Boyde, K. J. Chalut, and J. Guck, “Near- and far-field scattering from arbitrary three-dimensional aggregates of coated spheres using parallel computing,” Phys. Rev. E 83, 026701 (2011).

[CrossRef]

L. Boyde, K. J. Chalut, and J. Guck, “Exact analytical expansion of an off-axis Gaussian laser beam using the translation theorems for the vector spherical harmonics,” Appl. Opt. 50, 1023–1033 (2011).

[CrossRef]

Y. G. Du, Y. P. Han, G. X. Han, and J. J. Li, “Theoretical study on the rotation of particles driven by Gaussian beam,” Acta Phys. Sinica 60, 028702 (2011).

G. X. Han and Y. P. Han, “Scattering of bi-sphere arbitrarily illuminated by a single beam and a dual beam,” Acta Phys. Sinica 59, 2434–2442 (2010).

Y. P. Han, Y. Zhang, H. Y. Zhang, and G. X. Han, “Scattering of typical particles by beam shape in oblique illumination,” J. Quant. Spectrosc. Radiat. Transfer 110, 1375–1381(2009).

[CrossRef]

G. X. Han and Y. P. Han, “Radiation force of a sphere with an eccentric inclusion illuminated by a laser beam,” Acta Phys. Sinica 58, 6167–6173 (2009).

G. X. Han, Y. P. Han, J. Y. Liu, and Y. Zhang, “Scattering of an eccentric sphere arbitrarily located in a shaped beam,” J. Opt. Soc. Am. B 25, 2064–2072 (2008).

[CrossRef]

B. Yan, X. Han, and K. F. Ren, “Scattering of a shaped beam by a spherical particle with an eccentric spherical inclusion,” J. Opt. A 11, 015705 (2009).

[CrossRef]

M. Wang, H. Zhang, Y. Han, and Y. Li, “Scattering of shaped beam by a conducting infinite cylinder with dielectric coating,” Appl. Phys. B 96, 105–109 (2009).

[CrossRef]

Y. Han, H. Zhang, and X. Sun, “Scattering of shaped beam by an arbitrarily oriented spheroid having layers with non-confocal boundaries,” Appl. Phys. B 84, 485–492 (2006).

[CrossRef]

Y. P. Han, Z. W. Cui, and G. Gouesbet, “Numerical simulation of Gaussian beam scattering by complex particles of arbitrary shape and structure,” J. Quant. Spectrosc. Radiat. Transfer 113, 1719–1727 (2012).

[CrossRef]

Y. G. Du, Y. P. Han, G. X. Han, and J. J. Li, “Theoretical study on the rotation of particles driven by Gaussian beam,” Acta Phys. Sinica 60, 028702 (2011).

G. Gouesbet, F. Xu, and Y. P. Han, “Expanded description of electromagnetic arbitrary shaped beam in spheroidal coordinates for use in light scattering theories: A review,” J. Quant. Spectrosc. Radiat. Transfer 112, 2249–2267 (2011).

[CrossRef]

J. J. Wang, G. Gouesbet, Y. P. Han, and G. Gréhan, “Study of scattering from a sphere with an eccentrically located spherical inclusion by generalized Lorenz–Mie theory: internal and external field distributions,” J. Opt. Soc. Am. A 28, 24–39 (2011).

[CrossRef]

G. X. Han and Y. P. Han, “Scattering of bi-sphere arbitrarily illuminated by a single beam and a dual beam,” Acta Phys. Sinica 59, 2434–2442 (2010).

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in general Lorenz–Mie theories through rotations of coordinate system. I General formulation,” Opt. Commun. 283, 3218–3225 (2010).

[CrossRef]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in general Lorenz–Mie theories through rotations of coordinate system: III. Special values of Euler angles,” Opt. Commun. 283, 3235–3243 (2010).

[CrossRef]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in general Lorenz–Mie theories through rotations of coordinate system: IV. Plane waves,” Opt. Commun. 283, 3244–3254 (2010).

[CrossRef]

J. J. Wang, G. Gouesbet, and Y. P. Han, “Transformations of spherical beam shape coefficients in general Lorenz–Mie theories through rotations of coordinate system: II. Axisymmetric beams,” Opt. Commun. 283, 3226–3234 (2010).

[CrossRef]

Y. P. Han, Y. Zhang, H. Y. Zhang, and G. X. Han, “Scattering of typical particles by beam shape in oblique illumination,” J. Quant. Spectrosc. Radiat. Transfer 110, 1375–1381(2009).

[CrossRef]

G. X. Han and Y. P. Han, “Radiation force of a sphere with an eccentric inclusion illuminated by a laser beam,” Acta Phys. Sinica 58, 6167–6173 (2009).

G. X. Han, Y. P. Han, J. Y. Liu, and Y. Zhang, “Scattering of an eccentric sphere arbitrarily located in a shaped beam,” J. Opt. Soc. Am. B 25, 2064–2072 (2008).

[CrossRef]

H. Y. Zhang and Y. P. Han, “Scattering of shaped beam by an infinite cylinder of arbitrary orientation,” J. Opt. Soc. Am. B 25, 131–135 (2008).

[CrossRef]

H. Y. Zhang and Y. P. Han, “Addition theorem for the spherical vector wave functions and its application to the beam shape coefficients,” J. Opt. Soc. Am. B 25, 255–260 (2008).

[CrossRef]

Y. P. Han, H. Zhang, and G. Han, “The expansion coefficients of arbitrary shaped beam in oblique illumination,” Opt. Express 15, 735–746 (2007).

[CrossRef]

Y. P. Han, L. Mees, G. Gouesbet, Z. S. Wu, and G. Gréhan, “Resonant spectra of a deformed spherical microcavity,” J. Opt. Soc. Am. B 23, 1390–1397 (2006).

[CrossRef]

H. Y. Zhang and Y. P. Han, “Scattering by a confocal multilayered spheroidal particle illuminated by an axial Gaussian beam,” IEEE Trans. Antennas Propag. 53, 1514–1518 (2005).

Y. P. Han, “An approach to expand the beam coefficients for arbitrarily shaped beam,” Acta Phys. Sinica 54, 5139–5143 (2005).

Y. P. Han, L. Mees, K. F. Ren, G. Gréhan, Z. S. Wu, and G. Gouesbet, “Far scattered field from a spheroid under a femtosecond pulsed illumination in a generalized Lorenz–Mie theory framework,” Opt. Commun. 231, 71–77 (2004).

[CrossRef]

Y. P. Han, G. Gréhan, and G. Gouesbet, “Generalized Lorenz–Mie theory for a spheroidal particle with off-axis Gaussian beam illumination,” Appl. Opt. 42, 6621–6629 (2003).

[CrossRef]

Y. P. Han and Z. S. Wu, “Absorption and scattering by an oblate particle,” J. Opt. A 4, 74–77 (2002).

[CrossRef]

Y. P. Han, L. Mees, K. F. Ren, G. Gouesbet, S. Z. Wu, and G. Gréhan, “Scattering of light by spheroids: the far field case,” Opt. Commun. 210, 1–9 (2002).

[CrossRef]

Y. P. Han and Z. S. Wu, “The expansion coefficients of a spheroidal particle illuminated by Gaussian beam,” IEEE Trans. Antennas Propag. 49, 615–620 (2001).

[CrossRef]

Y. P. Han and Z. S. Wu, “Scattering of a spheroidal particle illuminated by a Gaussian beam,” Appl. Opt. 40, 2501–2509 (2001).

[CrossRef]

Y. Harada and T. Asakura,” Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).

[CrossRef]

M. Hentschel and K. Richter, “Quantum chaos in optical systems: The annular billiard,” Phys. Rev. E 66, 056207 (2002).

[CrossRef]

L. A. Ambrosio and H. E. Hernandez-Figueroa, “Integral localized approximation description of ordinary Bessel beams and application to optical trapping forces,” Biomed. Opt. Express 2, 1893–1906 (2011).

[CrossRef]

L. A. Ambrosio and H. E. Hernandez-Figueroa, “Radiation pressure cross sections and optical forces over negative refractive index spherical particles by ordinary Bessel beams,” Appl. Opt. 50, 4489–4498 (2011).

[CrossRef]

L. A. Ambrosio and H. E. Hernandez-Figueroa, “Spin angular momentum transfer from TEM00 focused Gaussian beams to negative refractive index spherical particles,” Biomed. Opt. Express 2, 2354–2363 (2011).

[CrossRef]

L. A. Ambrosio and H. E. Hernandez-Figueroa, “Fundamentals of negative refractive index optical trapping: Forces and radiation pressures exerted by focused Gaussian beams using the generalized Lorenz–Mie theory,” Biomed. Opt. Express 1, 1284–1301 (2010).

[CrossRef]

E. E. M. Khaled, S. C. Hill, and P. W. Barber, “Internal electric energy in a spherical particle illuminated with a plane wave or off-axis Gaussian beam,” Appl. Opt. 33, 524–532 (1994).

[CrossRef]

E. E. M. Khaled, S. C. Hill, and P. W. Barber, “Scattered and internal intensity of a sphere illuminated with a Gaussian beam,” IEEE Trans. Antennas Propag. 41, 295–303 (1993).

[CrossRef]

E. E. M. Khaled, S. C. Hill, P. W. Barber, and D. Q. Chowdhury, “Near-resonance excitation of dielectric spheres with plane waves and off-axis Gaussian beams,” Appl. Opt. 31, 1166–1169 (1992).

[CrossRef]

M. Venkatapathi and E. D. Hirleman, “Effect of beam size parameters on internal fields in an infinite cylinder irradiated by an elliptical Gaussian beam,” J. Opt. Soc. Am. A 24, 3366–3370 (2007).

[CrossRef]

M. Venkatapathi, G. Gregori, K. Ragheb, J. P. Robinson, and E. D. Hirleman, “Measurement and analysis of angle-resolved scatter from small particles in a cylindrical microchannel,” Appl. Opt. 45, 2222–2231 (2006).

[CrossRef]

H. Y. Zhang, Z. X. Huang, and Y. F. Sun, “Scattering of a Gaussian beam by a conducting spheroidal particle with non-confocal dielectric coating,” IEEE Trans. Antennas Propag. 59, 4371–4374 (2011).

[CrossRef]

H. Y. Zhang, Y. F. Sun, and Z. X. Huang, “Scattering by a multilayered infinite cylinder arbitrarily illuminated with a shaped beam,” IEEE Trans. Antennas Propag. 59, 4369–4371 (2011).

[CrossRef]

A. Ishimaru, “Plane wave incidence on a slab of scatterers—total intensity,” in Wave Propagation and Scattering in Random Media (Academic, 1978), pp. 268–274.

A. Ishimaru, “Transport theory of wave propagation in random particles,” in Wave Propagation and Scattering in Random Media (Academic, 1978), pp. 147–148.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978), pp. 77–80.

A. R. Jones, “Some calculations on the scattering efficiencies of a sphere illuminated by an optical pulse,” J. Phys. D 40, 7306–7312 (2007).

[CrossRef]

C. Jung and S. Pott, “Classical cross section for chaotic potential scattering,” J. Phys. A 22, 2925–2938 (1989).

[CrossRef]

R. P. Ratowsky, L. Yang, R. J. Deri, K. W. Chang, J. S. Kallman, and G. Trott, “Laser diode to single-mode fiber ball lens coupling efficiency: full-wave calculation and measurements,” Appl. Opt. 36, 3435–3438 (1997).

[CrossRef]

R. P. Ratowsky, L. Yang, R. J. Deri, J. S. Kallman, and G. Trott, “Ball lens reflections by direct solution of Maxwell’s equations,” Opt. Lett. 20, 2048–2050 (1995).

[CrossRef]

A. Kamor, F. Mauger, C. Chandre, and T. Uzer, “Annular billiard dynamics in a circularly polarized strong laser field,” Phys. Rev. E 85, 016204 (2012).

[CrossRef]

E. E. M. Khaled, S. C. Hill, and P. W. Barber, “Internal electric energy in a spherical particle illuminated with a plane wave or off-axis Gaussian beam,” Appl. Opt. 33, 524–532 (1994).

[CrossRef]

E. E. M. Khaled, S. C. Hill, and P. W. Barber, “Scattered and internal intensity of a sphere illuminated with a Gaussian beam,” IEEE Trans. Antennas Propag. 41, 295–303 (1993).

[CrossRef]

E. E. M. Khaled, S. C. Hill, P. W. Barber, and D. Q. Chowdhury, “Near-resonance excitation of dielectric spheres with plane waves and off-axis Gaussian beams,” Appl. Opt. 31, 1166–1169 (1992).

[CrossRef]

J. S. Kim and S. S. Lee, “Scattering of laser beam and the optical potential well for a homogeneous sphere,” J. Opt. Soc. Am. A 73, 303–312 (1983).

[CrossRef]

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles(Cambridge University, 2002).

J. S. Kim and S. S. Lee, “Scattering of laser beam and the optical potential well for a homogeneous sphere,” J. Opt. Soc. Am. A 73, 303–312 (1983).

[CrossRef]

E. Lenglart and G. Gouesbet, “The separability ‘theorem’ in terms of distributions with discussion of electromagnetic scattering theory,” J. Math. Phys. 37, 4705–4710 (1996).

[CrossRef]

Z. S. Wu, Z. J. Li, H. Li, Q. K. Yuan, and H. Y. Li, “Off-axis Gaussian beam scattering by an anisotropic coated sphere,” IEEE Trans. Antennas Propag. 59, 4740–4748 (2011).

