P. A. Valdes, A. Kim, F. Leblond, O. M. Conde, B. T. Harris, K. D. Paulsen, B. C. Wilson, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery,” J. Biomed. Opt. 16, 116007 (2011).

[CrossRef]

G. Hennig, H. Stepp, and A. Johansson, “Photobleaching-based method to individualize irradiation time during interstitial 5-aminolevulinic acid photodynamic therapy,” Photodiagnosis Photodyn. Ther. 8, 275–281 (2011).

[CrossRef]

J. Hegyi, V. Hegyi, T. Ruzicka, P. Arenberger, and C. Berking, “New developments in fluorescence diagnostics,” J. Dtsch. Dermatol. Ges. 9, 368–372 (2011).

[CrossRef]

E. Alerstam, W. C. Lo, T. D. Han, J. Rose, S. Andersson-Engels, and L. Lilge, “Next-generation acceleration and code optimization for light transport in turbid media using GPUs,” Biomed. Opt. Express 1, 658–675 (2010).

[CrossRef]

Q. Fang, “Mesh-based Monte Carlo method using fast ray-tracing in Plucker coordinates,” Biomed. Opt. Express 1, 165–175 (2010).

[CrossRef]

A. A. Tanbakuchi, A. R. Rouse, and A. F. Gmitro, “Monte Carlo characterization of parallelized fluorescence confocal systems imaging in turbid media,” J. Biomed. Opt. 14, 044024 (2009).

[CrossRef]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).

[CrossRef]

N. Baddour, “Operational and convolution properties of two-dimensional Fourier transforms in polar coordinates,” J. Opt. Soc. Am. A 26, 1767–1777 (2009).

[CrossRef]

Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17, 20178–20190 (2009).

[CrossRef]

H. Stepp, T. Beck, W. Beyer, C. Pfaller, M. Schuppler, R. Sroka, and R. Baumgartner, “Measurement of fluorophore concentration in turbid media by a single optical fiber,” Med. Laser Appl. 22, 23–34 (2007).

[CrossRef]

I. Georgakoudi, “The color of cancer,” J. Lumin. 119–120, 75–83 (2006).

[CrossRef]

A. Averbuch, R. R. Coifman, D. L. Donoho, M. Elad, and M. Israeli, “Fast and accurate polar Fourier transform,” Appl. Comput. Harmon. Anal. 21, 145–167 (2006).

[CrossRef]

K. Vishwanath, B. Pogue, and M. A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods,” Phys. Med. Biol. 47, 3387–3405 (2002).

[CrossRef]

B. W. Pogue and G. Burke, “Fiber-optic bundle design for quantitative fluorescence measurement from tissue,” Appl. Opt. 37, 7429–7436 (1998).

[CrossRef]

S. Avrillier, E. Tinet, D. Ettori, J. M. Tualle, and B. Gelebart, “Influence of the emission-reception geometry in laser-induced fluorescence spectra from turbid media,” Appl. Opt. 37, 2781–2787 (1998).

[CrossRef]

R. J. Crilly, W. F. Cheong, B. Wilson, and J. R. Spears, “Forward-adjoint fluorescence model: Monte Carlo integration and experimental validation,” Appl. Opt. 36, 6513–6519(1997).

[CrossRef]

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).

[CrossRef]

A. Kienle and M. S. Patterson, “Determination of the optical properties of turbid media from a single Monte Carlo simulation,” Phys. Med. Biol. 41, 2221–2227 (1996).

[CrossRef]

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).

[CrossRef]

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” Proc. SPIE IS 5, 102–111 (1989).

H. F. Johnson, “An improved method for computing a discrete Hankel transform,” Comput. Phys. Commun. 43, 181–202(1987).

[CrossRef]

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983).

[CrossRef]

N. Metropolis and S. Ulam, “The Monte Carlo method,” J. Am. Stat. Assoc. 44, 335–341 (1949).

[CrossRef]

L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).

[CrossRef]

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983).

[CrossRef]

E. Alerstam, W. C. Lo, T. D. Han, J. Rose, S. Andersson-Engels, and L. Lilge, “Next-generation acceleration and code optimization for light transport in turbid media using GPUs,” Biomed. Opt. Express 1, 658–675 (2010).

[CrossRef]

J. Swartling, A. Pifferi, A. M. Enejder, and S. Andersson-Engels, “Accelerated Monte Carlo models to simulate fluorescence spectra from layered tissues,” J. Opt. Soc. Am. A 20, 714–727 (2003).

