Abstract

The temperature dependence of the mode splitting induced by birefringence in an InGaAs/GaAs/AlGaAs vertical-cavity surface-emitting laser has been studied by reflectance difference spectroscopy at different temperatures ranging from 80 to 330 K. The anisotropic broadening width and the anisotropic integrated area of the cavity mode under different temperatures are also determined. The relation between the mode splitting and the birefringence is obtained by theoretical calculation using a Jones matrix approach. The temperature dependence of the energy position of the cavity mode and the quantum well transition are also determined by nearly normal reflectance and photoluminescence, respectively.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. D. Berger, C. Bru, T. Benyattou, G. Guillot, A. Chenevas Paule, L. Couturier, and P. Grosse, “Investigations of vertical cavity surface emitting laser by photoreflectance spectroscopy,” Appl. Phys. Lett. 68, 4–6 (1996).
    [CrossRef]
  2. K. V. Chellappan, E. Erden, and H. Urey, “Laser-based displays: A review,” Appl. Opt. 49, F79–F98 (2010).
    [CrossRef]
  3. J. J. Cui, Y. Q. Ning, Y. Zhang, P. Kong, G. Y. Liu, X. Zhang, Z. F. Wang, T. Li, Y. F. Sun, and L. J. Wang, “Design and characterization of a nonuniform linear vertical-cavity surface-emitting laser array with a Gaussian far-field distribution,” Appl. Opt. 48, 3317–3321 (2009).
    [CrossRef]
  4. Y. Q. Hao, Y. Luo, Y. A. Feng, C. L. Yan, Y. J. Zhao, Y. X. Wang, X. H. Wang, Y. Qu, and G. J. Liu, “Large aperture vertical cavity surface emitting laser with distributed-ring contact,” Appl. Opt. 50, 1034–1037 (2011).
    [CrossRef]
  5. Y. S. Huang, L. Malikova, F. H. Pollak, H. Shen, J. Pamulapati, and P. Newman, “Surface photovoltage spectroscopy, photoreflectance, and reflectivity characterization of an InGaAs/GaAs/GaAlAs vertical-cavity surface-emitting laser including temperature dependence,” Appl. Phys. Lett. 77, 37–39(2000).
    [CrossRef]
  6. P. J. Klar, G. Rowland, P. J. S. Thomas, A. Onischenko, T. E. Sale, T. J. C. Hosea, and R. Grey, “Photomodulated reflectance study of InxGa1−xAs/GaAs/AlAs microcavity vertical-cavity surface emitting laser structures in the weak-coupling regime: The cavity/ground-state-exciton resonance,” Phys. Rev. B 59, 2894–2901 (1999).
    [CrossRef]
  7. R. Safaisini, J. R. Joseph, D. Louderback, X. J. Jin, A. N. Al-Omari, and K. L. Lear, “Temperature dependence of 980 nm oxide-confined vcsel dynamics,” IEEE Photonics Technol. Lett. 20, 1273–1275 (2008).
    [CrossRef]
  8. D. T. Schaafsma and D. H. Christensen, “Mode splitting in side emission from vertical-cavity surface-emitting lasers,” Phys. Rev. B 54, 14618–14622 (1996).
    [CrossRef]
  9. A. K. J. van Doorn, M. P. van Exter, and J. P. Woerdman, “Elasto-optic anisotropy and polarization orientation of vertical-cavity surface-emitting semiconductor lasers,” Appl. Phys. Lett. 69, 1041–1043 (1996).
    [CrossRef]
  10. T. Mukaihara, F. Koyama, and K. Iga, “Engineered polarization control of GaAs/AlGaAs surface-emitting lasers by anisotropic stress from elliptic etched substrate hole,” IEEE Photonics Technol. Lett. 5, 133–135 (1993).
    [CrossRef]
  11. P. Debernardi, G. P. Bava, C. Degen, I. Fischer, and W. Elsaber, “Influence of anisotropies on transverse modes in oxide-confined vcsels,” IEEE J. Quantum. Electron. 38, 73–84 (2002).
    [CrossRef]
  12. C. Thompson and B. L. Weiss, “Acoustooptic interactions in AlGaAs-GaAs planar multilayer waveguide structures,” IEEE J. Quantum. Electron. 33, 1601–1607 (1997).
    [CrossRef]
  13. S. Balle, E. Tolkachova, M. San Miguel, J. R. Tredicce, J. Martin-Regalado, and A. Gahl, “Mechanisms of polarization switching in single-transverse-mode vertical-cavity surface-emitting lasers: thermal shift and nonlinear semiconductor dynamics,” Opt. Lett. 24, 1121–1123 (1999).
    [CrossRef]
  14. K. D. Choquette and R. E. Leibenguth, “Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries,” IEEE Photonics Technol. Lett. 6, 40–42 (1994).
    [CrossRef]
  15. J. Ostermann, P. Debernardi, C. Jalics, and R. Michalzik, “Shallow surface gratings for high-power VCSELs with one preferred polarization for all modes,” IEEE Photonics Technol. Lett. 17, 1593–1595 (2005).
    [CrossRef]
  16. K. D. Choquette, K. L. Schneider, R. P. Lear, and R. E. Leibenguth, “Gain-dependent polarization properties of vertical-cavity lasers,” IEEE J. Sel. Top. Quantum. Electron. 1, 661–666 (1995).
    [CrossRef]
  17. R. F. M. Hendriks, M. P. van Exter, J. P. Woerdman, A. van Geelen, L. Weegels, K. H. Gulden, and M. Moser, “Electro-optic birefringence in semiconductor vertical-cavity lasers,” Appl. Phys. Lett. 71, 2599–2601 (1997).
    [CrossRef]
  18. P. Debernardi, J. M. Ostermann, M. Sondermann, T. Ackemann, G. P. Bava, and R. Michalzik, “Theoretical-experimental study of the vectorial modal properties of polarization-stable multimode grating vcsels,” IEEE J. Sel. Top. Quantum. Electron. 13, 1340–1348 (2007).
    [CrossRef]
  19. J. L. Yu, Y. H. Chen, C. Y. Jiang, X. L. Ye, and H. Y. Zhang, “Detecting and tuning anisotropic mode splitting induced by birefringence in an InGaAs/GaAs/AlGaAs vertical-cavity surface-emitting laser,” J. Appl. Phys. 111, 043109 (2012).
    [CrossRef]
  20. D. E. Aspnes, J. P. Harbison, A. A. Studna, and L. T. Florez, “Application of reflectance difference spectroscopy to molecular-beam epitaxy growth of GaAs and AlAs,” J. Vac. Sci. Technol. A. 6, 1327–1332 (1988).
    [CrossRef]
  21. Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Strong in-plane optical anisotropy of asymmetric (001) quantum wells,” J. Appl. Phys. 99, 096102 (2006).
    [CrossRef]
  22. Y. H. Chen, X. L. Ye, J. Z. Wang, Z. G. Wang, and Z. Yang, “Interface-related in-plane optical anisotropy in GaAs/AlxGa1−xAs single-quantum-well structures studied by reflectance difference spectroscopy,” Phys. Rev. B 66, 195321 (2002).
    [CrossRef]
  23. P. J. Klar, G. Rowland, T. E. Sale, T. J. C. Hosea, and R. Grey, “Reflectance and photomodulated reflectance studies of cavity mode and excitonic transitions in an InGaAs/GaAs/AlAs/AlGaAs VCSEL structure,” Phys. Status Solidi A 170, 145–158 (1998).
    [CrossRef]
  24. M. Sondermann, M. Weinkath, T. Ackemann, J. Mulet, and S. Balle, “Two-frequency emission and polarization dynamics at lasing threshold in vertical-cavity surface-emitting lasers,” Phys. Rev. A 68, 033822 (2003).
    [CrossRef]
  25. A. K. J. van Doorn, M. P. van Exter, and J. P. Woerdman, “Effects of transverse anisotropy on vcsel spectra,” Electron. Lett. 30, 1941–1943 (1994).
    [CrossRef]
  26. S. T. Su, S. F. Tang, T. C. Chen, C. D. Chiang, S. T. Yang, and W. K. Su, “Temperature dependent vcsel optical characteristics based on graded AlxGa1−xAs/GaAs distributed bragg reflectors: reflectivity and beam profile analyses,” Proc. SPIE 6132, L1320 (2006).
    [CrossRef]