[CrossRef]

Q. C. Shang, Z. S. Wu, Z. J. Li, and H. A. Li, “Radiation force on a chiral sphere by a Gaussian beam,” Proc. SPIE 7845, 78452B (2010).

[CrossRef]

Z. S. Wu, Z. J. Li, H. Li, Q. K. Yuan, and H. Y. Li, “Off-axis Gaussian beam scattering by an anisotropic coated sphere,” IEEE Trans. Antennas Propag. 59, 4740–4748 (2011).

[CrossRef]

H. Y. Li, Z. S. Wu, and Z. J. Li, “Relation between Debye series and generalized Lorenz–Mie theory of laser beam scattering by multilayer cylinder,” Chin. Phys. B 19, 104202 (2010).

[CrossRef]

H. Y. Li, Z. S. Wu, and L. Bai, “Scattering for charged multisphere structure located in plane wave/Gaussian beam,” J. Electromagn. Waves Appl. 24, 2037–2047 (2010).

H. Y. Li, Z. S. Wu, and Z. J. Li, “Scattering from a multi-layered sphere located in a high-order Hermite-Gaussian beam,” Chin. Phys. Lett. 26, 104203 (2009).

[CrossRef]

H. Y. Li and Z. S. Wu, “Electromagnetic scattering by multi-layered spheres in a 2D Gaussian beam,” Acta Phys. Sinica 57, 833–838 (2008).

Y. G. Du, Y. P. Han, G. X. Han, and J. J. Li, “Theoretical study on the rotation of particles driven by Gaussian beam,” Acta Phys. Sinica 60, 028702 (2011).

M. Wang, H. Zhang, Y. Han, and Y. Li, “Scattering of shaped beam by a conducting infinite cylinder with dielectric coating,” Appl. Phys. B 96, 105–109 (2009).

[CrossRef]

Z. S. Wu, Z. J. Li, H. Li, Q. K. Yuan, and H. Y. Li, “Off-axis Gaussian beam scattering by an anisotropic coated sphere,” IEEE Trans. Antennas Propag. 59, 4740–4748 (2011).

[CrossRef]

Z. J. Li, Z. S. Wu, and Q. C. Shang, “Calculation of radiation forces exerted on a uniaxial anisotropic sphere by an off-axis incident Gaussian beam,” Opt. Express 19, 16044–16057 (2011).

[CrossRef]

Q. K. Yuan, Z. S. Wu, and Z. J. Li, “Electromagnetic scattering for a uniaxial anisotropic sphere in an off-axis obliquely incident Gaussian beam,” J. Opt. Soc. Am. A 27, 1457–1465 (2010).

[CrossRef]

H. Y. Li, Z. S. Wu, and Z. J. Li, “Relation between Debye series and generalized Lorenz–Mie theory of laser beam scattering by multilayer cylinder,” Chin. Phys. B 19, 104202 (2010).

[CrossRef]

Q. C. Shang, Z. S. Wu, Z. J. Li, and H. A. Li, “Radiation force on a chiral sphere by a Gaussian beam,” Proc. SPIE 7845, 78452B (2010).

[CrossRef]

H. Y. Li, Z. S. Wu, and Z. J. Li, “Scattering from a multi-layered sphere located in a high-order Hermite-Gaussian beam,” Chin. Phys. Lett. 26, 104203 (2009).

[CrossRef]

Z. S. Wu, Q. K. Yuan, Y. Peng, and Z. J. Li, “Internal and external electromagnetic fields for on-axis Gaussian beam scattering from a uniaxial anisotropic sphere,” J. Opt. Soc. Am. A 26, 1778–1787 (2009).

[CrossRef]

H. Y. Zhang and T. Q. Liao, “Scattering of a Gaussian beam by a spherical particle with a spheroidal inclusion,” J. Quant. Spectrosc. Radiat. Transfer 112, 1486–1491 (2011).

[CrossRef]

B. Yan, H. Y. Zhang, and C. H. Liu, “Gaussian beam scattering by a spheroidal particle with an embedded conducting sphere,” J. Infrared Millim. Terahertz Waves 32, 126–133(2011).

[CrossRef]

B. Yan, H. Y. Zhang, and C. H. Liu, “Scattering of a Gaussian beam by a spheroidal particle with a spherical inclusion at the center,” Opt. Commun. 284, 3811–3815 (2011).

[CrossRef]

J. H. Bruning and Y. T. Lo, “Multiple scattering of EM waves by spheres part 1—Multipole expansion and ray-optical solutions,” IEEE Trans. Antennas Propag. AP-19, 378–389 (1971).

[CrossRef]

G. Gouesbet, J. A. Lock, J. J. Wang, and G. Gréhan, “Transformations of spherical beam shape coefficients in general Lorenz–Mie theories through rotations of coordinate system: V. Localized beam models,” Opt. Commun. 284, 411–417 (2011).

[CrossRef]

G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011).

[CrossRef]

F. Xu and J. A. Lock, “Debye series for light scattering by a coated nonspherical particle,” Phys. Rev. A 81, 063812 (2010).

[CrossRef]

F. Xu, J. A. Lock, and G. Gouesbet, “Debye series for light scattering by a nonspherical particle,” Phys. Rev. A 81, 043824 (2010).

[CrossRef]

J. A. Lock and G. Gouesbet, “Generalized Lorenz–Mie theory and applications,” J. Quant. Spectrosc. Radiat. Transfer 110, 800–807 (2009).

[CrossRef]

F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Optical stress on the surface of a particle: I. Homogeneous sphere,” Phys. Rev. A 79, 053808 (2009).

[CrossRef]

F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Radiation torque exerted on a spheroid: analytical solution,” Phys. Rev. A 78, 013843 (2008).

[CrossRef]

J. A. Lock, Partial-wave expansions of angular spectra of plane waves,” J. Opt. Soc. Am. A 23, 2803–2809 (2006).

[CrossRef]

J. A. Lock, S. Y. Wrbanek, and K. E. Weiland, “Scattering of a tightly focused beam by an optically trapped particle,” Appl. Opt. 45, 3634–3645 (2006).

[CrossRef]

J. A. Lock, “Calculation of the radiation trap force for laser tweezers by use of generalized Lorenz–Mie theory: I. Localized model description of an on-axis tightly focused laser beam with spherical aberration,” Appl. Opt. 43, 2532–2544(2004).

[CrossRef]

J. A. Lock, “Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz–Mie theory: II. On-axis trapping force,” Appl. Opt. 43, 2545–2554 (2004).

[CrossRef]

J. A. Lock, “Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder,” J. Opt. Soc. Am. A 14, 640–652 (1997).

[CrossRef]

J. A. Lock, “Morphology-dependent resonances of an infinitely long circular cylinder illuminated by a diagonally incident plane wave or a focused Gaussian beam,” J. Opt. Soc. Am. A 14, 653–661 (1997).

[CrossRef]

J. A. Lock and C. L. Adler, “Debye-series analysis of the first-order rainbow produced in scattering of a diagonally incident plane wave by a circular cylinder,” J. Opt. Soc. Am. A 14, 1316–1328 (1997).

[CrossRef]

J. A. Lock and J. T. Hodges, “Far-field scattering of an axisymmetric laser beam of arbitrary prole by an on-axis spherical particle,” Appl. Opt. 35, 4283–4290 (1996).

[CrossRef]

J. A. Lock, “Improved Gaussian beam-scattering algorithm,” Appl. Opt. 34, 559–570 (1995).

[CrossRef]

G. Gouesbet, J. A. Lock, and G. Gréhan, “Partial wave representations of laser beams for use in light scattering calculations,” Appl. Opt. 34, 2133–2143 (1995).

[CrossRef]

G. Gouesbet and J. A. Lock, “Rigorous justication of the localized approximation to the beam shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994).

[CrossRef]

J. A. Lock and G. Gouesbet, “Rigorous justication of the localized approximation to the beam shape coefficients in generalized Lorenz–Mie. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

[CrossRef]

J. A. Lock, “Contribution of high-order rainbows to the scattering of a Gaussian laser beam by a spherical particle,” J. Opt. Soc. Am. A 10, 693–706 (1993).

[CrossRef]

J. A. Lock, “Beam shape coefficients of the most general focused Gaussian focused laser beam for light scattering applications,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

G. Gouesbet, G. Gréhan, and B. Maheu, “A localized approximation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990).

[CrossRef]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[CrossRef]

G. Gouesbet, G. Gréhan, and B. Maheu, “Computations of the gn coefficients in the generalized Lorenz–Mie theory using three different methods,” Appl. Opt. 27, 4874–4883 (1988).

[CrossRef]

G. Gouesbet, G. Gréhan, and B. Maheu, “Expressions to compute the coefficients gnm in the generalized Lorenz–Mie theory, using finite series,” J. Opt. 19, 35–48 (1988).

[CrossRef]

B. Maheu, G. Gouesbet, and G. Gréhan, “A concise presentation of the generalized Lorenz–Mie theory for arbitrary location of the scatterer in an arbitrary incident profile,” J. Opt. 19, 59–67 (1988).

[CrossRef]

G. Gréhan, B. Maheu, and G. Gouesbet, “Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation,” Appl. Opt. 25, 3539–3548 (1986).

[CrossRef]

G. Gouesbet, G. Gréhan, and B. Maheu, “Generalized Lorenz–Mie theory and applications to optical sizing,” in Combustion Measurements, N. Chigier, ed. (Hemisphere, 1991), pp. 339–384.

A. Kamor, F. Mauger, C. Chandre, and T. Uzer, “Annular billiard dynamics in a circularly polarized strong laser field,” Phys. Rev. E 85, 016204 (2012).

[CrossRef]

Y. P. Han, L. Mees, G. Gouesbet, Z. S. Wu, and G. Gréhan, “Resonant spectra of a deformed spherical microcavity,” J. Opt. Soc. Am. B 23, 1390–1397 (2006).

[CrossRef]

Y. P. Han, L. Mees, K. F. Ren, G. Gréhan, Z. S. Wu, and G. Gouesbet, “Far scattered field from a spheroid under a femtosecond pulsed illumination in a generalized Lorenz–Mie theory framework,” Opt. Commun. 231, 71–77 (2004).

[CrossRef]

Y. P. Han, L. Mees, K. F. Ren, G. Gouesbet, S. Z. Wu, and G. Gréhan, “Scattering of light by spheroids: the far field case,” Opt. Commun. 210, 1–9 (2002).

[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Description of arbitrary shaped beams in elliptical cylinder coordinates by using a plane wave spectrum approach,” Opt. Commun. 161, 63–78 (1999).

[CrossRef]

G. Gouesbet, L. Mees, and G. Gréhan, “Generic formulation of a generalized Lorenz–Mie theory for pulsed laser illumination,” in Laser Techniques for Fluid Mechanics, R. J. Adrian, D.F.G. Durao, Durst, M. V. Heitor, M. Maeda, C. Tropea, and J. H. Whitelaw, eds. (Springer, 2002), pp. 175–188.

L. Méès, G. Gouesbet, and G. Gréhan, “Transient internal and scattered fields from a multi-layered sphere illuminated by a pulsed laser,” Opt. Commun. 282, 4189–4193 (2009).

[CrossRef]

C. Calba, L. Méès, C. Rozé, and T. Girasole, “Ultrashort pulse propagation through a strongly scattering medium: simulation and experiments,” J. Opt. Soc. Am. A 25, 1541–1550 (2008).

[CrossRef]

G. Gouesbet and L. Méès, “Generalized Lorenz–Mie theory for infinitely long cylinders with elliptical cross-sections. Erratum,” J. Opt. Soc. Am. A 22, 574–575 (2005).

[CrossRef]

L. Méès, G. Gouesbet, and G. Gréhan, “Numerical predictions of microcavity internal fields created by femtosecond pulses, with emphasis on whispering gallery modes,” J. Opt. A 4, 8150–8153 (2002).

L. Méès, J. P. Wolf, G. Gouesbet, and G. Gréhan, “Two-photon absorption and fluorescence in a spherical micro-cavity illuminated by using two laser pulses: numerical simulations,” Opt. Commun. 208, 371–375 (2002).

[CrossRef]

L. Méès, G. Gouesbet, and G. Gréhan, “Interaction between femtosecond pulses and a spherical microcavity: internal fields,” Opt. Commun. 199, 33–38 (2001).

[CrossRef]

L. Méès, G. Gréhan, and G. Gouesbet, “Time-resolved scattering diagrams for a sphere illuminated by plane wave and focused short pulses,” Opt. Commun. 194, 59–65 (2001).

[CrossRef]

L. Méès, G. Gouesbet, and G. Gréhan, “Scattering of laser pulses (plane wave and focused Gaussian beams) by spheres,” Appl. Opt. 40, 2546–2550 (2001).

[CrossRef]

L. Méès, K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation: numerical results,” Appl. Opt. 38, 1867–1876 (1999).

[CrossRef]

G. Gouesbet and L. Méès, “Validity of the elliptical cylinder localized approximation for arbitrary shaped beams in generalized Lorenz–Mie theory for elliptical cylinders,” J. Opt. Soc. Am. A 16, 2946–2958 (1999).

[CrossRef]

G. Gouesbet and L. Méès, “Generalized Lorenz–Mie theory for infinitely long elliptical cylinders,” J. Opt. Soc. Am. A 16, 1333–1341 (1999).

