Abstract

A polarization-independent, high-index contrast grating (HCG) with a single layer of cross stripes allowing simple fabrication is proposed. Since the cross stripes structure can be suspended in air by selectively wet-etching the layer below, all the layers can be grown at once when implemented for vertical-cavity surface-emitting lasers. We optimized the structure to have a broad and high reflectivity band centered at around 1 μm using a finite difference time domain method, and obtained an 80 nm high reflectivity band centered at 0.97 μm in which the reflectivity exceeded 99.5%. We also investigated the fabrication tolerances of the structure and found that, assuming careful optimizations of electron beam lithography for the precise grating width and dry-etching for the vertical sidewall, the suggested polarization-independent HCG can be fabricated using standard technologies.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. F. R. Mateus, M. C. Y. Huang, D. Yunfei, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16, 518–520 (2004).
    [CrossRef]
  2. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1, 119–122 (2007).
    [CrossRef]
  3. Y. Zhou, M. C. Y. Huang, and C. J. Chang-Hasnain, “Tunable VCSEL with ultra-thin high contrast grating for high-speed tuning,” Opt. Express 16, 14221–14226 (2008).
    [CrossRef]
  4. A. Hardy, D. F. Welch, and W. Streifer, “Analysis of second-order gratings,” IEEE J. Quantum Electron. 25, 2096–2105 (1989).
    [CrossRef]
  5. R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16, 3456–3462 (2008).
    [CrossRef]
  6. I.-S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mørk, “Broadband MEMS-tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46, 1245–1253 (2010).
    [CrossRef]
  7. H. Kawaguchi, T. Mori, Y. Sato, and Y. Yamayoshi, “Optical buffer memory using polarization bistable vertical-cavity surface-emitting lasers,” Jpn. J. Appl. Phys. 45, L894–L897 (2006).
    [CrossRef]
  8. J. Yamauchi, N. Goto, and H. Nakano, “Broadband mirror using a two-dimensional subwavelength grating,” in Proceedings of the Society Conference of IEICE, Electronics (IEICE, 2007), p. 196 (in Japanese).
  9. R. G. Mote, S. F. Yu, W. Zhou, and X. F. Li, “Design and analysis of two-dimensional high-index-contrast grating surface-emitting lasers,” Opt. Express 17, 260–265 (2009).
    [CrossRef]
  10. D. Zhao, H. Yang, Z. Ma, and W. Zhou, “Polarization independent broadband reflectors based on cross-stacked gratings,” Opt. Express 19, 9050–9055 (2011).
    [CrossRef]
  11. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [CrossRef]
  12. S. K. Chin, N. A. Nicorovici, and R. C. McPhedran, “Green’s function and lattice sums for electromagnetic scattering by a square array of cylinders,” Phys. Rev. E 49, 4590–4602 (1994).
    [CrossRef]
  13. H. Sano, J. Kashino, A. Gerke, A. Imamura, F. Koyama, and C. Chang-Hasnain, “Transverse mode control of VCSELs with high contrast sub-wavelength grating functioning as angular filter,” in 2012 Conference on Lasers and Electro-Optics (IEEE, 2012), paper CW3N.5.
  14. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
    [CrossRef]
  15. M. Settle, M. Salib, A. Michaeli, and T. F. Krauss, “Low loss silicon on insulator photonic crystal waveguides made by 193 nm optical lithography,” Opt. Express 14, 2440–2445 (2006).
    [CrossRef]
  16. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
    [CrossRef]
  17. K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron. 24, 1845–1855 (1988).
    [CrossRef]
  18. M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, “Empirical low-field mobility model for III–V compounds applicable in device simulation codes,” J. Appl. Phys. 87, 2890–2900(2000).
    [CrossRef]

2011 (1)

2010 (2)

I.-S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mørk, “Broadband MEMS-tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46, 1245–1253 (2010).
[CrossRef]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

2009 (1)

2008 (2)

2007 (1)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1, 119–122 (2007).
[CrossRef]

2006 (3)

H. Kawaguchi, T. Mori, Y. Sato, and Y. Yamayoshi, “Optical buffer memory using polarization bistable vertical-cavity surface-emitting lasers,” Jpn. J. Appl. Phys. 45, L894–L897 (2006).
[CrossRef]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

M. Settle, M. Salib, A. Michaeli, and T. F. Krauss, “Low loss silicon on insulator photonic crystal waveguides made by 193 nm optical lithography,” Opt. Express 14, 2440–2445 (2006).
[CrossRef]

