Abstract

We monitor the adsorption of Rhodamine 800, and the sedimentation of a polytetrafluoroethylene (PTFE) suspension at the surface of a fused-silica prism, by measuring both the absorption and s-p phase shift Δ of a 740 nm probe laser beam, using evanescent-wave cavity ringdown ellipsometry (EW-CRDE). The two systems demonstrate the complementary strengths of EW-CRDE, as the progress of adsorption of the Rhodamine 800 dye can only be observed sensitively via the measurement of absorption, whereas the progress of sedimentation of PTFE can only be observed sensitively via the measurement of Δ. We show that EW-CRDE provides a sensitive method for the measurement of Δ and demonstrates precision in Δ of about 104deg.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
    [CrossRef]
  2. M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, “Cavity ring-down spectroscopy,” J. Chem. Soc., Faraday Trans. 94, 337–351 (1998).
    [CrossRef]
  3. G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
    [CrossRef]
  4. B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975–999 (2005).
    [CrossRef]
  5. F. de Fornel, Evanescent Waves: From Newtonian Optics to Atomic Optics (Springer, Berlin, 2001).
  6. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, North-Holland (Amsterdam, 1987).
  7. W. Chen, L. J. Martinez-Miranda, H. Hsiung, and Y. R. Shen, “Orientational wetting behavior of a liquid-crystal homologous series,” Phys. Rev. Lett. 62, 1860–1863 (1989).
    [CrossRef]
  8. C. Vallance, “Innovations in cavity ring-down spectroscopy,” New J. Chem. 29, 867–874 (2005).
    [CrossRef]
  9. L. van der Sneppen, F. Ariese, C. Gooijer, and W. Ubachs, “Liquid-phase and evanescent-wave cavity ring-down spectroscopy in analytical chemistry,” Annu. Rev. Anal. Chem. 2, 13–35 (2009).
    [CrossRef]
  10. M. Schnippering, S.R.T. Neil, S. R. Mackenzie, and P. R. Unwin, “Evanescent wave cavitybased spectroscopic techniques as probes of interfacial processes,” Chem. Soc. Rev. 40, 207–220 (2011).
    [CrossRef]
  11. H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, and H.-P. Loock, “Chemical sensing using fiber cavity ring-down spectroscopy,” Sensors 10, 1716–1742 (2010).
    [CrossRef]
  12. L. van der Sneppen, C. Gooijer, W. Ubachs, and F. Ariese, “Evanescent-wave cavity ringdown detection of cytochrome con surface-modified prisms,” Sens. Actuator B 139, 505–510 (2009).
    [CrossRef]
  13. A. C. R. Pipino, J. W. Hudgens, and R. E. Huie, “Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Instrum. 68, 2978–2989 (1997).
    [CrossRef]
  14. R. Engeln, G. Berden, E. van den Berg, and G. Meijer, “Polarization dependent cavity ring down spectroscopy,” J. Chem. Phys. 107, 4458–4467 (1997).
    [CrossRef]
  15. A. C. R. Pipino, “Ultrasensitive surface spectroscopy with a miniature optical resonator,” Phys. Rev. Lett. 83, 3093–3096(1999).
    [CrossRef]
  16. A. C. R. Pipino, “Monolithic folded resonator for evanescent wave cavity ringdown spectroscopy,” Appl. Opt. 39, 1449–1453(2000).
    [CrossRef]
  17. F. P. Li and R. N. Zare, “Molecular orientation study of methylene blue at an air/fused-silica interface using evanescent-wave cavity ring-down spectroscopy,” J. Phys. Chem. B 109, 3330–3333 (2005).
    [CrossRef]
  18. A. Karaiskou, V. Papadakis, B. Loppinet, and T. P. Rakitzis, “Cavity ring-down ellipsometry,” J. Chem. Phys. 131, 121101(2009).
    [CrossRef]
  19. M. A. Everest, V. Papadakis, K. Stamataki, S. Tzortzakis, B. Loppinet, and T. P. Rakitzis, “Evanescent-wave cavity ring-down ellipsometry,” J. Phys. Chem. Lett. 2, 1324–1327 (2011).
    [CrossRef]
  20. M. A. Everest and D. B. Atkinson, “Discrete sums for the rapid determination of exponential decay constants,” Rev. Sci. Instrum. 79, 023108 (2008).
    [CrossRef]
  21. M.-S. Chen, H.-F. Fan, and K.-C. Lin, “Kinetic and thermodynamic investigation of Rhodamine B adsorption at solid/solvent interfaces by use of evanescent-wave cavity ring-down spectroscopy,” Anal. Chem. 82, 868 (2010).
    [CrossRef]
  22. S. Patskovsky, I.-H. Song, M. Meunier, and A. V. Kabashin, “Silicon based total internal reflection bio and chemical sensing with spectral phase detection,” Opt. Express 17, 20847–20852 (2009).
    [CrossRef]
  23. S. Otsuki, K. Tamada, and S. Wakida, “Two-dimensional thickness measurements based on internal reflection ellipsometry,” Appl. Opt. 44, 1410–1415 (2005).
    [CrossRef]
  24. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
    [CrossRef]