[CrossRef]

G. Gouesbet, L. Méès, and G. Gréhan, “Partial-wave description of shaped beams in elliptical-cylinder coordinates,” J. Opt. Soc. Am. A 15, 3028–3038 (1998).

[CrossRef]

L. Méès, “Diffusion de la lumière par des objets cylindriques: Simulations par théorie de Lorenz–Mie généralisée et applications métrologiques,” Ph.D. thesis (Rouen University, 2000).

A. Mekis, J. U. Nöckel, G. Chen, A. D. Stone, and R. K. Chang, “Ray chaos and Q spoiling in lasing droplets,” Phys. Rev. Lett. 75, 2682–2685 (1995).

[CrossRef]

F. Durst, A. Melling, and J. H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry (Academic, 1981).

G. Gouesbet, S. Meunier-Guttin-Cluzel, and O. Ménard, “Global reconstruction of equations of motion from data series, and validation techniques, a review,” in Chaos and Its Reconstruction (Novascience, 2003), pp. 1–160.

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Morphologydependent resonances and/or whispering gallery modes for a two-dimensional dielectric cavity with an eccentrically located spherical inclusion, a Hamiltonian point of view with Hamiltonian (optical) chaos,” Opt. Commun. 201, 223–242 (2002).

[CrossRef]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Periodic orbits in Hamiltonian chaos of the annular billiard,” Phys. Rev. E 65, 016212 (2001).

[CrossRef]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Generalized Lorenz–Mie theory for a sphere with an eccentrically located spherical inclusion, and optical chaos,” Part. Part. Syst. Charact. 18, 190–195 (2001).

[CrossRef]

G. Gouesbet, C. Rozé, and S. Meunier-Guttin-Cluzel, “Instabilities by local heating below an interface, a review,” J. Nonequilib. Thermodyn. 25, 337–379 (2000).

[CrossRef]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and O. Ménard, “Global reconstruction of equations of motion from data series, and validation techniques, a review,” in Chaos and Its Reconstruction (Novascience, 2003), pp. 1–160.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles(Cambridge University, 2002).

S. R. Mishra, “A vector wave analysis of a Bessel beam,” Opt. Commun. 85159–161 (1991).

[CrossRef]

J. Mroczka and D. Wysoczanski, “Plane-wave and Gaussian-beam scattering on an infinite cylinder,” Opt. Eng. 39, 763–770 (2000).

[CrossRef]

G. Gréhan, G. Gouesbet, A. Naqwi, and F. Durst, “Trajectory ambiguities in phase-Doppler systems: study of a near-forward and a near-backward geometry,” Part. Part. Syst. Charact. 11, 133–144 (1994).

[CrossRef]

G. Gréhan, K. F. Ren, G. Gouesbet, A. Naqwi, and F. Durst, “Evaluation of a particle sizing technique based on laser sheets,” Part. Part. Syst. Charact. 11, 101–106 (1994).

[CrossRef]

G. Gréhan, G. Gouesbet, A. Naqwi, and F. Durst, “Particle trajectory effects in phase-Doppler systems: computations and experiments,” Part. Part. Syst. Charact. 10, 332–338 (1993).

[CrossRef]

A. A. R. Neves, A. Fontes, C. L. Cesar, A. Camposeo, R. Cingolani, and D. Pisignano, “Axial optical trapping efficiency through a dielectric interface,” Phys. Rev. E 76, 061917 (2007).

[CrossRef]

A. A. R. Neves, L. A. Padilha, A. Fontes, E. Rodriguez, C. H. B. Cruz, L. C. Barbosa, and C. L. Cesar, “Analytical results for a Bessel function times Legendre polynomials class integrals, J. Phys. A 39, L293–L296 (2006).

[CrossRef]

A. A. R. Neves, A. Fontes, L. A. Padilha, E. Rodriguez, C. H de Brito Cruz, L. C. Barbosa, and C. L. Cesar, “Exact partial wave expansion of optical beams with respect to an arbitrary origin,” Opt. Lett. 31, 2477–2479 (2006).

[CrossRef]

A. A. R. Neves, A. Fontes, L. D. Y. Pozzo, A. A. de Thomas, E. Chillce, E. Rodriguez, L. C. Barbosa, and C. L. Cesar, “Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric,” Opt. Express 14, 13101–13106 (2006).

[CrossRef]

A. D. Stone and J. U. Nöckel, “Asymmetric resonant optical cavities,” Opt. Photon. News 8, 37–38 (1997).

[CrossRef]

J. U. Nöckel and A. D. Stone, “Ray and wave chaos in asymmetric resonant optical cavities,” Lett. Nature 385, 45–47 (1997).

[CrossRef]

A. Mekis, J. U. Nöckel, G. Chen, A. D. Stone, and R. K. Chang, “Ray chaos and Q spoiling in lasing droplets,” Phys. Rev. Lett. 75, 2682–2685 (1995).

[CrossRef]

J. U. Nöckel, A. D. Stone, and R. K. Chang, “Q-spoiling and directionality in deformed ring cavities,” Opt. Lett. 19, 1693–1695 (1994).

[CrossRef]

S. Bleher, C. Grebogi, and E. Ott, “Bifurcation to chaotic scattering,” Phys. D 46, 87–121 (1990).

[CrossRef]

A. A. R. Neves, A. Fontes, L. A. Padilha, E. Rodriguez, C. H de Brito Cruz, L. C. Barbosa, and C. L. Cesar, “Exact partial wave expansion of optical beams with respect to an arbitrary origin,” Opt. Lett. 31, 2477–2479 (2006).

[CrossRef]

A. A. R. Neves, L. A. Padilha, A. Fontes, E. Rodriguez, C. H. B. Cruz, L. C. Barbosa, and C. L. Cesar, “Analytical results for a Bessel function times Legendre polynomials class integrals, J. Phys. A 39, L293–L296 (2006).

[CrossRef]

O. Pena and U. Pal, “Scattering of electromagnetic radiation by a multilayered sphere,” Comput. Phys. Commun. 180, 2348–2354 (2009).

[CrossRef]

O. Pena and U. Pal, “Scattering of electromagnetic radiation by a multilayered sphere,” Comput. Phys. Commun. 180, 2348–2354 (2009).

[CrossRef]

A. A. R. Neves, A. Fontes, C. L. Cesar, A. Camposeo, R. Cingolani, and D. Pisignano, “Axial optical trapping efficiency through a dielectric interface,” Phys. Rev. E 76, 061917 (2007).

[CrossRef]

P. Poincelot, Précis Délectromagnétisme Théorique (Masson, 1965).

H. Polaert, G. Gouesbet, and G. Gréhan, “Laboratory determination of beam shape coefficients for use in generalized Lorenz–Mie theory,” Appl. Opt. 40, 1699–1706 (2001).

[CrossRef]

H. Polaert, G. Gouesbet, and G. Gréhan, “Measurements of beam shape coefficients in the generalized Lorenz–Mie theory for the on-axis case: numerical simulations,” Appl. Opt. 37, 5005–5013 (1998).

[CrossRef]

H. Polaert, G. Gréhan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155, 169–179 (1998).

[CrossRef]

C. Jung and S. Pott, “Classical cross section for chaotic potential scattering,” J. Phys. A 22, 2925–2938 (1989).

[CrossRef]

A. A. R. Neves, A. Fontes, L. D. Y. Pozzo, A. A. de Thomas, E. Chillce, E. Rodriguez, L. C. Barbosa, and C. L. Cesar, “Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric,” Opt. Express 14, 13101–13106 (2006).

[CrossRef]

R. P. Ratowsky, L. Yang, R. J. Deri, K. W. Chang, J. S. Kallman, and G. Trott, “Laser diode to single-mode fiber ball lens coupling efficiency: full-wave calculation and measurements,” Appl. Opt. 36, 3435–3438 (1997).

[CrossRef]

R. P. Ratowsky, L. Yang, R. J. Deri, J. S. Kallman, and G. Trott, “Ball lens reflections by direct solution of Maxwell’s equations,” Opt. Lett. 20, 2048–2050 (1995).

[CrossRef]

L. P. Su, S. Y. Chen, W. J. Zhao, and D. M. Ren, “Scattering properties of ultrashort laser pulses by air bubbles in the sea water,” Proc. SPIE 8192, 81922K (2011).

[CrossRef]

R. X. Li, X. E. Han, and K. F. Ren, “Debye series analysis of radiation pressure force exerted on a multilayered sphere,” Appl. Opt. 49, 955–963 (2010).

[CrossRef]

B. Yan, X. Han, and K. F. Ren, “Scattering of a shaped beam by a spherical particle with an eccentric spherical inclusion,” J. Opt. A 11, 015705 (2009).

[CrossRef]

F. Xu, K. F. Ren, G. Gouesbet, X. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007).

[CrossRef]

F. Xu, K. F. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz–Mie theory for an arbitrarily oriented, located and shaped beam scattering by a homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007).

[CrossRef]

F. Xu, K. F. Ren, and X. S. Cai, “Expansion of an arbitrarily oriented, located, and shaped beam in spheroidal coordinates,” J. Opt. Soc. Am. A 24, 109–118 (2007).

[CrossRef]

Y. P. Han, L. Mees, K. F. Ren, G. Gréhan, Z. S. Wu, and G. Gouesbet, “Far scattered field from a spheroid under a femtosecond pulsed illumination in a generalized Lorenz–Mie theory framework,” Opt. Commun. 231, 71–77 (2004).

[CrossRef]

Y. P. Han, L. Mees, K. F. Ren, G. Gouesbet, S. Z. Wu, and G. Gréhan, “Scattering of light by spheroids: the far field case,” Opt. Commun. 210, 1–9 (2002).

[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Description of arbitrary shaped beams in elliptical cylinder coordinates by using a plane wave spectrum approach,” Opt. Commun. 161, 63–78 (1999).

[CrossRef]

L. Méès, K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation: numerical results,” Appl. Opt. 38, 1867–1876 (1999).

[CrossRef]

K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral localized approximation in generalized Lorenz–Mie theory,” Appl. Opt. 37, 4218–4225 (1998).

[CrossRef]

Z. S. Wu, L. X. Guo, K. F. Ren, G. Gouesbet, and G. Gréhan, “Improved algorithms for electromagnetic scattering of plane waves and shaped beams by multilayered spheres,” Appl. Opt. 36, 5188–5198 (1997).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of a GLMT, formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

G. Gouesbet, C. Letellier, K. F. Ren, and G. Gréhan, “Discussion of two quadrature methods of evaluating beam shape coefficients in generalized Lorenz–Mie theory,” Appl. Opt. 35, 1537–1542 (1996).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Electromagnetic field expression of a laser sheet and the order of approximation,” J. Opt. 25, 165–176 (1994).

[CrossRef]

G. Gréhan, K. F. Ren, G. Gouesbet, A. Naqwi, and F. Durst, “Evaluation of a particle sizing technique based on laser sheets,” Part. Part. Syst. Charact. 11, 101–106 (1994).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Laser sheet scattering by spherical particles,” Part. Part. Syst. Charact. 10, 146–151 (1993).

[CrossRef]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959).

[CrossRef]

M. Hentschel and K. Richter, “Quantum chaos in optical systems: The annular billiard,” Phys. Rev. E 66, 056207 (2002).

[CrossRef]

A. A. R. Neves, A. Fontes, L. A. Padilha, E. Rodriguez, C. H de Brito Cruz, L. C. Barbosa, and C. L. Cesar, “Exact partial wave expansion of optical beams with respect to an arbitrary origin,” Opt. Lett. 31, 2477–2479 (2006).

[CrossRef]

A. A. R. Neves, A. Fontes, L. D. Y. Pozzo, A. A. de Thomas, E. Chillce, E. Rodriguez, L. C. Barbosa, and C. L. Cesar, “Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric,” Opt. Express 14, 13101–13106 (2006).

[CrossRef]

A. A. R. Neves, L. A. Padilha, A. Fontes, E. Rodriguez, C. H. B. Cruz, L. C. Barbosa, and C. L. Cesar, “Analytical results for a Bessel function times Legendre polynomials class integrals, J. Phys. A 39, L293–L296 (2006).

[CrossRef]

L. C. Biedenharn and M. E. Rose, “Theory of angular correlations of nuclear radiations,” Rev. Mod. Phys. 25, 729–777 (1953).

[CrossRef]

C. Calba, L. Méès, C. Rozé, and T. Girasole, “Ultrashort pulse propagation through a strongly scattering medium: simulation and experiments,” J. Opt. Soc. Am. A 25, 1541–1550 (2008).

[CrossRef]

G. Gouesbet, C. Rozé, and S. Meunier-Guttin-Cluzel, “Instabilities by local heating below an interface, a review,” J. Nonequilib. Thermodyn. 25, 337–379 (2000).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).

[CrossRef]

Z. J. Li, Z. S. Wu, and Q. C. Shang, “Calculation of radiation forces exerted on a uniaxial anisotropic sphere by an off-axis incident Gaussian beam,” Opt. Express 19, 16044–16057 (2011).

[CrossRef]

Q. C. Shang, Z. S. Wu, Z. J. Li, and H. A. Li, “Radiation force on a chiral sphere by a Gaussian beam,” Proc. SPIE 7845, 78452B (2010).

[CrossRef]

P. Y. Wei, X. M. Sun, J. Shen, and H. Y. Zhang, “Scattering by a conducting infinite cylinder illuminated with a shaped beam,” J. Infrared Millim. Terahertz Waves 30, 642–649(2009).