2004 (1)

C. F. R. Mateus, M. C. Y. Huang, D. Yunfei, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16, 518–520 (2004).
[CrossRef]

2001 (1)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

2000 (1)

M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, “Empirical low-field mobility model for III–V compounds applicable in device simulation codes,” J. Appl. Phys. 87, 2890–2900(2000).
[CrossRef]

1994 (1)

S. K. Chin, N. A. Nicorovici, and R. C. McPhedran, “Green’s function and lattice sums for electromagnetic scattering by a square array of cylinders,” Phys. Rev. E 49, 4590–4602 (1994).
[CrossRef]

1989 (1)

A. Hardy, D. F. Welch, and W. Streifer, “Analysis of second-order gratings,” IEEE J. Quantum Electron. 25, 2096–2105 (1989).
[CrossRef]

1988 (1)

K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron. 24, 1845–1855 (1988).
[CrossRef]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Caliman, A.

I.-S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mørk, “Broadband MEMS-tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46, 1245–1253 (2010).
[CrossRef]

Chang-Hasnain, C.

H. Sano, J. Kashino, A. Gerke, A. Imamura, F. Koyama, and C. Chang-Hasnain, “Transverse mode control of VCSELs with high contrast sub-wavelength grating functioning as angular filter,” in 2012 Conference on Lasers and Electro-Optics (IEEE, 2012), paper CW3N.5.

Chang-Hasnain, C. J.

Y. Zhou, M. C. Y. Huang, and C. J. Chang-Hasnain, “Tunable VCSEL with ultra-thin high contrast grating for high-speed tuning,” Opt. Express 16, 14221–14226 (2008).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1, 119–122 (2007).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, D. Yunfei, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16, 518–520 (2004).
[CrossRef]

Chin, S. K.

S. K. Chin, N. A. Nicorovici, and R. C. McPhedran, “Green’s function and lattice sums for electromagnetic scattering by a square array of cylinders,” Phys. Rev. E 49, 4590–4602 (1994).
[CrossRef]

Chung, I.-S.

I.-S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mørk, “Broadband MEMS-tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46, 1245–1253 (2010).
[CrossRef]

Gerke, A.

H. Sano, J. Kashino, A. Gerke, A. Imamura, F. Koyama, and C. Chang-Hasnain, “Transverse mode control of VCSELs with high contrast sub-wavelength grating functioning as angular filter,” in 2012 Conference on Lasers and Electro-Optics (IEEE, 2012), paper CW3N.5.

Goto, N.

J. Yamauchi, N. Goto, and H. Nakano, “Broadband mirror using a two-dimensional subwavelength grating,” in Proceedings of the Society Conference of IEICE, Electronics (IEICE, 2007), p. 196 (in Japanese).

Hardy, A.

A. Hardy, D. F. Welch, and W. Streifer, “Analysis of second-order gratings,” IEEE J. Quantum Electron. 25, 2096–2105 (1989).
[CrossRef]

Huang, M. C. Y.

Y. Zhou, M. C. Y. Huang, and C. J. Chang-Hasnain, “Tunable VCSEL with ultra-thin high contrast grating for high-speed tuning,” Opt. Express 16, 14221–14226 (2008).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1, 119–122 (2007).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, D. Yunfei, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16, 518–520 (2004).
[CrossRef]

Iakovlev, V.

I.-S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mørk, “Broadband MEMS-tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46, 1245–1253 (2010).
[CrossRef]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Iga, K.

K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron. 24, 1845–1855 (1988).
[CrossRef]

Imamura, A.

H. Sano, J. Kashino, A. Gerke, A. Imamura, F. Koyama, and C. Chang-Hasnain, “Transverse mode control of VCSELs with high contrast sub-wavelength grating functioning as angular filter,” in 2012 Conference on Lasers and Electro-Optics (IEEE, 2012), paper CW3N.5.

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Kapon, E.

I.-S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mørk, “Broadband MEMS-tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46, 1245–1253 (2010).
[CrossRef]

Kashino, J.

H. Sano, J. Kashino, A. Gerke, A. Imamura, F. Koyama, and C. Chang-Hasnain, “Transverse mode control of VCSELs with high contrast sub-wavelength grating functioning as angular filter,” in 2012 Conference on Lasers and Electro-Optics (IEEE, 2012), paper CW3N.5.