2011

M. Schnippering, S.R.T. Neil, S. R. Mackenzie, and P. R. Unwin, “Evanescent wave cavitybased spectroscopic techniques as probes of interfacial processes,” Chem. Soc. Rev. 40, 207–220 (2011).
[CrossRef]

M. A. Everest, V. Papadakis, K. Stamataki, S. Tzortzakis, B. Loppinet, and T. P. Rakitzis, “Evanescent-wave cavity ring-down ellipsometry,” J. Phys. Chem. Lett. 2, 1324–1327 (2011).
[CrossRef]

2010

H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, and H.-P. Loock, “Chemical sensing using fiber cavity ring-down spectroscopy,” Sensors 10, 1716–1742 (2010).
[CrossRef]

M.-S. Chen, H.-F. Fan, and K.-C. Lin, “Kinetic and thermodynamic investigation of Rhodamine B adsorption at solid/solvent interfaces by use of evanescent-wave cavity ring-down spectroscopy,” Anal. Chem. 82, 868 (2010).
[CrossRef]

2009

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef]

S. Patskovsky, I.-H. Song, M. Meunier, and A. V. Kabashin, “Silicon based total internal reflection bio and chemical sensing with spectral phase detection,” Opt. Express 17, 20847–20852 (2009).
[CrossRef]

L. van der Sneppen, C. Gooijer, W. Ubachs, and F. Ariese, “Evanescent-wave cavity ringdown detection of cytochrome con surface-modified prisms,” Sens. Actuator B 139, 505–510 (2009).
[CrossRef]

A. Karaiskou, V. Papadakis, B. Loppinet, and T. P. Rakitzis, “Cavity ring-down ellipsometry,” J. Chem. Phys. 131, 121101(2009).
[CrossRef]

L. van der Sneppen, F. Ariese, C. Gooijer, and W. Ubachs, “Liquid-phase and evanescent-wave cavity ring-down spectroscopy in analytical chemistry,” Annu. Rev. Anal. Chem. 2, 13–35 (2009).
[CrossRef]

2008

M. A. Everest and D. B. Atkinson, “Discrete sums for the rapid determination of exponential decay constants,” Rev. Sci. Instrum. 79, 023108 (2008).
[CrossRef]

2005

F. P. Li and R. N. Zare, “Molecular orientation study of methylene blue at an air/fused-silica interface using evanescent-wave cavity ring-down spectroscopy,” J. Phys. Chem. B 109, 3330–3333 (2005).
[CrossRef]

C. Vallance, “Innovations in cavity ring-down spectroscopy,” New J. Chem. 29, 867–874 (2005).
[CrossRef]

B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975–999 (2005).
[CrossRef]

S. Otsuki, K. Tamada, and S. Wakida, “Two-dimensional thickness measurements based on internal reflection ellipsometry,” Appl. Opt. 44, 1410–1415 (2005).
[CrossRef]

2000

A. C. R. Pipino, “Monolithic folded resonator for evanescent wave cavity ringdown spectroscopy,” Appl. Opt. 39, 1449–1453(2000).
[CrossRef]

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

1999

A. C. R. Pipino, “Ultrasensitive surface spectroscopy with a miniature optical resonator,” Phys. Rev. Lett. 83, 3093–3096(1999).
[CrossRef]

1998

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, “Cavity ring-down spectroscopy,” J. Chem. Soc., Faraday Trans. 94, 337–351 (1998).
[CrossRef]

1997

A. C. R. Pipino, J. W. Hudgens, and R. E. Huie, “Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Instrum. 68, 2978–2989 (1997).
[CrossRef]

R. Engeln, G. Berden, E. van den Berg, and G. Meijer, “Polarization dependent cavity ring down spectroscopy,” J. Chem. Phys. 107, 4458–4467 (1997).
[CrossRef]

1989

W. Chen, L. J. Martinez-Miranda, H. Hsiung, and Y. R. Shen, “Orientational wetting behavior of a liquid-crystal homologous series,” Phys. Rev. Lett. 62, 1860–1863 (1989).
[CrossRef]

1988

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Ariese, F.