[CrossRef]

J. Hegyi, V. Hegyi, T. Ruzicka, P. Arenberger, and C. Berking, “New developments in fluorescence diagnostics,” J. Dtsch. Dermatol. Ges. 9, 368–372 (2011).

[CrossRef]

A. Averbuch, R. R. Coifman, D. L. Donoho, M. Elad, and M. Israeli, “Fast and accurate polar Fourier transform,” Appl. Comput. Harmon. Anal. 21, 145–167 (2006).

[CrossRef]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).

[CrossRef]

H. Stepp, T. Beck, W. Beyer, C. Pfaller, M. Schuppler, R. Sroka, and R. Baumgartner, “Measurement of fluorophore concentration in turbid media by a single optical fiber,” Med. Laser Appl. 22, 23–34 (2007).

[CrossRef]

H. Stepp, T. Beck, W. Beyer, C. Pfaller, M. Schuppler, R. Sroka, and R. Baumgartner, “Measurement of fluorophore concentration in turbid media by a single optical fiber,” Med. Laser Appl. 22, 23–34 (2007).

[CrossRef]

J. Hegyi, V. Hegyi, T. Ruzicka, P. Arenberger, and C. Berking, “New developments in fluorescence diagnostics,” J. Dtsch. Dermatol. Ges. 9, 368–372 (2011).

[CrossRef]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).

[CrossRef]

H. Stepp, T. Beck, W. Beyer, C. Pfaller, M. Schuppler, R. Sroka, and R. Baumgartner, “Measurement of fluorophore concentration in turbid media by a single optical fiber,” Med. Laser Appl. 22, 23–34 (2007).

[CrossRef]

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).

[CrossRef]

A. Averbuch, R. R. Coifman, D. L. Donoho, M. Elad, and M. Israeli, “Fast and accurate polar Fourier transform,” Appl. Comput. Harmon. Anal. 21, 145–167 (2006).

[CrossRef]

P. A. Valdes, A. Kim, F. Leblond, O. M. Conde, B. T. Harris, K. D. Paulsen, B. C. Wilson, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery,” J. Biomed. Opt. 16, 116007 (2011).

[CrossRef]

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).

[CrossRef]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).

[CrossRef]

A. Averbuch, R. R. Coifman, D. L. Donoho, M. Elad, and M. Israeli, “Fast and accurate polar Fourier transform,” Appl. Comput. Harmon. Anal. 21, 145–167 (2006).

[CrossRef]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).

[CrossRef]

A. Averbuch, R. R. Coifman, D. L. Donoho, M. Elad, and M. Israeli, “Fast and accurate polar Fourier transform,” Appl. Comput. Harmon. Anal. 21, 145–167 (2006).

[CrossRef]

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).

[CrossRef]

I. Georgakoudi, “The color of cancer,” J. Lumin. 119–120, 75–83 (2006).

[CrossRef]

A. A. Tanbakuchi, A. R. Rouse, and A. F. Gmitro, “Monte Carlo characterization of parallelized fluorescence confocal systems imaging in turbid media,” J. Biomed. Opt. 14, 044024 (2009).

[CrossRef]

L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).

[CrossRef]

P. A. Valdes, A. Kim, F. Leblond, O. M. Conde, B. T. Harris, K. D. Paulsen, B. C. Wilson, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery,” J. Biomed. Opt. 16, 116007 (2011).

[CrossRef]

J. Hegyi, V. Hegyi, T. Ruzicka, P. Arenberger, and C. Berking, “New developments in fluorescence diagnostics,” J. Dtsch. Dermatol. Ges. 9, 368–372 (2011).

[CrossRef]

J. Hegyi, V. Hegyi, T. Ruzicka, P. Arenberger, and C. Berking, “New developments in fluorescence diagnostics,” J. Dtsch. Dermatol. Ges. 9, 368–372 (2011).

[CrossRef]

G. Hennig, H. Stepp, and A. Johansson, “Photobleaching-based method to individualize irradiation time during interstitial 5-aminolevulinic acid photodynamic therapy,” Photodiagnosis Photodyn. Ther. 8, 275–281 (2011).

[CrossRef]

L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).

[CrossRef]

A. Averbuch, R. R. Coifman, D. L. Donoho, M. Elad, and M. Israeli, “Fast and accurate polar Fourier transform,” Appl. Comput. Harmon. Anal. 21, 145–167 (2006).

[CrossRef]

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).

[CrossRef]

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” Proc. SPIE IS 5, 102–111 (1989).

S. L. Jacques, “Monte Carlo simulations of fluorescence in turbid media,” in Handbook of Biomedical Fluorescence, M. A. Mycek and B. W. Pogue, eds. (Marcel-Dekker, 2003).