Kawaguchi, H.

H. Kawaguchi, T. Mori, Y. Sato, and Y. Yamayoshi, “Optical buffer memory using polarization bistable vertical-cavity surface-emitting lasers,” Jpn. J. Appl. Phys. 45, L894–L897 (2006).
[CrossRef]

Khalid, A. H.

M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, “Empirical low-field mobility model for III–V compounds applicable in device simulation codes,” J. Appl. Phys. 87, 2890–2900(2000).
[CrossRef]

Kinoshita, S.

K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron. 24, 1845–1855 (1988).
[CrossRef]

Koyama, F.

K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron. 24, 1845–1855 (1988).
[CrossRef]

H. Sano, J. Kashino, A. Gerke, A. Imamura, F. Koyama, and C. Chang-Hasnain, “Transverse mode control of VCSELs with high contrast sub-wavelength grating functioning as angular filter,” in 2012 Conference on Lasers and Electro-Optics (IEEE, 2012), paper CW3N.5.

Krauss, T. F.

Kuramochi, E.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

Li, X. F.

Ma, Z.

Magnusson, R.

Mateus, C. F. R.

C. F. R. Mateus, M. C. Y. Huang, D. Yunfei, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16, 518–520 (2004).
[CrossRef]

McPhedran, R. C.

S. K. Chin, N. A. Nicorovici, and R. C. McPhedran, “Green’s function and lattice sums for electromagnetic scattering by a square array of cylinders,” Phys. Rev. E 49, 4590–4602 (1994).
[CrossRef]

Mereuta, A.

I.-S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mørk, “Broadband MEMS-tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46, 1245–1253 (2010).
[CrossRef]

Michaeli, A.

Mitsugi, S.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

Mori, T.

H. Kawaguchi, T. Mori, Y. Sato, and Y. Yamayoshi, “Optical buffer memory using polarization bistable vertical-cavity surface-emitting lasers,” Jpn. J. Appl. Phys. 45, L894–L897 (2006).
[CrossRef]

Mørk, J.

I.-S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mørk, “Broadband MEMS-tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46, 1245–1253 (2010).
[CrossRef]

Mote, R. G.

Nakano, H.

J. Yamauchi, N. Goto, and H. Nakano, “Broadband mirror using a two-dimensional subwavelength grating,” in Proceedings of the Society Conference of IEICE, Electronics (IEICE, 2007), p. 196 (in Japanese).

Neureuther, A. R.

C. F. R. Mateus, M. C. Y. Huang, D. Yunfei, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16, 518–520 (2004).
[CrossRef]

Nicorovici, N. A.

S. K. Chin, N. A. Nicorovici, and R. C. McPhedran, “Green’s function and lattice sums for electromagnetic scattering by a square array of cylinders,” Phys. Rev. E 49, 4590–4602 (1994).
[CrossRef]

Notomi, M.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Rezazadeh, A. A.

M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, “Empirical low-field mobility model for III–V compounds applicable in device simulation codes,” J. Appl. Phys. 87, 2890–2900(2000).
[CrossRef]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Salib, M.

Sano, H.

H. Sano, J. Kashino, A. Gerke, A. Imamura, F. Koyama, and C. Chang-Hasnain, “Transverse mode control of VCSELs with high contrast sub-wavelength grating functioning as angular filter,” in 2012 Conference on Lasers and Electro-Optics (IEEE, 2012), paper CW3N.5.

Sato, Y.

H. Kawaguchi, T. Mori, Y. Sato, and Y. Yamayoshi, “Optical buffer memory using polarization bistable vertical-cavity surface-emitting lasers,” Jpn. J. Appl. Phys. 45, L894–L897 (2006).
[CrossRef]

Settle, M.

Shinya, A.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Shokooh-Saremi, M.

Sirbu, A.

I.-S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mørk, “Broadband MEMS-tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46, 1245–1253 (2010).
[CrossRef]

Sotoodeh, M.

M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, “Empirical low-field mobility model for III–V compounds applicable in device simulation codes,” J. Appl. Phys. 87, 2890–2900(2000).
[CrossRef]

Streifer, W.

A. Hardy, D. F. Welch, and W. Streifer, “Analysis of second-order gratings,” IEEE J. Quantum Electron. 25, 2096–2105 (1989).
[CrossRef]

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Tanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

Watanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

Welch, D. F.