L. van der Sneppen, C. Gooijer, W. Ubachs, and F. Ariese, “Evanescent-wave cavity ringdown detection of cytochrome con surface-modified prisms,” Sens. Actuator B 139, 505–510 (2009).
[CrossRef]

L. van der Sneppen, F. Ariese, C. Gooijer, and W. Ubachs, “Liquid-phase and evanescent-wave cavity ring-down spectroscopy in analytical chemistry,” Annu. Rev. Anal. Chem. 2, 13–35 (2009).
[CrossRef]

Ashfold, M. N. R.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, “Cavity ring-down spectroscopy,” J. Chem. Soc., Faraday Trans. 94, 337–351 (1998).
[CrossRef]

Atkinson, D. B.

M. A. Everest and D. B. Atkinson, “Discrete sums for the rapid determination of exponential decay constants,” Rev. Sci. Instrum. 79, 023108 (2008).
[CrossRef]

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef]

Azzam, R. M. A.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, North-Holland (Amsterdam, 1987).

Barnes, J. A.

H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, and H.-P. Loock, “Chemical sensing using fiber cavity ring-down spectroscopy,” Sensors 10, 1716–1742 (2010).
[CrossRef]

Bashara, N. M.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, North-Holland (Amsterdam, 1987).

Berden, G.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

R. Engeln, G. Berden, E. van den Berg, and G. Meijer, “Polarization dependent cavity ring down spectroscopy,” J. Chem. Phys. 107, 4458–4467 (1997).
[CrossRef]

Chen, M.-S.

M.-S. Chen, H.-F. Fan, and K.-C. Lin, “Kinetic and thermodynamic investigation of Rhodamine B adsorption at solid/solvent interfaces by use of evanescent-wave cavity ring-down spectroscopy,” Anal. Chem. 82, 868 (2010).
[CrossRef]

Chen, W.

W. Chen, L. J. Martinez-Miranda, H. Hsiung, and Y. R. Shen, “Orientational wetting behavior of a liquid-crystal homologous series,” Phys. Rev. Lett. 62, 1860–1863 (1989).
[CrossRef]

Cheung, A. H.

H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, and H.-P. Loock, “Chemical sensing using fiber cavity ring-down spectroscopy,” Sensors 10, 1716–1742 (2010).
[CrossRef]

de Fornel, F.

F. de Fornel, Evanescent Waves: From Newtonian Optics to Atomic Optics (Springer, Berlin, 2001).

Deacon, D. A. G.

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Engeln, R.

R. Engeln, G. Berden, E. van den Berg, and G. Meijer, “Polarization dependent cavity ring down spectroscopy,” J. Chem. Phys. 107, 4458–4467 (1997).
[CrossRef]

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef]

Everest, M. A.

M. A. Everest, V. Papadakis, K. Stamataki, S. Tzortzakis, B. Loppinet, and T. P. Rakitzis, “Evanescent-wave cavity ring-down ellipsometry,” J. Phys. Chem. Lett. 2, 1324–1327 (2011).
[CrossRef]

M. A. Everest and D. B. Atkinson, “Discrete sums for the rapid determination of exponential decay constants,” Rev. Sci. Instrum. 79, 023108 (2008).
[CrossRef]

Fan, H.-F.

M.-S. Chen, H.-F. Fan, and K.-C. Lin, “Kinetic and thermodynamic investigation of Rhodamine B adsorption at solid/solvent interfaces by use of evanescent-wave cavity ring-down spectroscopy,” Anal. Chem. 82, 868 (2010).
[CrossRef]

Gooijer, C.

L. van der Sneppen, C. Gooijer, W. Ubachs, and F. Ariese, “Evanescent-wave cavity ringdown detection of cytochrome con surface-modified prisms,” Sens. Actuator B 139, 505–510 (2009).
[CrossRef]

L. van der Sneppen, F. Ariese, C. Gooijer, and W. Ubachs, “Liquid-phase and evanescent-wave cavity ring-down spectroscopy in analytical chemistry,” Annu. Rev. Anal. Chem. 2, 13–35 (2009).
[CrossRef]

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef]

Hsiung, H.