G. Hennig, H. Stepp, and A. Johansson, “Photobleaching-based method to individualize irradiation time during interstitial 5-aminolevulinic acid photodynamic therapy,” Photodiagnosis Photodyn. Ther. 8, 275–281 (2011).

[CrossRef]

H. F. Johnson, “An improved method for computing a discrete Hankel transform,” Comput. Phys. Commun. 43, 181–202(1987).

[CrossRef]

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” Proc. SPIE IS 5, 102–111 (1989).

A. Kienle and M. S. Patterson, “Determination of the optical properties of turbid media from a single Monte Carlo simulation,” Phys. Med. Biol. 41, 2221–2227 (1996).

[CrossRef]

P. A. Valdes, A. Kim, F. Leblond, O. M. Conde, B. T. Harris, K. D. Paulsen, B. C. Wilson, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery,” J. Biomed. Opt. 16, 116007 (2011).

[CrossRef]

Y. P. Sinichkin, N. Kollias, G. I. Zonios, S. R. Utz, and V. V. Tuchin, “Reflectance and fluorescence spectroscopy of human skin in vivo,” in Handbook of Optical Biomedical Diagnostics, V. V. Tuchin, ed. (SPIE, 2002), pp. 725–785.

P. A. Valdes, A. Kim, F. Leblond, O. M. Conde, B. T. Harris, K. D. Paulsen, B. C. Wilson, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery,” J. Biomed. Opt. 16, 116007 (2011).

[CrossRef]

N. Metropolis and S. Ulam, “The Monte Carlo method,” J. Am. Stat. Assoc. 44, 335–341 (1949).

[CrossRef]

K. Vishwanath, B. Pogue, and M. A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods,” Phys. Med. Biol. 47, 3387–3405 (2002).

[CrossRef]

G. M. Palmer and N. Ramanujam, “Monte-Carlo-based model for the extraction of intrinsic fluorescence from turbid media,” J. Biomed. Opt. 13, 024017 (2008).

[CrossRef]

A. Kienle and M. S. Patterson, “Determination of the optical properties of turbid media from a single Monte Carlo simulation,” Phys. Med. Biol. 41, 2221–2227 (1996).

[CrossRef]

P. A. Valdes, A. Kim, F. Leblond, O. M. Conde, B. T. Harris, K. D. Paulsen, B. C. Wilson, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery,” J. Biomed. Opt. 16, 116007 (2011).

[CrossRef]

H. Stepp, T. Beck, W. Beyer, C. Pfaller, M. Schuppler, R. Sroka, and R. Baumgartner, “Measurement of fluorophore concentration in turbid media by a single optical fiber,” Med. Laser Appl. 22, 23–34 (2007).

[CrossRef]

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).

[CrossRef]

K. Vishwanath, B. Pogue, and M. A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods,” Phys. Med. Biol. 47, 3387–3405 (2002).

[CrossRef]

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” Proc. SPIE IS 5, 102–111 (1989).

G. M. Palmer and N. Ramanujam, “Monte-Carlo-based model for the extraction of intrinsic fluorescence from turbid media,” J. Biomed. Opt. 13, 024017 (2008).

[CrossRef]

D. Arifler, R. A. Schwarz, S. K. Chang, and R. Richards-Kortum, “Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma,” Appl. Opt. 44, 4291–4305 (2005).

[CrossRef]

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).

[CrossRef]

P. A. Valdes, A. Kim, F. Leblond, O. M. Conde, B. T. Harris, K. D. Paulsen, B. C. Wilson, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery,” J. Biomed. Opt. 16, 116007 (2011).

[CrossRef]

A. A. Tanbakuchi, A. R. Rouse, and A. F. Gmitro, “Monte Carlo characterization of parallelized fluorescence confocal systems imaging in turbid media,” J. Biomed. Opt. 14, 044024 (2009).

[CrossRef]

J. Hegyi, V. Hegyi, T. Ruzicka, P. Arenberger, and C. Berking, “New developments in fluorescence diagnostics,” J. Dtsch. Dermatol. Ges. 9, 368–372 (2011).

[CrossRef]

H. Stepp, T. Beck, W. Beyer, C. Pfaller, M. Schuppler, R. Sroka, and R. Baumgartner, “Measurement of fluorophore concentration in turbid media by a single optical fiber,” Med. Laser Appl. 22, 23–34 (2007).