A. Hardy, D. F. Welch, and W. Streifer, “Analysis of second-order gratings,” IEEE J. Quantum Electron. 25, 2096–2105 (1989).
[CrossRef]

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Yamauchi, J.

J. Yamauchi, N. Goto, and H. Nakano, “Broadband mirror using a two-dimensional subwavelength grating,” in Proceedings of the Society Conference of IEICE, Electronics (IEICE, 2007), p. 196 (in Japanese).

Yamayoshi, Y.

H. Kawaguchi, T. Mori, Y. Sato, and Y. Yamayoshi, “Optical buffer memory using polarization bistable vertical-cavity surface-emitting lasers,” Jpn. J. Appl. Phys. 45, L894–L897 (2006).
[CrossRef]

Yang, H.

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Yu, S. F.

Yunfei, D.

C. F. R. Mateus, M. C. Y. Huang, D. Yunfei, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16, 518–520 (2004).
[CrossRef]

Zhao, D.

Zhou, W.

Zhou, Y.

Y. Zhou, M. C. Y. Huang, and C. J. Chang-Hasnain, “Tunable VCSEL with ultra-thin high contrast grating for high-speed tuning,” Opt. Express 16, 14221–14226 (2008).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1, 119–122 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

IEEE J. Quantum Electron. (3)

A. Hardy, D. F. Welch, and W. Streifer, “Analysis of second-order gratings,” IEEE J. Quantum Electron. 25, 2096–2105 (1989).
[CrossRef]

I.-S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mørk, “Broadband MEMS-tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46, 1245–1253 (2010).
[CrossRef]

K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron. 24, 1845–1855 (1988).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. F. R. Mateus, M. C. Y. Huang, D. Yunfei, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16, 518–520 (2004).
[CrossRef]

J. Appl. Phys. (1)

M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, “Empirical low-field mobility model for III–V compounds applicable in device simulation codes,” J. Appl. Phys. 87, 2890–2900(2000).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Kawaguchi, T. Mori, Y. Sato, and Y. Yamayoshi, “Optical buffer memory using polarization bistable vertical-cavity surface-emitting lasers,” Jpn. J. Appl. Phys. 45, L894–L897 (2006).
[CrossRef]

Nat. Photonics (1)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1, 119–122 (2007).
[CrossRef]

Opt. Express (5)

Phys. Rev. E (1)

S. K. Chin, N. A. Nicorovici, and R. C. McPhedran, “Green’s function and lattice sums for electromagnetic scattering by a square array of cylinders,” Phys. Rev. E 49, 4590–4602 (1994).
[CrossRef]

Phys. Rev. Lett. (1)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Other (2)

H. Sano, J. Kashino, A. Gerke, A. Imamura, F. Koyama, and C. Chang-Hasnain, “Transverse mode control of VCSELs with high contrast sub-wavelength grating functioning as angular filter,” in 2012 Conference on Lasers and Electro-Optics (IEEE, 2012), paper CW3N.5.

J. Yamauchi, N. Goto, and H. Nakano, “Broadband mirror using a two-dimensional subwavelength grating,” in Proceedings of the Society Conference of IEICE, Electronics (IEICE, 2007), p. 196 (in Japanese).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Polarization-independent HCG with a single layer of cross stripes for simple fabrication.

Fig. 2.
Fig. 2.

(a) Calculated power reflectivity spectrum of the optimized HCG ( Λ = 556 nm , W = 178 nm , T g = 270 nm , T L = 630 nm , n g = 3.5 , n L = 1 ). (b) The electric field distribution (linear polarization perpendicular to the paper) in the unit cell for a wavelength within the high-reflectivity band.

Fig. 3.
Fig. 3.

(a)  W , (b)  θ , (c)  T g , (d)  T L , and (e)  n g dependences of the reflectivity spectrum. The other parameters are the same as those in Fig. 2. The symbol “ + ” indicates 99.5%.

Fig. 4.
Fig. 4.

Calculated power reflectivity spectra (for E x and E y linear polarizations) of the optimized HCG with an asymmetric fabrication error, W x = 183 nm , W y = 173 nm .

Fig. 5.
Fig. 5.

Calculated power reflectivity spectra of the optimized HCG with the absorption coefficients of 0.4 and 29.3 cm 1 at the doping levels of ( p ) 2 × 10 14 cm 3 and ( p ) 2 × 10 16 cm 3 , respectively.

Metrics