W. Chen, L. J. Martinez-Miranda, H. Hsiung, and Y. R. Shen, “Orientational wetting behavior of a liquid-crystal homologous series,” Phys. Rev. Lett. 62, 1860–1863 (1989).
[CrossRef]

Hudgens, J. W.

A. C. R. Pipino, J. W. Hudgens, and R. E. Huie, “Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Instrum. 68, 2978–2989 (1997).
[CrossRef]

Huie, R. E.

A. C. R. Pipino, J. W. Hudgens, and R. E. Huie, “Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Instrum. 68, 2978–2989 (1997).
[CrossRef]

Kabashin, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef]

S. Patskovsky, I.-H. Song, M. Meunier, and A. V. Kabashin, “Silicon based total internal reflection bio and chemical sensing with spectral phase detection,” Opt. Express 17, 20847–20852 (2009).
[CrossRef]

Kachanov, A. A.

B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975–999 (2005).
[CrossRef]

Karaiskou, A.

A. Karaiskou, V. Papadakis, B. Loppinet, and T. P. Rakitzis, “Cavity ring-down ellipsometry,” J. Chem. Phys. 131, 121101(2009).
[CrossRef]

Li, F. P.

F. P. Li and R. N. Zare, “Molecular orientation study of methylene blue at an air/fused-silica interface using evanescent-wave cavity ring-down spectroscopy,” J. Phys. Chem. B 109, 3330–3333 (2005).
[CrossRef]

Lin, K.-C.

M.-S. Chen, H.-F. Fan, and K.-C. Lin, “Kinetic and thermodynamic investigation of Rhodamine B adsorption at solid/solvent interfaces by use of evanescent-wave cavity ring-down spectroscopy,” Anal. Chem. 82, 868 (2010).
[CrossRef]

Litman, J.

H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, and H.-P. Loock, “Chemical sensing using fiber cavity ring-down spectroscopy,” Sensors 10, 1716–1742 (2010).
[CrossRef]

Loock, H.-P.

H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, and H.-P. Loock, “Chemical sensing using fiber cavity ring-down spectroscopy,” Sensors 10, 1716–1742 (2010).
[CrossRef]

Loppinet, B.

M. A. Everest, V. Papadakis, K. Stamataki, S. Tzortzakis, B. Loppinet, and T. P. Rakitzis, “Evanescent-wave cavity ring-down ellipsometry,” J. Phys. Chem. Lett. 2, 1324–1327 (2011).
[CrossRef]

A. Karaiskou, V. Papadakis, B. Loppinet, and T. P. Rakitzis, “Cavity ring-down ellipsometry,” J. Chem. Phys. 131, 121101(2009).
[CrossRef]

Mackenzie, S. R.

M. Schnippering, S.R.T. Neil, S. R. Mackenzie, and P. R. Unwin, “Evanescent wave cavitybased spectroscopic techniques as probes of interfacial processes,” Chem. Soc. Rev. 40, 207–220 (2011).
[CrossRef]

Martinez-Miranda, L. J.

W. Chen, L. J. Martinez-Miranda, H. Hsiung, and Y. R. Shen, “Orientational wetting behavior of a liquid-crystal homologous series,” Phys. Rev. Lett. 62, 1860–1863 (1989).
[CrossRef]

Meijer, G.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

R. Engeln, G. Berden, E. van den Berg, and G. Meijer, “Polarization dependent cavity ring down spectroscopy,” J. Chem. Phys. 107, 4458–4467 (1997).
[CrossRef]

Meunier, M.

Neil, S.R.T.

M. Schnippering, S.R.T. Neil, S. R. Mackenzie, and P. R. Unwin, “Evanescent wave cavitybased spectroscopic techniques as probes of interfacial processes,” Chem. Soc. Rev. 40, 207–220 (2011).
[CrossRef]

Newman, S. M.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, “Cavity ring-down spectroscopy,” J. Chem. Soc., Faraday Trans. 94, 337–351 (1998).
[CrossRef]

O’Keefe, A.

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Orr-Ewing, A. J.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, “Cavity ring-down spectroscopy,” J. Chem. Soc., Faraday Trans. 94, 337–351 (1998).
[CrossRef]

Otsuki, S.