[CrossRef]

J. U. Nöckel and A. D. Stone, “Ray and wave chaos in asymmetric resonant optical cavities,” Lett. Nature 385, 45–47 (1997).

[CrossRef]

A. D. Stone and J. U. Nöckel, “Asymmetric resonant optical cavities,” Opt. Photon. News 8, 37–38 (1997).

[CrossRef]

A. Mekis, J. U. Nöckel, G. Chen, A. D. Stone, and R. K. Chang, “Ray chaos and Q spoiling in lasing droplets,” Phys. Rev. Lett. 75, 2682–2685 (1995).

[CrossRef]

J. U. Nöckel, A. D. Stone, and R. K. Chang, “Q-spoiling and directionality in deformed ring cavities,” Opt. Lett. 19, 1693–1695 (1994).

[CrossRef]

L. P. Su, S. Y. Chen, W. J. Zhao, and D. M. Ren, “Scattering properties of ultrashort laser pulses by air bubbles in the sea water,” Proc. SPIE 8192, 81922K (2011).

[CrossRef]

Y. Han, H. Zhang, and X. Sun, “Scattering of shaped beam by an arbitrarily oriented spheroid having layers with non-confocal boundaries,” Appl. Phys. B 84, 485–492 (2006).

[CrossRef]

H. H. Wang, X. M. Sun, and H. Y. Zhang, “Scattering by a spheroidal particle illuminated with a couple of on-axis Gaussian beam,” Opt. Laser Technol. 44, 1290–1293 (2012).

[CrossRef]

X. M. Sun, H. H. Wang, and H. Y. Zhang, “Scattering of Gaussian beam by a conducting spheroidal particle with confocal dielectric coating,” J. Infrared Millim. Terahertz Waves 31, 1100–1108 (2010).

[CrossRef]

X. M. Sun, H. H. Wang, and H. Y. Zhang, “Scattering by an infinite cylinder arbitrarily illuminated with a couple of Gaussian beams,” J. Electromagn. Waves Appl. 24, 1329–1339 (2010).

[CrossRef]

P. Y. Wei, X. M. Sun, J. Shen, and H. Y. Zhang, “Scattering by a conducting infinite cylinder illuminated with a shaped beam,” J. Infrared Millim. Terahertz Waves 30, 642–649(2009).

[CrossRef]

H. Y. Zhang, Y. F. Sun, and Z. X. Huang, “Scattering by a multilayered infinite cylinder arbitrarily illuminated with a shaped beam,” IEEE Trans. Antennas Propag. 59, 4369–4371 (2011).

[CrossRef]

H. Y. Zhang, Z. X. Huang, and Y. F. Sun, “Scattering of a Gaussian beam by a conducting spheroidal particle with non-confocal dielectric coating,” IEEE Trans. Antennas Propag. 59, 4371–4374 (2011).

[CrossRef]

H. Y. Zhang and Y. F. Sun, “Scattering by a spheroidal particle illuminated with a Gaussian beam described by a localized beam model,” J. Opt. Soc. Am. B 27, 883–887(2010).

[CrossRef]

P. Torok, R. Varga, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: Structure of the electromagnetic field. I,” J. Opt. Soc. Am. A 12, 2136–2144 (1995).

[CrossRef]

P. Torok, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: An integral representation,” J. Opt. Soc. Am. A 12, 325–332 (1995).

[CrossRef]

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles(Cambridge University, 2002).

F. Xu, J. Lock, and C. Tropea, “Debye series for light scattering by a spheroid,” J. Opt. Soc. Am. A 27, 671–686 (2010).

[CrossRef]

S. Bakic, F. Xu, N. Damaschke, and C. Tropea, “Feasibility of extending rainbow refractometry to small particles using femtosecond laser pulses,” Part. Part. Syst. Charact. 26, 34–40 (2009).

[CrossRef]

F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Optical stress on the surface of a particle: I. Homogeneous sphere,” Phys. Rev. A 79, 053808 (2009).

[CrossRef]

F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Radiation torque exerted on a spheroid: analytical solution,” Phys. Rev. A 78, 013843 (2008).

[CrossRef]

S. Bakic, C. Heinisch, N. Damaschke, T. Tschudi, and C. Tropea, “Time integrated detection of femtosecond laser pulses scattered by small droplets,” Appl. Opt. 47, 523–530(2008).

[CrossRef]

H. E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement (Springer, 2003).

R. P. Ratowsky, L. Yang, R. J. Deri, K. W. Chang, J. S. Kallman, and G. Trott, “Laser diode to single-mode fiber ball lens coupling efficiency: full-wave calculation and measurements,” Appl. Opt. 36, 3435–3438 (1997).

[CrossRef]

R. P. Ratowsky, L. Yang, R. J. Deri, J. S. Kallman, and G. Trott, “Ball lens reflections by direct solution of Maxwell’s equations,” Opt. Lett. 20, 2048–2050 (1995).

[CrossRef]

V. Twersky, “On scattering of waves by random distributions. I. Free-space scatterer formalism,” J. Math. Phys. 3, 700–715 (1962).

[CrossRef]

V. Twersky, “On propagation in random media of discrete scatterers,” in Stochastic Processes in Mathematical Physics and Engineering, Proceedings of Symposia in Applied Mathematics, Vol. XVI, R. Bellman, ed. (American Mathematical Society, 1964), pp. 84–116.

A. Kamor, F. Mauger, C. Chandre, and T. Uzer, “Annular billiard dynamics in a circularly polarized strong laser field,” Phys. Rev. E 85, 016204 (2012).

[CrossRef]

V. Daniels, M. Vallières, and J. M. Yuan, “Chaotic scattering on a double well: periodic orbits, symbolic dynamics, and scaling,” Chaos 3, 475–485 (1993).

[CrossRef]

H. C. van de Hulst, Light Scattering by Small Particles(Wiley, 1957).

M. Venkatapathi and E. D. Hirleman, “Effect of beam size parameters on internal fields in an infinite cylinder irradiated by an elliptical Gaussian beam,” J. Opt. Soc. Am. A 24, 3366–3370 (2007).

[CrossRef]

M. Venkatapathi, G. Gregori, K. Ragheb, J. P. Robinson, and E. D. Hirleman, “Measurement and analysis of angle-resolved scatter from small particles in a cylindrical microchannel,” Appl. Opt. 45, 2222–2231 (2006).

[CrossRef]

H. H. Wang, X. M. Sun, and H. Y. Zhang, “Scattering by a spheroidal particle illuminated with a couple of on-axis Gaussian beam,” Opt. Laser Technol. 44, 1290–1293 (2012).

[CrossRef]

X. M. Sun, H. H. Wang, and H. Y. Zhang, “Scattering of Gaussian beam by a conducting spheroidal particle with confocal dielectric coating,” J. Infrared Millim. Terahertz Waves 31, 1100–1108 (2010).

[CrossRef]

X. M. Sun, H. H. Wang, and H. Y. Zhang, “Scattering by an infinite cylinder arbitrarily illuminated with a couple of Gaussian beams,” J. Electromagn. Waves Appl. 24, 1329–1339 (2010).

[CrossRef]

G. Gouesbet and J. J. Wang, “On the structures of some light scattering theories depending on whether or not the Bromwich formulation may be used, e.g., spherical versus spheroidal coordinates,” Opt. Commun. 285, 4200–4206 (2012).

[CrossRef]

J. J. Wang and G. Gouesbet, “Note on the use of localized beam models for light scattering theories in spherical coordinates,” Appl. Opt. 51, 3832–3836 (2012).

[CrossRef]

J. J. Wang, G. Gouesbet, G. Gréhan, and S. Saengkaew, “Morphology-dependent resonances in an eccentrically layered sphere illuminated by a tightly focused off-axis Gaussian beam,” J. Opt. Soc. Am. A 28, 1849–1859 (2011).

[CrossRef]

J. J. Wang, G. Gouesbet, Y. P. Han, and G. Gréhan, “Study of scattering from a sphere with an eccentrically located spherical inclusion by generalized Lorenz–Mie theory: internal and external field distributions,” J. Opt. Soc. Am. A 28, 24–39 (2011).

[CrossRef]

G. Gouesbet, J. A. Lock, J. J. Wang, and G. Gréhan, “Transformations of spherical beam shape coefficients in general Lorenz–Mie theories through rotations of coordinate system: V. Localized beam models,” Opt. Commun. 284, 411–417 (2011).

[CrossRef]

J. J. Wang, G. Gouesbet, and Y. P. Han, “Transformations of spherical beam shape coefficients in general Lorenz–Mie theories through rotations of coordinate system: II. Axisymmetric beams,” Opt. Commun. 283, 3226–3234 (2010).

[CrossRef]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in general Lorenz–Mie theories through rotations of coordinate system. I General formulation,” Opt. Commun. 283, 3218–3225 (2010).

[CrossRef]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in general Lorenz–Mie theories through rotations of coordinate system: III. Special values of Euler angles,” Opt. Commun. 283, 3235–3243 (2010).

[CrossRef]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in general Lorenz–Mie theories through rotations of coordinate system: IV. Plane waves,” Opt. Commun. 283, 3244–3254 (2010).

[CrossRef]

M. Wang, H. Zhang, Y. Han, and Y. Li, “Scattering of shaped beam by a conducting infinite cylinder with dielectric coating,” Appl. Phys. B 96, 105–109 (2009).

[CrossRef]

P. Y. Wei, X. M. Sun, J. Shen, and H. Y. Zhang, “Scattering by a conducting infinite cylinder illuminated with a shaped beam,” J. Infrared Millim. Terahertz Waves 30, 642–649(2009).

[CrossRef]

F. Durst, A. Melling, and J. H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry (Academic, 1981).

E. Wolf, “Electromagnetic diffraction in optical systems. I. An integral representation of the image field,” Proc. R. Soc. London Ser. A 253, 349–357 (1959).

[CrossRef]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959).

[CrossRef]

L. Méès, J. P. Wolf, G. Gouesbet, and G. Gréhan, “Two-photon absorption and fluorescence in a spherical micro-cavity illuminated by using two laser pulses: numerical simulations,” Opt. Commun. 208, 371–375 (2002).

[CrossRef]

A. Doicu and T. Wriedt, “Computation of the beam-shape-coefficients in the generalized Lorenz–Mie theory by using the translational addition theorem for spherical vector wave functions,” Appl. Opt. 36, 2971–2978 (1997).

[CrossRef]

A. Doicu and T. Wriedt, “Plane wave spectrum of electromagnetic beams,” Opt. Commun. 136, 114–124 (1997).

[CrossRef]

A. Doicu, T. Wriedt, and Y. A. Eremin, Light Scattering by Systems of Particles (Springer, 2006).

Y. P. Han, L. Mees, K. F. Ren, G. Gouesbet, S. Z. Wu, and G. Gréhan, “Scattering of light by spheroids: the far field case,” Opt. Commun. 210, 1–9 (2002).

[CrossRef]

Z. S. Wu, Z. J. Li, H. Li, Q. K. Yuan, and H. Y. Li, “Off-axis Gaussian beam scattering by an anisotropic coated sphere,” IEEE Trans. Antennas Propag. 59, 4740–4748 (2011).

[CrossRef]

Z. J. Li, Z. S. Wu, and Q. C. Shang, “Calculation of radiation forces exerted on a uniaxial anisotropic sphere by an off-axis incident Gaussian beam,” Opt. Express 19, 16044–16057 (2011).

[CrossRef]

Q. K. Yuan, Z. S. Wu, and Z. J. Li, “Electromagnetic scattering for a uniaxial anisotropic sphere in an off-axis obliquely incident Gaussian beam,” J. Opt. Soc. Am. A 27, 1457–1465 (2010).

[CrossRef]

H. Y. Li, Z. S. Wu, and Z. J. Li, “Relation between Debye series and generalized Lorenz–Mie theory of laser beam scattering by multilayer cylinder,” Chin. Phys. B 19, 104202 (2010).

[CrossRef]

H. Y. Li, Z. S. Wu, and L. Bai, “Scattering for charged multisphere structure located in plane wave/Gaussian beam,” J. Electromagn. Waves Appl. 24, 2037–2047 (2010).

Q. C. Shang, Z. S. Wu, Z. J. Li, and H. A. Li, “Radiation force on a chiral sphere by a Gaussian beam,” Proc. SPIE 7845, 78452B (2010).

[CrossRef]

H. Y. Li, Z. S. Wu, and Z. J. Li, “Scattering from a multi-layered sphere located in a high-order Hermite-Gaussian beam,” Chin. Phys. Lett. 26, 104203 (2009).

[CrossRef]

Z. S. Wu, Q. K. Yuan, Y. Peng, and Z. J. Li, “Internal and external electromagnetic fields for on-axis Gaussian beam scattering from a uniaxial anisotropic sphere,” J. Opt. Soc. Am. A 26, 1778–1787 (2009).

[CrossRef]

H. Y. Li and Z. S. Wu, “Electromagnetic scattering by multi-layered spheres in a 2D Gaussian beam,” Acta Phys. Sinica 57, 833–838 (2008).

Y. P. Han, L. Mees, G. Gouesbet, Z. S. Wu, and G. Gréhan, “Resonant spectra of a deformed spherical microcavity,” J. Opt. Soc. Am. B 23, 1390–1397 (2006).