[CrossRef]

Y. P. Sinichkin, N. Kollias, G. I. Zonios, S. R. Utz, and V. V. Tuchin, “Reflectance and fluorescence spectroscopy of human skin in vivo,” in Handbook of Optical Biomedical Diagnostics, V. V. Tuchin, ed. (SPIE, 2002), pp. 725–785.

H. Stepp, T. Beck, W. Beyer, C. Pfaller, M. Schuppler, R. Sroka, and R. Baumgartner, “Measurement of fluorophore concentration in turbid media by a single optical fiber,” Med. Laser Appl. 22, 23–34 (2007).

[CrossRef]

G. Hennig, H. Stepp, and A. Johansson, “Photobleaching-based method to individualize irradiation time during interstitial 5-aminolevulinic acid photodynamic therapy,” Photodiagnosis Photodyn. Ther. 8, 275–281 (2011).

[CrossRef]

H. Stepp, T. Beck, W. Beyer, C. Pfaller, M. Schuppler, R. Sroka, and R. Baumgartner, “Measurement of fluorophore concentration in turbid media by a single optical fiber,” Med. Laser Appl. 22, 23–34 (2007).

[CrossRef]

A. A. Tanbakuchi, A. R. Rouse, and A. F. Gmitro, “Monte Carlo characterization of parallelized fluorescence confocal systems imaging in turbid media,” J. Biomed. Opt. 14, 044024 (2009).

[CrossRef]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).

[CrossRef]

V. V. Tuchin, “Methods and algorithms for the measurement of the optical parameters of tissues,” in Tissue Optics—Light Scattering Methods and Instruments for Medical Diagnosis, V. V. Tuchin, 2nd ed. (SPIE, 2007), pp. 143–256.

Y. P. Sinichkin, N. Kollias, G. I. Zonios, S. R. Utz, and V. V. Tuchin, “Reflectance and fluorescence spectroscopy of human skin in vivo,” in Handbook of Optical Biomedical Diagnostics, V. V. Tuchin, ed. (SPIE, 2002), pp. 725–785.

N. Metropolis and S. Ulam, “The Monte Carlo method,” J. Am. Stat. Assoc. 44, 335–341 (1949).

[CrossRef]

Y. P. Sinichkin, N. Kollias, G. I. Zonios, S. R. Utz, and V. V. Tuchin, “Reflectance and fluorescence spectroscopy of human skin in vivo,” in Handbook of Optical Biomedical Diagnostics, V. V. Tuchin, ed. (SPIE, 2002), pp. 725–785.

P. A. Valdes, A. Kim, F. Leblond, O. M. Conde, B. T. Harris, K. D. Paulsen, B. C. Wilson, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery,” J. Biomed. Opt. 16, 116007 (2011).

[CrossRef]

K. Vishwanath, B. Pogue, and M. A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods,” Phys. Med. Biol. 47, 3387–3405 (2002).

[CrossRef]

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).

[CrossRef]

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).

[CrossRef]

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).

[CrossRef]

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” Proc. SPIE IS 5, 102–111 (1989).

P. A. Valdes, A. Kim, F. Leblond, O. M. Conde, B. T. Harris, K. D. Paulsen, B. C. Wilson, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery,” J. Biomed. Opt. 16, 116007 (2011).

[CrossRef]

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983).

[CrossRef]

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).

[CrossRef]

Y. P. Sinichkin, N. Kollias, G. I. Zonios, S. R. Utz, and V. V. Tuchin, “Reflectance and fluorescence spectroscopy of human skin in vivo,” in Handbook of Optical Biomedical Diagnostics, V. V. Tuchin, ed. (SPIE, 2002), pp. 725–785.

A. Averbuch, R. R. Coifman, D. L. Donoho, M. Elad, and M. Israeli, “Fast and accurate polar Fourier transform,” Appl. Comput. Harmon. Anal. 21, 145–167 (2006).

[CrossRef]

D. Arifler, R. A. Schwarz, S. K. Chang, and R. Richards-Kortum, “Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma,” Appl. Opt. 44, 4291–4305 (2005).

[CrossRef]

B. W. Pogue and G. Burke, “Fiber-optic bundle design for quantitative fluorescence measurement from tissue,” Appl. Opt. 37, 7429–7436 (1998).

[CrossRef]

S. Avrillier, E. Tinet, D. Ettori, J. M. Tualle, and B. Gelebart, “Influence of the emission-reception geometry in laser-induced fluorescence spectra from turbid media,” Appl. Opt. 37, 2781–2787 (1998).