Paldus, B. A.

B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975–999 (2005).
[CrossRef]

Papadakis, V.

M. A. Everest, V. Papadakis, K. Stamataki, S. Tzortzakis, B. Loppinet, and T. P. Rakitzis, “Evanescent-wave cavity ring-down ellipsometry,” J. Phys. Chem. Lett. 2, 1324–1327 (2011).
[CrossRef]

A. Karaiskou, V. Papadakis, B. Loppinet, and T. P. Rakitzis, “Cavity ring-down ellipsometry,” J. Chem. Phys. 131, 121101(2009).
[CrossRef]

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef]

Patskovsky, S.

Peeters, R.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

Pipino, A. C. R.

A. C. R. Pipino, “Monolithic folded resonator for evanescent wave cavity ringdown spectroscopy,” Appl. Opt. 39, 1449–1453(2000).
[CrossRef]

A. C. R. Pipino, “Ultrasensitive surface spectroscopy with a miniature optical resonator,” Phys. Rev. Lett. 83, 3093–3096(1999).
[CrossRef]

A. C. R. Pipino, J. W. Hudgens, and R. E. Huie, “Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Instrum. 68, 2978–2989 (1997).
[CrossRef]

Podolskiy, V. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef]

Rakitzis, T. P.

M. A. Everest, V. Papadakis, K. Stamataki, S. Tzortzakis, B. Loppinet, and T. P. Rakitzis, “Evanescent-wave cavity ring-down ellipsometry,” J. Phys. Chem. Lett. 2, 1324–1327 (2011).
[CrossRef]

A. Karaiskou, V. Papadakis, B. Loppinet, and T. P. Rakitzis, “Cavity ring-down ellipsometry,” J. Chem. Phys. 131, 121101(2009).
[CrossRef]

Schnippering, M.

M. Schnippering, S.R.T. Neil, S. R. Mackenzie, and P. R. Unwin, “Evanescent wave cavitybased spectroscopic techniques as probes of interfacial processes,” Chem. Soc. Rev. 40, 207–220 (2011).
[CrossRef]

Shen, Y. R.

W. Chen, L. J. Martinez-Miranda, H. Hsiung, and Y. R. Shen, “Orientational wetting behavior of a liquid-crystal homologous series,” Phys. Rev. Lett. 62, 1860–1863 (1989).
[CrossRef]

Song, I.-H.

Stamataki, K.

M. A. Everest, V. Papadakis, K. Stamataki, S. Tzortzakis, B. Loppinet, and T. P. Rakitzis, “Evanescent-wave cavity ring-down ellipsometry,” J. Phys. Chem. Lett. 2, 1324–1327 (2011).
[CrossRef]

Tamada, K.

Tzortzakis, S.

M. A. Everest, V. Papadakis, K. Stamataki, S. Tzortzakis, B. Loppinet, and T. P. Rakitzis, “Evanescent-wave cavity ring-down ellipsometry,” J. Phys. Chem. Lett. 2, 1324–1327 (2011).
[CrossRef]

Ubachs, W.

L. van der Sneppen, C. Gooijer, W. Ubachs, and F. Ariese, “Evanescent-wave cavity ringdown detection of cytochrome con surface-modified prisms,” Sens. Actuator B 139, 505–510 (2009).
[CrossRef]

L. van der Sneppen, F. Ariese, C. Gooijer, and W. Ubachs, “Liquid-phase and evanescent-wave cavity ring-down spectroscopy in analytical chemistry,” Annu. Rev. Anal. Chem. 2, 13–35 (2009).
[CrossRef]

Unwin, P. R.

M. Schnippering, S.R.T. Neil, S. R. Mackenzie, and P. R. Unwin, “Evanescent wave cavitybased spectroscopic techniques as probes of interfacial processes,” Chem. Soc. Rev. 40, 207–220 (2011).
[CrossRef]

Vallance, C.

C. Vallance, “Innovations in cavity ring-down spectroscopy,” New J. Chem. 29, 867–874 (2005).
[CrossRef]

van den Berg, E.

R. Engeln, G. Berden, E. van den Berg, and G. Meijer, “Polarization dependent cavity ring down spectroscopy,” J. Chem. Phys. 107, 4458–4467 (1997).
[CrossRef]

van der Sneppen, L.