[CrossRef]

Y. P. Han, L. Mees, K. F. Ren, G. Gréhan, Z. S. Wu, and G. Gouesbet, “Far scattered field from a spheroid under a femtosecond pulsed illumination in a generalized Lorenz–Mie theory framework,” Opt. Commun. 231, 71–77 (2004).

[CrossRef]

Y. P. Han and Z. S. Wu, “Absorption and scattering by an oblate particle,” J. Opt. A 4, 74–77 (2002).

[CrossRef]

Y. P. Han and Z. S. Wu, “The expansion coefficients of a spheroidal particle illuminated by Gaussian beam,” IEEE Trans. Antennas Propag. 49, 615–620 (2001).

[CrossRef]

Y. P. Han and Z. S. Wu, “Scattering of a spheroidal particle illuminated by a Gaussian beam,” Appl. Opt. 40, 2501–2509 (2001).

[CrossRef]

Z. S. Wu, L. X. Guo, K. F. Ren, G. Gouesbet, and G. Gréhan, “Improved algorithms for electromagnetic scattering of plane waves and shaped beams by multilayered spheres,” Appl. Opt. 36, 5188–5198 (1997).

[CrossRef]

J. Mroczka and D. Wysoczanski, “Plane-wave and Gaussian-beam scattering on an infinite cylinder,” Opt. Eng. 39, 763–770 (2000).

[CrossRef]

G. Gouesbet, F. Xu, and Y. P. Han, “Expanded description of electromagnetic arbitrary shaped beam in spheroidal coordinates for use in light scattering theories: A review,” J. Quant. Spectrosc. Radiat. Transfer 112, 2249–2267 (2011).

[CrossRef]

F. Xu, J. A. Lock, and G. Gouesbet, “Debye series for light scattering by a nonspherical particle,” Phys. Rev. A 81, 043824 (2010).

[CrossRef]

F. Xu and J. A. Lock, “Debye series for light scattering by a coated nonspherical particle,” Phys. Rev. A 81, 063812 (2010).

[CrossRef]

F. Xu, J. Lock, and C. Tropea, “Debye series for light scattering by a spheroid,” J. Opt. Soc. Am. A 27, 671–686 (2010).

[CrossRef]

S. Bakic, F. Xu, N. Damaschke, and C. Tropea, “Feasibility of extending rainbow refractometry to small particles using femtosecond laser pulses,” Part. Part. Syst. Charact. 26, 34–40 (2009).

[CrossRef]

F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Optical stress on the surface of a particle: I. Homogeneous sphere,” Phys. Rev. A 79, 053808 (2009).

[CrossRef]

F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Radiation torque exerted on a spheroid: analytical solution,” Phys. Rev. A 78, 013843 (2008).

[CrossRef]

F. Xu, K. F. Ren, G. Gouesbet, X. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007).

[CrossRef]

F. Xu, K. F. Ren, and X. S. Cai, “Expansion of an arbitrarily oriented, located, and shaped beam in spheroidal coordinates,” J. Opt. Soc. Am. A 24, 109–118 (2007).

[CrossRef]

F. Xu, K. F. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz–Mie theory for an arbitrarily oriented, located and shaped beam scattering by a homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007).

[CrossRef]

B. Yan, H. Y. Zhang, and C. H. Liu, “Gaussian beam scattering by a spheroidal particle with an embedded conducting sphere,” J. Infrared Millim. Terahertz Waves 32, 126–133(2011).

[CrossRef]

B. Yan, H. Y. Zhang, and C. H. Liu, “Scattering of a Gaussian beam by a spheroidal particle with a spherical inclusion at the center,” Opt. Commun. 284, 3811–3815 (2011).

[CrossRef]

B. Yan, X. Han, and K. F. Ren, “Scattering of a shaped beam by a spherical particle with an eccentric spherical inclusion,” J. Opt. A 11, 015705 (2009).

[CrossRef]

R. P. Ratowsky, L. Yang, R. J. Deri, K. W. Chang, J. S. Kallman, and G. Trott, “Laser diode to single-mode fiber ball lens coupling efficiency: full-wave calculation and measurements,” Appl. Opt. 36, 3435–3438 (1997).

[CrossRef]

R. P. Ratowsky, L. Yang, R. J. Deri, J. S. Kallman, and G. Trott, “Ball lens reflections by direct solution of Maxwell’s equations,” Opt. Lett. 20, 2048–2050 (1995).

[CrossRef]

Y. Yeh and H. Cummins, “Localized fluid flow measurements with a He–Ne laser spectrometer,” Appl. Phys. Lett. 4, 176–178 (1964).

[CrossRef]

V. Daniels, M. Vallières, and J. M. Yuan, “Chaotic scattering on a double well: periodic orbits, symbolic dynamics, and scaling,” Chaos 3, 475–485 (1993).

[CrossRef]

Z. S. Wu, Z. J. Li, H. Li, Q. K. Yuan, and H. Y. Li, “Off-axis Gaussian beam scattering by an anisotropic coated sphere,” IEEE Trans. Antennas Propag. 59, 4740–4748 (2011).

[CrossRef]

Q. K. Yuan, Z. S. Wu, and Z. J. Li, “Electromagnetic scattering for a uniaxial anisotropic sphere in an off-axis obliquely incident Gaussian beam,” J. Opt. Soc. Am. A 27, 1457–1465 (2010).

[CrossRef]

Z. S. Wu, Q. K. Yuan, Y. Peng, and Z. J. Li, “Internal and external electromagnetic fields for on-axis Gaussian beam scattering from a uniaxial anisotropic sphere,” J. Opt. Soc. Am. A 26, 1778–1787 (2009).

[CrossRef]

M. Wang, H. Zhang, Y. Han, and Y. Li, “Scattering of shaped beam by a conducting infinite cylinder with dielectric coating,” Appl. Phys. B 96, 105–109 (2009).

[CrossRef]

Y. P. Han, H. Zhang, and G. Han, “The expansion coefficients of arbitrary shaped beam in oblique illumination,” Opt. Express 15, 735–746 (2007).

[CrossRef]

Y. Han, H. Zhang, and X. Sun, “Scattering of shaped beam by an arbitrarily oriented spheroid having layers with non-confocal boundaries,” Appl. Phys. B 84, 485–492 (2006).

[CrossRef]

H. H. Wang, X. M. Sun, and H. Y. Zhang, “Scattering by a spheroidal particle illuminated with a couple of on-axis Gaussian beam,” Opt. Laser Technol. 44, 1290–1293 (2012).

[CrossRef]

H. Y. Zhang and T. Q. Liao, “Scattering of a Gaussian beam by a spherical particle with a spheroidal inclusion,” J. Quant. Spectrosc. Radiat. Transfer 112, 1486–1491 (2011).

[CrossRef]

B. Yan, H. Y. Zhang, and C. H. Liu, “Scattering of a Gaussian beam by a spheroidal particle with a spherical inclusion at the center,” Opt. Commun. 284, 3811–3815 (2011).

[CrossRef]

H. Y. Zhang, Z. X. Huang, and Y. F. Sun, “Scattering of a Gaussian beam by a conducting spheroidal particle with non-confocal dielectric coating,” IEEE Trans. Antennas Propag. 59, 4371–4374 (2011).

[CrossRef]

B. Yan, H. Y. Zhang, and C. H. Liu, “Gaussian beam scattering by a spheroidal particle with an embedded conducting sphere,” J. Infrared Millim. Terahertz Waves 32, 126–133(2011).

[CrossRef]

H. Y. Zhang, Y. F. Sun, and Z. X. Huang, “Scattering by a multilayered infinite cylinder arbitrarily illuminated with a shaped beam,” IEEE Trans. Antennas Propag. 59, 4369–4371 (2011).

[CrossRef]

X. M. Sun, H. H. Wang, and H. Y. Zhang, “Scattering by an infinite cylinder arbitrarily illuminated with a couple of Gaussian beams,” J. Electromagn. Waves Appl. 24, 1329–1339 (2010).

[CrossRef]

X. M. Sun, H. H. Wang, and H. Y. Zhang, “Scattering of Gaussian beam by a conducting spheroidal particle with confocal dielectric coating,” J. Infrared Millim. Terahertz Waves 31, 1100–1108 (2010).

[CrossRef]

H. Y. Zhang and Y. F. Sun, “Scattering by a spheroidal particle illuminated with a Gaussian beam described by a localized beam model,” J. Opt. Soc. Am. B 27, 883–887(2010).

[CrossRef]

Y. P. Han, Y. Zhang, H. Y. Zhang, and G. X. Han, “Scattering of typical particles by beam shape in oblique illumination,” J. Quant. Spectrosc. Radiat. Transfer 110, 1375–1381(2009).

[CrossRef]

P. Y. Wei, X. M. Sun, J. Shen, and H. Y. Zhang, “Scattering by a conducting infinite cylinder illuminated with a shaped beam,” J. Infrared Millim. Terahertz Waves 30, 642–649(2009).

[CrossRef]

H. Y. Zhang and Y. P. Han, “Scattering of shaped beam by an infinite cylinder of arbitrary orientation,” J. Opt. Soc. Am. B 25, 131–135 (2008).

[CrossRef]

H. Y. Zhang and Y. P. Han, “Addition theorem for the spherical vector wave functions and its application to the beam shape coefficients,” J. Opt. Soc. Am. B 25, 255–260 (2008).

[CrossRef]

H. Y. Zhang and Y. P. Han, “Scattering by a confocal multilayered spheroidal particle illuminated by an axial Gaussian beam,” IEEE Trans. Antennas Propag. 53, 1514–1518 (2005).

Y. P. Han, Y. Zhang, H. Y. Zhang, and G. X. Han, “Scattering of typical particles by beam shape in oblique illumination,” J. Quant. Spectrosc. Radiat. Transfer 110, 1375–1381(2009).

[CrossRef]

G. X. Han, Y. P. Han, J. Y. Liu, and Y. Zhang, “Scattering of an eccentric sphere arbitrarily located in a shaped beam,” J. Opt. Soc. Am. B 25, 2064–2072 (2008).

[CrossRef]

L. P. Su, S. Y. Chen, W. J. Zhao, and D. M. Ren, “Scattering properties of ultrashort laser pulses by air bubbles in the sea water,” Proc. SPIE 8192, 81922K (2011).

[CrossRef]

Y. G. Du, Y. P. Han, G. X. Han, and J. J. Li, “Theoretical study on the rotation of particles driven by Gaussian beam,” Acta Phys. Sinica 60, 028702 (2011).

G. X. Han and Y. P. Han, “Scattering of bi-sphere arbitrarily illuminated by a single beam and a dual beam,” Acta Phys. Sinica 59, 2434–2442 (2010).

H. Y. Li and Z. S. Wu, “Electromagnetic scattering by multi-layered spheres in a 2D Gaussian beam,” Acta Phys. Sinica 57, 833–838 (2008).

G. X. Han and Y. P. Han, “Radiation force of a sphere with an eccentric inclusion illuminated by a laser beam,” Acta Phys. Sinica 58, 6167–6173 (2009).

Y. P. Han, “An approach to expand the beam coefficients for arbitrarily shaped beam,” Acta Phys. Sinica 54, 5139–5143 (2005).

F. E. Borgnis, “Elektromagnetische Eigenschwingungen dielektrischer Raüme,” Ann. Phys. 35, 359–384 (1939).

[CrossRef]

G. Gouesbet, G. Gréhan, and B. Maheu, “Computations of the gn coefficients in the generalized Lorenz–Mie theory using three different methods,” Appl. Opt. 27, 4874–4883 (1988).

[CrossRef]

F. Onofri, G. Gréhan, and G. Gouesbet, “Electromagnetic scattering from a multilayered sphere located in an arbitrary beam,” Appl. Opt. 34, 7113–7124 (1995).

[CrossRef]

L. A. Ambrosio and H. E. Hernandez-Figueroa, “Radiation pressure cross sections and optical forces over negative refractive index spherical particles by ordinary Bessel beams,” Appl. Opt. 50, 4489–4498 (2011).

[CrossRef]

L. Méès, K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation: numerical results,” Appl. Opt. 38, 1867–1876 (1999).

[CrossRef]

G. Gouesbet, “Partial wave expansions and properties of axisymmetric light beams,” Appl. Opt. 35, 1543–1555(1996).

[CrossRef]

Y. P. Han and Z. S. Wu, “Scattering of a spheroidal particle illuminated by a Gaussian beam,” Appl. Opt. 40, 2501–2509 (2001).

[CrossRef]

C. W. Yeh, S. Colak, and P. W. Barber, “Scattering of sharply focused beam by arbitrarily shaped dielectric particles: an exact solution,” Appl. Opt. 21, 4426–4433 (1982).

[CrossRef]

A. Rohrbach and E. H. K. Stelzer, “Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations,” Appl. Opt. 41, 2494–2507 (2002).

[CrossRef]

L. Méès, G. Gouesbet, and G. Gréhan, “Scattering of laser pulses (plane wave and focused Gaussian beams) by spheres,” Appl. Opt. 40, 2546–2550 (2001).

[CrossRef]

J. B. Guidt, G. Gouesbet, and J. N. Le Toulouzan, “An accurate validation of visible infra-red double extinction simultaneous measurements of particle sizes and number-densities by using densely laden standard media,” Appl. Opt. 29, 1011–1022 (1990).

[CrossRef]

A. Doicu and T. Wriedt, “Computation of the beam-shape-coefficients in the generalized Lorenz–Mie theory by using the translational addition theorem for spherical vector wave functions,” Appl. Opt. 36, 2971–2978 (1997).