[CrossRef]

R. J. Crilly, W. F. Cheong, B. Wilson, and J. R. Spears, “Forward-adjoint fluorescence model: Monte Carlo integration and experimental validation,” Appl. Opt. 36, 6513–6519(1997).

[CrossRef]

L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).

[CrossRef]

Q. Fang, “Mesh-based Monte Carlo method using fast ray-tracing in Plucker coordinates,” Biomed. Opt. Express 1, 165–175 (2010).

[CrossRef]

E. Alerstam, W. C. Lo, T. D. Han, J. Rose, S. Andersson-Engels, and L. Lilge, “Next-generation acceleration and code optimization for light transport in turbid media using GPUs,” Biomed. Opt. Express 1, 658–675 (2010).

[CrossRef]

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).

[CrossRef]

H. F. Johnson, “An improved method for computing a discrete Hankel transform,” Comput. Phys. Commun. 43, 181–202(1987).

[CrossRef]

N. Metropolis and S. Ulam, “The Monte Carlo method,” J. Am. Stat. Assoc. 44, 335–341 (1949).

[CrossRef]

P. A. Valdes, A. Kim, F. Leblond, O. M. Conde, B. T. Harris, K. D. Paulsen, B. C. Wilson, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery,” J. Biomed. Opt. 16, 116007 (2011).

[CrossRef]

G. M. Palmer and N. Ramanujam, “Monte-Carlo-based model for the extraction of intrinsic fluorescence from turbid media,” J. Biomed. Opt. 13, 024017 (2008).

[CrossRef]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).

[CrossRef]

A. A. Tanbakuchi, A. R. Rouse, and A. F. Gmitro, “Monte Carlo characterization of parallelized fluorescence confocal systems imaging in turbid media,” J. Biomed. Opt. 14, 044024 (2009).

[CrossRef]

J. Hegyi, V. Hegyi, T. Ruzicka, P. Arenberger, and C. Berking, “New developments in fluorescence diagnostics,” J. Dtsch. Dermatol. Ges. 9, 368–372 (2011).

[CrossRef]

I. Georgakoudi, “The color of cancer,” J. Lumin. 119–120, 75–83 (2006).

[CrossRef]

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).

[CrossRef]

H. Stepp, T. Beck, W. Beyer, C. Pfaller, M. Schuppler, R. Sroka, and R. Baumgartner, “Measurement of fluorophore concentration in turbid media by a single optical fiber,” Med. Laser Appl. 22, 23–34 (2007).

[CrossRef]

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983).

[CrossRef]

G. Hennig, H. Stepp, and A. Johansson, “Photobleaching-based method to individualize irradiation time during interstitial 5-aminolevulinic acid photodynamic therapy,” Photodiagnosis Photodyn. Ther. 8, 275–281 (2011).

[CrossRef]

K. Vishwanath, B. Pogue, and M. A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods,” Phys. Med. Biol. 47, 3387–3405 (2002).

[CrossRef]

A. Kienle and M. S. Patterson, “Determination of the optical properties of turbid media from a single Monte Carlo simulation,” Phys. Med. Biol. 41, 2221–2227 (1996).

[CrossRef]

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” Proc. SPIE IS 5, 102–111 (1989).

V. V. Tuchin, “Methods and algorithms for the measurement of the optical parameters of tissues,” in Tissue Optics—Light Scattering Methods and Instruments for Medical Diagnosis, V. V. Tuchin, 2nd ed. (SPIE, 2007), pp. 143–256.

S. L. Jacques, “Monte Carlo simulations of fluorescence in turbid media,” in Handbook of Biomedical Fluorescence, M. A. Mycek and B. W. Pogue, eds. (Marcel-Dekker, 2003).

Y. P. Sinichkin, N. Kollias, G. I. Zonios, S. R. Utz, and V. V. Tuchin, “Reflectance and fluorescence spectroscopy of human skin in vivo,” in Handbook of Optical Biomedical Diagnostics, V. V. Tuchin, ed. (SPIE, 2002), pp. 725–785.

S. L. Jacques and L. Wang, “(MCML) Monte Carlo for multi-layered media” (1992), retrieved Jan 20, 2011, http://omlc.ogi.edu/software/mc/ .

S. L. Jacques, “mcsubfluor.c” (2011), retrieved Sep 22, 2011, http://omlc.ogi.edu/software/mc/mcfluor/index.html .

“GSL—GNU scientific library—discrete Hankel transforms” (Free Software Foundation, Inc., 2010), retrieved Feb 11, 2011, http://www.gnu.org/software/gsl/manual/html_node/Discrete-Hankel-Transforms.html .