L. van der Sneppen, F. Ariese, C. Gooijer, and W. Ubachs, “Liquid-phase and evanescent-wave cavity ring-down spectroscopy in analytical chemistry,” Annu. Rev. Anal. Chem. 2, 13–35 (2009).
[CrossRef]

L. van der Sneppen, C. Gooijer, W. Ubachs, and F. Ariese, “Evanescent-wave cavity ringdown detection of cytochrome con surface-modified prisms,” Sens. Actuator B 139, 505–510 (2009).
[CrossRef]

Waechter, H.

H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, and H.-P. Loock, “Chemical sensing using fiber cavity ring-down spectroscopy,” Sensors 10, 1716–1742 (2010).
[CrossRef]

Wakida, S.

Wheeler, M. D.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, “Cavity ring-down spectroscopy,” J. Chem. Soc., Faraday Trans. 94, 337–351 (1998).
[CrossRef]

Wurtz, G. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef]

Zare, R. N.

F. P. Li and R. N. Zare, “Molecular orientation study of methylene blue at an air/fused-silica interface using evanescent-wave cavity ring-down spectroscopy,” J. Phys. Chem. B 109, 3330–3333 (2005).
[CrossRef]

Zayats, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef]

Anal. Chem.

M.-S. Chen, H.-F. Fan, and K.-C. Lin, “Kinetic and thermodynamic investigation of Rhodamine B adsorption at solid/solvent interfaces by use of evanescent-wave cavity ring-down spectroscopy,” Anal. Chem. 82, 868 (2010).
[CrossRef]

Annu. Rev. Anal. Chem.

L. van der Sneppen, F. Ariese, C. Gooijer, and W. Ubachs, “Liquid-phase and evanescent-wave cavity ring-down spectroscopy in analytical chemistry,” Annu. Rev. Anal. Chem. 2, 13–35 (2009).
[CrossRef]

Appl. Opt.

Can. J. Phys.

B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975–999 (2005).
[CrossRef]

Chem. Soc. Rev.

M. Schnippering, S.R.T. Neil, S. R. Mackenzie, and P. R. Unwin, “Evanescent wave cavitybased spectroscopic techniques as probes of interfacial processes,” Chem. Soc. Rev. 40, 207–220 (2011).
[CrossRef]

Int. Rev. Phys. Chem.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

J. Chem. Phys.

R. Engeln, G. Berden, E. van den Berg, and G. Meijer, “Polarization dependent cavity ring down spectroscopy,” J. Chem. Phys. 107, 4458–4467 (1997).
[CrossRef]

A. Karaiskou, V. Papadakis, B. Loppinet, and T. P. Rakitzis, “Cavity ring-down ellipsometry,” J. Chem. Phys. 131, 121101(2009).
[CrossRef]

J. Chem. Soc., Faraday Trans.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, “Cavity ring-down spectroscopy,” J. Chem. Soc., Faraday Trans. 94, 337–351 (1998).
[CrossRef]

J. Phys. Chem. B

F. P. Li and R. N. Zare, “Molecular orientation study of methylene blue at an air/fused-silica interface using evanescent-wave cavity ring-down spectroscopy,” J. Phys. Chem. B 109, 3330–3333 (2005).
[CrossRef]

J. Phys. Chem. Lett.

M. A. Everest, V. Papadakis, K. Stamataki, S. Tzortzakis, B. Loppinet, and T. P. Rakitzis, “Evanescent-wave cavity ring-down ellipsometry,” J. Phys. Chem. Lett. 2, 1324–1327 (2011).
[CrossRef]

Nat. Mater.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef]

New J. Chem.

C. Vallance, “Innovations in cavity ring-down spectroscopy,” New J. Chem. 29, 867–874 (2005).
[CrossRef]

Opt. Express

Phys. Rev. Lett.

A. C. R. Pipino, “Ultrasensitive surface spectroscopy with a miniature optical resonator,” Phys. Rev. Lett. 83, 3093–3096(1999).
[CrossRef]

W. Chen, L. J. Martinez-Miranda, H. Hsiung, and Y. R. Shen, “Orientational wetting behavior of a liquid-crystal homologous series,” Phys. Rev. Lett. 62, 1860–1863 (1989).
[CrossRef]

Rev. Sci. Instrum.