[CrossRef]

E. E. M. Khaled, S. C. Hill, P. W. Barber, and D. Q. Chowdhury, “Near-resonance excitation of dielectric spheres with plane waves and off-axis Gaussian beams,” Appl. Opt. 31, 1166–1169 (1992).

[CrossRef]

J. A. Lock, S. Y. Wrbanek, and K. E. Weiland, “Scattering of a tightly focused beam by an optically trapped particle,” Appl. Opt. 45, 3634–3645 (2006).

[CrossRef]

J. A. Lock, “Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz–Mie theory: II. On-axis trapping force,” Appl. Opt. 43, 2545–2554 (2004).

[CrossRef]

R. X. Li, X. E. Han, and K. F. Ren, “Debye series analysis of radiation pressure force exerted on a multilayered sphere,” Appl. Opt. 49, 955–963 (2010).

[CrossRef]

S. Bakic, C. Heinisch, N. Damaschke, T. Tschudi, and C. Tropea, “Time integrated detection of femtosecond laser pulses scattered by small droplets,” Appl. Opt. 47, 523–530(2008).

[CrossRef]

G. Gouesbet, J. A. Lock, and G. Gréhan, “Partial wave representations of laser beams for use in light scattering calculations,” Appl. Opt. 34, 2133–2143 (1995).

[CrossRef]

J. J. Wang and G. Gouesbet, “Note on the use of localized beam models for light scattering theories in spherical coordinates,” Appl. Opt. 51, 3832–3836 (2012).

[CrossRef]

J. A. Lock, “Improved Gaussian beam-scattering algorithm,” Appl. Opt. 34, 559–570 (1995).

[CrossRef]

H. Polaert, G. Gouesbet, and G. Gréhan, “Measurements of beam shape coefficients in the generalized Lorenz–Mie theory for the on-axis case: numerical simulations,” Appl. Opt. 37, 5005–5013 (1998).

[CrossRef]

H. Polaert, G. Gouesbet, and G. Gréhan, “Laboratory determination of beam shape coefficients for use in generalized Lorenz–Mie theory,” Appl. Opt. 40, 1699–1706 (2001).

[CrossRef]

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Whispering-gallery mode excitation in a microdroplet illuminated by a train of chirped ultrashort laser pulses,” Appl. Opt. 48, 5842–5848 (2009).

[CrossRef]

J. T. Hodges, G. Gréhan, G. Gouesbet, and C. Presser, “Forward scattering of a Gaussian beam by a nonabsorbing sphere,” Appl. Opt. 34, 2120–2132 (1995).

[CrossRef]

J. A. Lock and J. T. Hodges, “Far-field scattering of an axisymmetric laser beam of arbitrary prole by an on-axis spherical particle,” Appl. Opt. 35, 4283–4290 (1996).

[CrossRef]

L. Boyde, K. J. Chalut, and J. Guck, “Exact analytical expansion of an off-axis Gaussian laser beam using the translation theorems for the vector spherical harmonics,” Appl. Opt. 50, 1023–1033 (2011).

[CrossRef]

S. Colak, C. Yeh, and L. W. Casperson, “Scattering of focused beams by tenuous particles,” Appl. Opt. 18, 294–302(1979).

[CrossRef]

K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral localized approximation in generalized Lorenz–Mie theory,” Appl. Opt. 37, 4218–4225 (1998).

[CrossRef]

J. A. Lock, “Calculation of the radiation trap force for laser tweezers by use of generalized Lorenz–Mie theory: I. Localized model description of an on-axis tightly focused laser beam with spherical aberration,” Appl. Opt. 43, 2532–2544(2004).

[CrossRef]

Z. S. Wu, L. X. Guo, K. F. Ren, G. Gouesbet, and G. Gréhan, “Improved algorithms for electromagnetic scattering of plane waves and shaped beams by multilayered spheres,” Appl. Opt. 36, 5188–5198 (1997).

[CrossRef]

G. Gouesbet, “Interaction between an infinite cylinder and an arbitrary shaped beam,” Appl. Opt. 36, 4292–4304 (1997).

[CrossRef]

M. Venkatapathi, G. Gregori, K. Ragheb, J. P. Robinson, and E. D. Hirleman, “Measurement and analysis of angle-resolved scatter from small particles in a cylindrical microchannel,” Appl. Opt. 45, 2222–2231 (2006).

[CrossRef]

G. Gouesbet, C. Letellier, K. F. Ren, and G. Gréhan, “Discussion of two quadrature methods of evaluating beam shape coefficients in generalized Lorenz–Mie theory,” Appl. Opt. 35, 1537–1542 (1996).

[CrossRef]

G. Gréhan, B. Maheu, and G. Gouesbet, “Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation,” Appl. Opt. 25, 3539–3548 (1986).

[CrossRef]

E. E. M. Khaled, S. C. Hill, and P. W. Barber, “Internal electric energy in a spherical particle illuminated with a plane wave or off-axis Gaussian beam,” Appl. Opt. 33, 524–532 (1994).

[CrossRef]

R. P. Ratowsky, L. Yang, R. J. Deri, K. W. Chang, J. S. Kallman, and G. Trott, “Laser diode to single-mode fiber ball lens coupling efficiency: full-wave calculation and measurements,” Appl. Opt. 36, 3435–3438 (1997).

[CrossRef]

Y. P. Han, G. Gréhan, and G. Gouesbet, “Generalized Lorenz–Mie theory for a spheroidal particle with off-axis Gaussian beam illumination,” Appl. Opt. 42, 6621–6629 (2003).

[CrossRef]

R. Botet, P. Rannou, and M. Cabane, “Mean-field approximation of Mie scattering by fractal aggregates of identical spheres,” Appl. Opt. 36, 8791–8797 (1997).

[CrossRef]

Y. Han, H. Zhang, and X. Sun, “Scattering of shaped beam by an arbitrarily oriented spheroid having layers with non-confocal boundaries,” Appl. Phys. B 84, 485–492 (2006).

[CrossRef]

M. Wang, H. Zhang, Y. Han, and Y. Li, “Scattering of shaped beam by a conducting infinite cylinder with dielectric coating,” Appl. Phys. B 96, 105–109 (2009).

[CrossRef]

Y. Yeh and H. Cummins, “Localized fluid flow measurements with a He–Ne laser spectrometer,” Appl. Phys. Lett. 4, 176–178 (1964).

[CrossRef]

G. Gouesbet and G. Gréhan, “Generalized Lorenz–Mie theories, from past to future,” Atomization Sprays 10, 277–333 (2000).

[CrossRef]

A. Ashkin, “Forces on a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).

[CrossRef]

V. Daniels, M. Vallières, and J. M. Yuan, “Chaotic scattering on a double well: periodic orbits, symbolic dynamics, and scaling,” Chaos 3, 475–485 (1993).

[CrossRef]

H. Y. Li, Z. S. Wu, and Z. J. Li, “Relation between Debye series and generalized Lorenz–Mie theory of laser beam scattering by multilayer cylinder,” Chin. Phys. B 19, 104202 (2010).

[CrossRef]

H. Y. Li, Z. S. Wu, and Z. J. Li, “Scattering from a multi-layered sphere located in a high-order Hermite-Gaussian beam,” Chin. Phys. Lett. 26, 104203 (2009).

[CrossRef]

O. Pena and U. Pal, “Scattering of electromagnetic radiation by a multilayered sphere,” Comput. Phys. Commun. 180, 2348–2354 (2009).

[CrossRef]

H. Y. Zhang, Z. X. Huang, and Y. F. Sun, “Scattering of a Gaussian beam by a conducting spheroidal particle with non-confocal dielectric coating,” IEEE Trans. Antennas Propag. 59, 4371–4374 (2011).

[CrossRef]

H. Y. Zhang and Y. P. Han, “Scattering by a confocal multilayered spheroidal particle illuminated by an axial Gaussian beam,” IEEE Trans. Antennas Propag. 53, 1514–1518 (2005).

H. Y. Zhang, Y. F. Sun, and Z. X. Huang, “Scattering by a multilayered infinite cylinder arbitrarily illuminated with a shaped beam,” IEEE Trans. Antennas Propag. 59, 4369–4371 (2011).

[CrossRef]

Y. P. Han and Z. S. Wu, “The expansion coefficients of a spheroidal particle illuminated by Gaussian beam,” IEEE Trans. Antennas Propag. 49, 615–620 (2001).

[CrossRef]

Z. S. Wu, Z. J. Li, H. Li, Q. K. Yuan, and H. Y. Li, “Off-axis Gaussian beam scattering by an anisotropic coated sphere,” IEEE Trans. Antennas Propag. 59, 4740–4748 (2011).

[CrossRef]

J. H. Bruning and Y. T. Lo, “Multiple scattering of EM waves by spheres part 1—Multipole expansion and ray-optical solutions,” IEEE Trans. Antennas Propag. AP-19, 378–389 (1971).

[CrossRef]

E. E. M. Khaled, S. C. Hill, and P. W. Barber, “Scattered and internal intensity of a sphere illuminated with a Gaussian beam,” IEEE Trans. Antennas Propag. 41, 295–303 (1993).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989).

[CrossRef]

X. M. Sun, H. H. Wang, and H. Y. Zhang, “Scattering by an infinite cylinder arbitrarily illuminated with a couple of Gaussian beams,” J. Electromagn. Waves Appl. 24, 1329–1339 (2010).

[CrossRef]

H. Y. Li, Z. S. Wu, and L. Bai, “Scattering for charged multisphere structure located in plane wave/Gaussian beam,” J. Electromagn. Waves Appl. 24, 2037–2047 (2010).

P. Y. Wei, X. M. Sun, J. Shen, and H. Y. Zhang, “Scattering by a conducting infinite cylinder illuminated with a shaped beam,” J. Infrared Millim. Terahertz Waves 30, 642–649(2009).

[CrossRef]

X. M. Sun, H. H. Wang, and H. Y. Zhang, “Scattering of Gaussian beam by a conducting spheroidal particle with confocal dielectric coating,” J. Infrared Millim. Terahertz Waves 31, 1100–1108 (2010).

[CrossRef]

B. Yan, H. Y. Zhang, and C. H. Liu, “Gaussian beam scattering by a spheroidal particle with an embedded conducting sphere,” J. Infrared Millim. Terahertz Waves 32, 126–133(2011).

[CrossRef]

E. Lenglart and G. Gouesbet, “The separability ‘theorem’ in terms of distributions with discussion of electromagnetic scattering theory,” J. Math. Phys. 37, 4705–4710 (1996).

[CrossRef]

C. Yeh, “The diffraction of waves by a penetrable ribbon,” J. Math. Phys. 4, 65–71 (1963).

[CrossRef]

V. Twersky, “On scattering of waves by random distributions. I. Free-space scatterer formalism,” J. Math. Phys. 3, 700–715 (1962).

[CrossRef]

G. Gouesbet, “Validity of the cylindrical localized approximation for arbitrary shaped beams in generalized Lorenz–Mie theory for circular cylinders,” J. Mod. Opt. 46, 1185–1200 (1999).

G. Gouesbet and G. Gréhan, “Generalized Lorenz–Mie theory for a sphere with an eccentrically located spherical inclusion,” J. Mod. Opt. 47, 821–837 (2000).

G. Gouesbet, C. Rozé, and S. Meunier-Guttin-Cluzel, “Instabilities by local heating below an interface, a review,” J. Nonequilib. Thermodyn. 25, 337–379 (2000).

[CrossRef]

G. Gouesbet and G. Gréhan, “Sur la généralisation de la théorie de Lorenz–Mie,” J. Opt. 13, 97–103 (1982).

[CrossRef]

G. Gouesbet, G. Gréhan, and B. Maheu, “Expressions to compute the coefficients gnm in the generalized Lorenz–Mie theory, using finite series,” J. Opt. 19, 35–48 (1988).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Electromagnetic field expression of a laser sheet and the order of approximation,” J. Opt. 25, 165–176 (1994).

[CrossRef]

B. Maheu, G. Gouesbet, and G. Gréhan, “A concise presentation of the generalized Lorenz–Mie theory for arbitrary location of the scatterer in an arbitrary incident profile,” J. Opt. 19, 59–67 (1988).

[CrossRef]

G. Gouesbet, “ The separability theorem revisited with applications to light scattering theory,” J. Opt. 26, 123–135 (1995).

[CrossRef]

G. Gouesbet, “Interaction between Gaussian beams and infinite cylinders, by using the theory of distributions,” J. Opt. 26, 225–239 (1995).

[CrossRef]

G. Gouesbet and G. Gréhan, “Generalized Lorenz–Mie theory for assemblies of spheres and aggregates, J. Opt. A 1, 706–712 (1999).

[CrossRef]

L. Méès, G. Gouesbet, and G. Gréhan, “Numerical predictions of microcavity internal fields created by femtosecond pulses, with emphasis on whispering gallery modes,” J. Opt. A 4, 8150–8153 (2002).

Y. P. Han and Z. S. Wu, “Absorption and scattering by an oblate particle,” J. Opt. A 4, 74–77 (2002).

[CrossRef]

G. Gouesbet and G. Gréhan, “Generalized Lorenz–Mie theory for assemblies of spheres and aggregates,” J. Opt. A 1, 706–712 (1999).

[CrossRef]

B. Yan, X. Han, and K. F. Ren, “Scattering of a shaped beam by a spherical particle with an eccentric spherical inclusion,” J. Opt. A 11, 015705 (2009).

[CrossRef]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[CrossRef]

F. Xu, K. F. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz–Mie theory for an arbitrarily oriented, located and shaped beam scattering by a homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007).

[CrossRef]

Z. S. Wu, Q. K. Yuan, Y. Peng, and Z. J. Li, “Internal and external electromagnetic fields for on-axis Gaussian beam scattering from a uniaxial anisotropic sphere,” J. Opt. Soc. Am. A 26, 1778–1787 (2009).

[CrossRef]

J. A. Lock, “Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder,” J. Opt. Soc. Am. A 14, 640–652 (1997).

[CrossRef]

J. P. Barton, “Internal and near-surface electromagnetic fields for an infinite cylinder illuminated by an arbitrary focused beam,” J. Opt. Soc. Am. A 16, 160–166(1999).

[CrossRef]

D. W. Mackowski, “Calculation of total cross sections of multiple-sphere clusters,” J. Opt. Soc. Am. A 11, 2851–2861 (1994).

[CrossRef]

P. Torok, R. Varga, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: Structure of the electromagnetic field. I,” J. Opt. Soc. Am. A 12, 2136–2144 (1995).

[CrossRef]

A. Wünsche, “Transition from the paraxial approximation to exact solutions of the wave equation and application to Gaussian beams,” J. Opt. Soc. Am. A 9, 765–774 (1992).

[CrossRef]

J. A. Lock, “Contribution of high-order rainbows to the scattering of a Gaussian laser beam by a spherical particle,” J. Opt. Soc. Am. A 10, 693–706 (1993).

[CrossRef]

F. Xu, K. F. Ren, and X. S. Cai, “Expansion of an arbitrarily oriented, located, and shaped beam in spheroidal coordinates,” J. Opt. Soc. Am. A 24, 109–118 (2007).

[CrossRef]

G. Gouesbet, “Validity of the localized approximation for arbitrary shaped beams in generalized Lorenz–Mie theory for spheres,” J. Opt. Soc. Am. A 16, 1641–1650 (1999).

[CrossRef]

M. Venkatapathi and E. D. Hirleman, “Effect of beam size parameters on internal fields in an infinite cylinder irradiated by an elliptical Gaussian beam,” J. Opt. Soc. Am. A 24, 3366–3370 (2007).

[CrossRef]

G. Gouesbet and L. Méès, “Generalized Lorenz–Mie theory for infinitely long elliptical cylinders,” J. Opt. Soc. Am. A 16, 1333–1341 (1999).

[CrossRef]

T. Takenaka, M. Yokota, and O. Fukumitsu, “Propagation of light beams beyond the paraxial approximation,” J. Opt. Soc. Am. A 2, 826–829 (1985).

[CrossRef]

A. Rohrbach and E. H. K. Stelzer, “Optical trapping of dielectric particles in arbitrary fields,” J. Opt. Soc. Am. A 18, 839–853 (2001).

[CrossRef]

J. M. Jensen, Chaotic scattering of light by a dielectric cylinder,” J. Opt. Soc. Am. A 10, 1204–1208 (1993).

[CrossRef]

J. J. Wang, G. Gouesbet, Y. P. Han, and G. Gréhan, “Study of scattering from a sphere with an eccentrically located spherical inclusion by generalized Lorenz–Mie theory: internal and external field distributions,” J. Opt. Soc. Am. A 28, 24–39 (2011).

[CrossRef]

G. Gouesbet and L. Méès, “Validity of the elliptical cylinder localized approximation for arbitrary shaped beams in generalized Lorenz–Mie theory for elliptical cylinders,” J. Opt. Soc. Am. A 16, 2946–2958 (1999).

[CrossRef]

G. Gouesbet, “Exact description of arbitrary shaped beams for use in light scattering theories,” J. Opt. Soc. Am. A 13, 2434–2440 (1996).

[CrossRef]

G. Gouesbet and L. Méès, “Generalized Lorenz–Mie theory for infinitely long cylinders with elliptical cross-sections. Erratum,” J. Opt. Soc. Am. A 22, 574–575 (2005).

[CrossRef]

G. Gouesbet, L. Méès, and G. Gréhan, “Partial-wave description of shaped beams in elliptical-cylinder coordinates,” J. Opt. Soc. Am. A 15, 3028–3038 (1998).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of a GLMT, formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

J. J. Wang, G. Gouesbet, G. Gréhan, and S. Saengkaew, “Morphology-dependent resonances in an eccentrically layered sphere illuminated by a tightly focused off-axis Gaussian beam,” J. Opt. Soc. Am. A 28, 1849–1859 (2011).

[CrossRef]

F. Xu, J. Lock, and C. Tropea, “Debye series for light scattering by a spheroid,” J. Opt. Soc. Am. A 27, 671–686 (2010).

[CrossRef]

G. Gouesbet and J. A. Lock, “Rigorous justication of the localized approximation to the beam shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994).

[CrossRef]

Q. K. Yuan, Z. S. Wu, and Z. J. Li, “Electromagnetic scattering for a uniaxial anisotropic sphere in an off-axis obliquely incident Gaussian beam,” J. Opt. Soc. Am. A 27, 1457–1465 (2010).

[CrossRef]

S. R. Seshadri, “Nonparaxial corrections for the fundamental Gaussian beam,” J. Opt. Soc. Am. A 19, 2134–2141 (2002).

[CrossRef]

K. A. Fuller, “Scattering and absorption cross sections of compound spheres. I. Theory for external aggregation,” J. Opt. Soc. Am. A 11, 3251–3260 (1994).

[CrossRef]

J. A. Lock, “Morphology-dependent resonances of an infinitely long circular cylinder illuminated by a diagonally incident plane wave or a focused Gaussian beam,” J. Opt. Soc. Am. A 14, 653–661 (1997).

[CrossRef]

J. S. Kim and S. S. Lee, “Scattering of laser beam and the optical potential well for a homogeneous sphere,” J. Opt. Soc. Am. A 73, 303–312 (1983).

[CrossRef]

J. A. Lock and C. L. Adler, “Debye-series analysis of the first-order rainbow produced in scattering of a diagonally incident plane wave by a circular cylinder,” J. Opt. Soc. Am. A 14, 1316–1328 (1997).

[CrossRef]

P. Torok, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: An integral representation,” J. Opt. Soc. Am. A 12, 325–332 (1995).

[CrossRef]

J. A. Lock and G. Gouesbet, “Rigorous justication of the localized approximation to the beam shape coefficients in generalized Lorenz–Mie. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

[CrossRef]

G. Gouesbet, G. Gréhan, and B. Maheu, “A localized approximation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990).

[CrossRef]

J. A. Lock, Partial-wave expansions of angular spectra of plane waves,” J. Opt. Soc. Am. A 23, 2803–2809 (2006).

[CrossRef]

C. Calba, L. Méès, C. Rozé, and T. Girasole, “Ultrashort pulse propagation through a strongly scattering medium: simulation and experiments,” J. Opt. Soc. Am. A 25, 1541–1550 (2008).

[CrossRef]

Y. P. Han, L. Mees, G. Gouesbet, Z. S. Wu, and G. Gréhan, “Resonant spectra of a deformed spherical microcavity,” J. Opt. Soc. Am. B 23, 1390–1397 (2006).

[CrossRef]

G. X. Han, Y. P. Han, J. Y. Liu, and Y. Zhang, “Scattering of an eccentric sphere arbitrarily located in a shaped beam,” J. Opt. Soc. Am. B 25, 2064–2072 (2008).

[CrossRef]

H. Y. Zhang and Y. P. Han, “Scattering of shaped beam by an infinite cylinder of arbitrary orientation,” J. Opt. Soc. Am. B 25, 131–135 (2008).

[CrossRef]

M. J. Mendes, I. Tobias, A. Marti, and A. Luque, “Near-field scattering by dielectric spheroidal particles with sizes on the order of the illuminating wavelength,” J. Opt. Soc. Am. B 27, 1221–1231 (2010).

[CrossRef]

H. Y. Zhang and Y. F. Sun, “Scattering by a spheroidal particle illuminated with a Gaussian beam described by a localized beam model,” J. Opt. Soc. Am. B 27, 883–887(2010).

[CrossRef]

H. Y. Zhang and Y. P. Han, “Addition theorem for the spherical vector wave functions and its application to the beam shape coefficients,” J. Opt. Soc. Am. B 25, 255–260 (2008).

[CrossRef]

C. Jung and S. Pott, “Classical cross section for chaotic potential scattering,” J. Phys. A 22, 2925–2938 (1989).

[CrossRef]

A. A. R. Neves, L. A. Padilha, A. Fontes, E. Rodriguez, C. H. B. Cruz, L. C. Barbosa, and C. L. Cesar, “Analytical results for a Bessel function times Legendre polynomials class integrals, J. Phys. A 39, L293–L296 (2006).

[CrossRef]

A. R. Jones, “Some calculations on the scattering efficiencies of a sphere illuminated by an optical pulse,” J. Phys. D 40, 7306–7312 (2007).

[CrossRef]

J. A. Lock and G. Gouesbet, “Generalized Lorenz–Mie theory and applications,” J. Quant. Spectrosc. Radiat. Transfer 110, 800–807 (2009).

[CrossRef]

G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011).

[CrossRef]

G. Gouesbet, F. Xu, and Y. P. Han, “Expanded description of electromagnetic arbitrary shaped beam in spheroidal coordinates for use in light scattering theories: A review,” J. Quant. Spectrosc. Radiat. Transfer 112, 2249–2267 (2011).

[CrossRef]

Y. P. Han, Y. Zhang, H. Y. Zhang, and G. X. Han, “Scattering of typical particles by beam shape in oblique illumination,” J. Quant. Spectrosc. Radiat. Transfer 110, 1375–1381(2009).

[CrossRef]

Y. P. Han, Z. W. Cui, and G. Gouesbet, “Numerical simulation of Gaussian beam scattering by complex particles of arbitrary shape and structure,” J. Quant. Spectrosc. Radiat. Transfer 113, 1719–1727 (2012).

[CrossRef]

G. Gouesbet, “Generalized Lorenz–Mie theories, the third decade: a perspective,” J. Quant. Spectrosc. Radiat. Transfer 110, 1223–1238 (2009).

[CrossRef]

H. Y. Zhang and T. Q. Liao, “Scattering of a Gaussian beam by a spherical particle with a spheroidal inclusion,” J. Quant. Spectrosc. Radiat. Transfer 112, 1486–1491 (2011).

[CrossRef]

J. U. Nöckel and A. D. Stone, “Ray and wave chaos in asymmetric resonant optical cavities,” Lett. Nature 385, 45–47 (1997).

[CrossRef]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Morphologydependent resonances and/or whispering gallery modes for a two-dimensional dielectric cavity with an eccentrically located spherical inclusion, a Hamiltonian point of view with Hamiltonian (optical) chaos,” Opt. Commun. 201, 223–242 (2002).

[CrossRef]

L. Méès, G. Gréhan, and G. Gouesbet, “Time-resolved scattering diagrams for a sphere illuminated by plane wave and focused short pulses,” Opt. Commun. 194, 59–65 (2001).

[CrossRef]

A. Doicu and T. Wriedt, “Plane wave spectrum of electromagnetic beams,” Opt. Commun. 136, 114–124 (1997).

[CrossRef]

G. Gouesbet, J. A. Lock, J. J. Wang, and G. Gréhan, “Transformations of spherical beam shape coefficients in general Lorenz–Mie theories through rotations of coordinate system: V. Localized beam models,” Opt. Commun. 284, 411–417 (2011).

[CrossRef]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in general Lorenz–Mie theories through rotations of coordinate system. I General formulation,” Opt. Commun. 283, 3218–3225 (2010).

[CrossRef]

J. J. Wang, G. Gouesbet, and Y. P. Han, “Transformations of spherical beam shape coefficients in general Lorenz–Mie theories through rotations of coordinate system: II. Axisymmetric beams,” Opt. Commun. 283, 3226–3234 (2010).

[CrossRef]

L. Méès, G. Gouesbet, and G. Gréhan, “Transient internal and scattered fields from a multi-layered sphere illuminated by a pulsed laser,” Opt. Commun. 282, 4189–4193 (2009).

[CrossRef]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in general Lorenz–Mie theories through rotations of coordinate system: IV. Plane waves,” Opt. Commun. 283, 3244–3254 (2010).

[CrossRef]

B. Yan, H. Y. Zhang, and C. H. Liu, “Scattering of a Gaussian beam by a spheroidal particle with a spherical inclusion at the center,” Opt. Commun. 284, 3811–3815 (2011).

[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Description of arbitrary shaped beams in elliptical cylinder coordinates by using a plane wave spectrum approach,” Opt. Commun. 161, 63–78 (1999).

[CrossRef]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in general Lorenz–Mie theories through rotations of coordinate system: III. Special values of Euler angles,” Opt. Commun. 283, 3235–3243 (2010).

[CrossRef]

G. Gouesbet, “T-matrix formulation and generalized Lorenz–Mie theories in spherical coordinates, “Opt. Commun. 283, 517–521 (2010).

[CrossRef]

L. Méès, G. Gouesbet, and G. Gréhan, “Interaction between femtosecond pulses and a spherical microcavity: internal fields,” Opt. Commun. 199, 33–38 (2001).