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

M. A. Everest and D. B. Atkinson, “Discrete sums for the rapid determination of exponential decay constants,” Rev. Sci. Instrum. 79, 023108 (2008).
[CrossRef]

A. C. R. Pipino, J. W. Hudgens, and R. E. Huie, “Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Instrum. 68, 2978–2989 (1997).
[CrossRef]

Sens. Actuator B

L. van der Sneppen, C. Gooijer, W. Ubachs, and F. Ariese, “Evanescent-wave cavity ringdown detection of cytochrome con surface-modified prisms,” Sens. Actuator B 139, 505–510 (2009).
[CrossRef]

Sensors

H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, and H.-P. Loock, “Chemical sensing using fiber cavity ring-down spectroscopy,” Sensors 10, 1716–1742 (2010).
[CrossRef]

Other

F. de Fornel, Evanescent Waves: From Newtonian Optics to Atomic Optics (Springer, Berlin, 2001).

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, North-Holland (Amsterdam, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

EW-CRDE experimental apparatus for the study of gas or liquid samples at the interface of a prism, similar to that used in [19], but the addition of a flow cell.

Fig. 2.
Fig. 2.

Typical experimental EW-CRDE traces for a sample of air. Two periodic signals are observed: the slow polarization beating (period of about 84 ns) from the s-p phase shift, and the fast oscillation (period of about 6 ns) from the round trip time of the 800 nm light pulses from the Ti-sapphire femtosecond laser.

Fig. 3.
Fig. 3.

Analysis of the EW-CRDE data: (A) The ringdown trace is fit to an exponential decay; (B) the exponential is subtracted from the data, leaving only the oscillating part of the signal; (C) the Fourier transform of (A), yielding the frequency components of the signal, in particular the polarization beating at 0.074 GHz, the cavity round-trip frequency at about 1 GHz, and a large Lorentzian peak at 0, which partially overlaps with the 0.074 GHz peak; and (D) the Fourier transform of (B) showing that the subtraction of the exponential decay removes the large Lorentzian peak at 0, so that the peak at 0.074 GHz is now baseline resolved.

Fig. 4.
Fig. 4.

Phase angle variation of a water sample, showing long-term stability over several minutes of δΔ103deg, corresponding to a refractive-index variation of δn105. Short-term variations can be at least an order of magnitude smaller. Sources of variation include temperature and laser-beam-profile fluctuations.

Fig. 5.
Fig. 5.

(A) Stress-induced birefringence caused by the pressure of Xe gas, inducing a linear change in the beating frequency of about 0.6MHzatm1. Error bars are the 95% confidence interval. (B) Data traces for 0 and 100 mbar Xe gas, at long times of about 11 μs, showing the differences in the beat frequency as visible differences in signal (the two signals are overlapped at short times). (C) Fourier transform of (B). Note slight changes in the points adjacent to the maximum, from which the line centers are determined (see Eq. 2).

Fig. 6.
Fig. 6.

(A) Ringdown and (B) beating frequency measurements for the time-dependent adsorption of a solution of Rhodamine 800 dye to the prism surface. (C) Ringdown and (D) beating frequency measurements for the time-dependent sedimentation of the PTFE polymer suspension.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

I(t)=I0et/τ,
τ=d/c1Rm,
Es(N)=Es0(Rm)2N(Rs)2Ne2iNφs,
Es0=E0(1Rm)Rscosθicosθoeiφs.
Es(t)=Es0et/(2τs)eictφs/d,
τs=d/c1RmRs.
Ep(N)=Ep0(Rm)2N(Rp)2Ne2iNφp,
Ep0=E0(1Rm)Rpsinθisinθoeiφp,
Ep(t)=Ep0et/(2τp)eictφp/d,
τp=d/c1RmRp.
I(t)=|Es(t)+Ep(t)|2,
I(t)=I0(1Rm)2[Rscos2θicos2θoet/τs+Rpsin2θisin2θoet/τp+2RsRpsinθicosθisinθocosθoe(1/τs+1/τp)t/2cos(ωt+Δ)],
ω=cΔ/d
I(t)=Aet/τcos2(ωt+Δ2),
I(t)=Aet/τ[cos2(ωt/2+ϕ)+B].
ωmax=x12y1(y3y2)+x22y2(y1y3)+x32y3(y2y1)2[x1y1(y3y2)+x2y2(y1y3)+x3y3(y2y1)],
nsamplenprism=sinθ1tan2(Δ/2)tan2θ,
A=1ln10dc(1τ1τ0),

Metrics