[CrossRef]

Y. Harada and T. Asakura,” Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).

[CrossRef]

G. Gouesbet and J. J. Wang, “On the structures of some light scattering theories depending on whether or not the Bromwich formulation may be used, e.g., spherical versus spheroidal coordinates,” Opt. Commun. 285, 4200–4206 (2012).

[CrossRef]

H. Polaert, G. Gréhan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155, 169–179 (1998).

[CrossRef]

Y. P. Han, L. Mees, K. F. Ren, G. Gouesbet, S. Z. Wu, and G. Gréhan, “Scattering of light by spheroids: the far field case,” Opt. Commun. 210, 1–9 (2002).

[CrossRef]

Y. P. Han, L. Mees, K. F. Ren, G. Gréhan, Z. S. Wu, and G. Gouesbet, “Far scattered field from a spheroid under a femtosecond pulsed illumination in a generalized Lorenz–Mie theory framework,” Opt. Commun. 231, 71–77 (2004).

[CrossRef]

S. R. Mishra, “A vector wave analysis of a Bessel beam,” Opt. Commun. 85159–161 (1991).

[CrossRef]

L. Méès, J. P. Wolf, G. Gouesbet, and G. Gréhan, “Two-photon absorption and fluorescence in a spherical micro-cavity illuminated by using two laser pulses: numerical simulations,” Opt. Commun. 208, 371–375 (2002).

[CrossRef]

J. Mroczka and D. Wysoczanski, “Plane-wave and Gaussian-beam scattering on an infinite cylinder,” Opt. Eng. 39, 763–770 (2000).

[CrossRef]

Z. J. Li, Z. S. Wu, and Q. C. Shang, “Calculation of radiation forces exerted on a uniaxial anisotropic sphere by an off-axis incident Gaussian beam,” Opt. Express 19, 16044–16057 (2011).

[CrossRef]

Y. P. Han, H. Zhang, and G. Han, “The expansion coefficients of arbitrary shaped beam in oblique illumination,” Opt. Express 15, 735–746 (2007).

[CrossRef]

A. A. R. Neves, A. Fontes, L. D. Y. Pozzo, A. A. de Thomas, E. Chillce, E. Rodriguez, L. C. Barbosa, and C. L. Cesar, “Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric,” Opt. Express 14, 13101–13106 (2006).

[CrossRef]

H. H. Wang, X. M. Sun, and H. Y. Zhang, “Scattering by a spheroidal particle illuminated with a couple of on-axis Gaussian beam,” Opt. Laser Technol. 44, 1290–1293 (2012).

[CrossRef]

A. A. R. Neves, A. Fontes, L. A. Padilha, E. Rodriguez, C. H de Brito Cruz, L. C. Barbosa, and C. L. Cesar, “Exact partial wave expansion of optical beams with respect to an arbitrary origin,” Opt. Lett. 31, 2477–2479 (2006).

[CrossRef]

R. P. Ratowsky, L. Yang, R. J. Deri, J. S. Kallman, and G. Trott, “Ball lens reflections by direct solution of Maxwell’s equations,” Opt. Lett. 20, 2048–2050 (1995).

[CrossRef]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).

[CrossRef]

J. U. Nöckel, A. D. Stone, and R. K. Chang, “Q-spoiling and directionality in deformed ring cavities,” Opt. Lett. 19, 1693–1695 (1994).

[CrossRef]

J. Chen, J. Ng, P. Wang, and Z. Lin, “Analytical partial wave expansion of vector Bessel beam and its application to optical binding,” Opt. Lett. 35, 1674–1676 (2010).

[CrossRef]

A. D. Stone and J. U. Nöckel, “Asymmetric resonant optical cavities,” Opt. Photon. News 8, 37–38 (1997).

[CrossRef]

G. Gouesbet, “Theory of distributions and its application to beam parametrization in light scattering,” Part. Part. Syst. Charact. 16, 147–159 (1999).

[CrossRef]

G. Gouesbet,” Measurements of beam shape coefficients in generalized Lorenz–Mie theory and the density-matrix approach: I. Measurements,” Part. Part. Syst. Charact. 14, 12–20 (1997).

G. Gouesbet, “Measurements of beam shape coefficients in generalized Lorenz–Mie theory and the density-matrix approach: II. The density matrix approach,” Part. Part. Syst. Charact. 14, 88–92 (1997).

G. Gouesbet, “Debye series formulation for generalized Lorenz–Mie theory with the Bromwich method,” Part. Part. Syst. Charact. 20, 382–386 (2003).

[CrossRef]

G. Gréhan, K. F. Ren, G. Gouesbet, A. Naqwi, and F. Durst, “Evaluation of a particle sizing technique based on laser sheets,” Part. Part. Syst. Charact. 11, 101–106 (1994).

[CrossRef]

G. Gouesbet and G. Gréhan, “Generic formulation of a generalized Lorenz–Mie theory for a particle illuminated by laser pulses,” Part. Part. Syst. Charact. 17, 213–224 (2000).

[CrossRef]

G. Gouesbet and G. Gréhan, “Interaction between shaped beams and an infinite cylinder, including a discussion of Gaussian beams,” Part. Part. Syst. Charact. 11, 299–308 (1994).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Laser sheet scattering by spherical particles,” Part. Part. Syst. Charact. 10, 146–151 (1993).

[CrossRef]

F. Corbin, G. Gréhan, and G. Gouesbet, “Top-hat beam technique: improvements and application to bubble measurements,” Part. Part. Syst. Charact. 8, 222–228 (1991).

[CrossRef]

G. Gouesbet, “Generalized Lorenz–Mie theory and applications,” Part. Part. Syst. Charact. 11, 22–34 (1994).

[CrossRef]

G. Gréhan, G. Gouesbet, A. Naqwi, and F. Durst, “Particle trajectory effects in phase-Doppler systems: computations and experiments,” Part. Part. Syst. Charact. 10, 332–338 (1993).

[CrossRef]

G. Gréhan, G. Gouesbet, A. Naqwi, and F. Durst, “Trajectory ambiguities in phase-Doppler systems: study of a near-forward and a near-backward geometry,” Part. Part. Syst. Charact. 11, 133–144 (1994).

[CrossRef]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Generalized Lorenz–Mie theory for a sphere with an eccentrically located spherical inclusion, and optical chaos,” Part. Part. Syst. Charact. 18, 190–195 (2001).

[CrossRef]

S. Bakic, F. Xu, N. Damaschke, and C. Tropea, “Feasibility of extending rainbow refractometry to small particles using femtosecond laser pulses,” Part. Part. Syst. Charact. 26, 34–40 (2009).

[CrossRef]

T. J. Bromwich, “Electromagnetic waves,” Philos. Mag. 38, 143–164 (1919).

[CrossRef]

S. Bleher, C. Grebogi, and E. Ott, “Bifurcation to chaotic scattering,” Phys. D 46, 87–121 (1990).

[CrossRef]

G. Gortzel, “Angular correlation of gamma rays,” Phys. Rev., Appendix 1 70, 897–909 (1946).

[CrossRef]

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. 19, 1177–1179 (1979).

[CrossRef]

F. Xu, J. A. Lock, and G. Gouesbet, “Debye series for light scattering by a nonspherical particle,” Phys. Rev. A 81, 043824 (2010).

[CrossRef]

F. Xu and J. A. Lock, “Debye series for light scattering by a coated nonspherical particle,” Phys. Rev. A 81, 063812 (2010).

[CrossRef]

F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Optical stress on the surface of a particle: I. Homogeneous sphere,” Phys. Rev. A 79, 053808 (2009).

[CrossRef]

F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Radiation torque exerted on a spheroid: analytical solution,” Phys. Rev. A 78, 013843 (2008).

[CrossRef]

A. A. R. Neves, A. Fontes, C. L. Cesar, A. Camposeo, R. Cingolani, and D. Pisignano, “Axial optical trapping efficiency through a dielectric interface,” Phys. Rev. E 76, 061917 (2007).

[CrossRef]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Periodic orbits in Hamiltonian chaos of the annular billiard,” Phys. Rev. E 65, 016212 (2001).

[CrossRef]

M. Hentschel and K. Richter, “Quantum chaos in optical systems: The annular billiard,” Phys. Rev. E 66, 056207 (2002).

[CrossRef]

L. L. Foldy, “The multiple scattering of waves,” Phys. Rev. E 67, 107–119 (1945).

[CrossRef]

F. Xu, K. F. Ren, G. Gouesbet, X. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007).

[CrossRef]

A. Kamor, F. Mauger, C. Chandre, and T. Uzer, “Annular billiard dynamics in a circularly polarized strong laser field,” Phys. Rev. E 85, 016204 (2012).

[CrossRef]

L. Boyde, K. J. Chalut, and J. Guck, “Near- and far-field scattering from arbitrary three-dimensional aggregates of coated spheres using parallel computing,” Phys. Rev. E 83, 026701 (2011).

[CrossRef]

A. Mekis, J. U. Nöckel, G. Chen, A. D. Stone, and R. K. Chang, “Ray chaos and Q spoiling in lasing droplets,” Phys. Rev. Lett. 75, 2682–2685 (1995).

[CrossRef]

P. Debye, “Das elektromagnetische Feld um einen Zylinder und die Theorie des Regenbogens,” Phys. Zeitung 9, 775–778(1908).

E. Wolf, “Electromagnetic diffraction in optical systems. I. An integral representation of the image field,” Proc. R. Soc. London Ser. A 253, 349–357 (1959).

[CrossRef]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959).

[CrossRef]

Q. C. Shang, Z. S. Wu, Z. J. Li, and H. A. Li, “Radiation force on a chiral sphere by a Gaussian beam,” Proc. SPIE 7845, 78452B (2010).

[CrossRef]

L. P. Su, S. Y. Chen, W. J. Zhao, and D. M. Ren, “Scattering properties of ultrashort laser pulses by air bubbles in the sea water,” Proc. SPIE 8192, 81922K (2011).

[CrossRef]

G. Gouesbet and A. Berlemont, “Eulerian and Lagrangian approaches for predicting the behaviour of discrete particles in turbulent flows,” Prog. Energy Combust. Sci. 25, 133–159(1999).

[CrossRef]

L. C. Biedenharn and M. E. Rose, “Theory of angular correlations of nuclear radiations,” Rev. Mod. Phys. 25, 729–777 (1953).

[CrossRef]

H. E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement (Springer, 2003).

L. E. Drain, The Laser Doppler Technique (Wiley, 1980).

F. Durst, A. Melling, and J. H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry (Academic, 1981).

G. Gouesbet and G. Gréhan, Generalized Lorenz–Mie Theories (Springer, 2011).

M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds., Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, 2000).

A. Ishimaru, “Transport theory of wave propagation in random particles,” in Wave Propagation and Scattering in Random Media (Academic, 1978), pp. 147–148.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles(Cambridge University, 2002).

J. U. Nöckel and A. D. Stone, “Chaotic light: a theory of asymmetric resonant cavities,” Optical Processes in Microcavities (World Scientific, 1996), pp. 389–426.

C. Flammer, “Spheroidal Wave Functions (Dover, 2005).

J. A. Lock, “Beam shape coefficients of the most general focused Gaussian focused laser beam for light scattering applications,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

V. Twersky, “On propagation in random media of discrete scatterers,” in Stochastic Processes in Mathematical Physics and Engineering, Proceedings of Symposia in Applied Mathematics, Vol. XVI, R. Bellman, ed. (American Mathematical Society, 1964), pp. 84–116.

A. Doicu, T. Wriedt, and Y. A. Eremin, Light Scattering by Systems of Particles (Springer, 2006).

L. Méès, “Diffusion de la lumière par des objets cylindriques: Simulations par théorie de Lorenz–Mie généralisée et applications métrologiques,” Ph.D. thesis (Rouen University, 2000).

A. Ishimaru, “Plane wave incidence on a slab of scatterers—total intensity,” in Wave Propagation and Scattering in Random Media (Academic, 1978), pp. 268–274.

H. C. van de Hulst, Light Scattering by Small Particles(Wiley, 1957).

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978), pp. 77–80.

G. Gouesbet, L. Mees, and G. Gréhan, “Generic formulation of a generalized Lorenz–Mie theory for pulsed laser illumination,” in Laser Techniques for Fluid Mechanics, R. J. Adrian, D.F.G. Durao, Durst, M. V. Heitor, M. Maeda, C. Tropea, and J. H. Whitelaw, eds. (Springer, 2002), pp. 175–188.

G. Gouesbet, S. Meunier-Guttin-Cluzel, and O. Ménard, “Global reconstruction of equations of motion from data series, and validation techniques, a review,” in Chaos and Its Reconstruction (Novascience, 2003), pp. 1–160.

P. Poincelot, Précis Délectromagnétisme Théorique (Masson, 1965).

G. Gouesbet, G. Gréhan, and B. Maheu, “Generalized Lorenz–Mie theory and applications to optical sizing,” in Combustion Measurements, N. Chigier, ed. (Hemisphere, 1991), pp. 339–384.

W. L. Moreira, A. A. R. Neves, M. K. Garbos, T. G. Euser, P. St. J. Russell, and C. L. Cesar, “Expansion of arbitrary electromagnetic fields in terms of vector spherical wave functions,” http://www.arxiv.org/abs/1003.2392v2 , accessed 30April, 2010.

G. Gouesbet, “A scientific and sociological story of generalized Lorenz–Mie theories,” J. Quant. Spectrosc. Radiat. Transfer (to be published).