2012 (1)

J. L. Yu, Y. H. Chen, C. Y. Jiang, X. L. Ye, and H. Y. Zhang, “Detecting and tuning anisotropic mode splitting induced by birefringence in an InGaAs/GaAs/AlGaAs vertical-cavity surface-emitting laser,” J. Appl. Phys. 111, 043109 (2012).
[CrossRef]

2011 (1)

2010 (1)

2009 (1)

2008 (1)

R. Safaisini, J. R. Joseph, D. Louderback, X. J. Jin, A. N. Al-Omari, and K. L. Lear, “Temperature dependence of 980 nm oxide-confined vcsel dynamics,” IEEE Photonics Technol. Lett. 20, 1273–1275 (2008).
[CrossRef]

2007 (1)

P. Debernardi, J. M. Ostermann, M. Sondermann, T. Ackemann, G. P. Bava, and R. Michalzik, “Theoretical-experimental study of the vectorial modal properties of polarization-stable multimode grating vcsels,” IEEE J. Sel. Top. Quantum. Electron. 13, 1340–1348 (2007).
[CrossRef]

2006 (2)

Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Strong in-plane optical anisotropy of asymmetric (001) quantum wells,” J. Appl. Phys. 99, 096102 (2006).
[CrossRef]

S. T. Su, S. F. Tang, T. C. Chen, C. D. Chiang, S. T. Yang, and W. K. Su, “Temperature dependent vcsel optical characteristics based on graded AlxGa1−xAs/GaAs distributed bragg reflectors: reflectivity and beam profile analyses,” Proc. SPIE 6132, L1320 (2006).
[CrossRef]

2005 (1)

J. Ostermann, P. Debernardi, C. Jalics, and R. Michalzik, “Shallow surface gratings for high-power VCSELs with one preferred polarization for all modes,” IEEE Photonics Technol. Lett. 17, 1593–1595 (2005).
[CrossRef]

2003 (1)

M. Sondermann, M. Weinkath, T. Ackemann, J. Mulet, and S. Balle, “Two-frequency emission and polarization dynamics at lasing threshold in vertical-cavity surface-emitting lasers,” Phys. Rev. A 68, 033822 (2003).
[CrossRef]

2002 (2)

Y. H. Chen, X. L. Ye, J. Z. Wang, Z. G. Wang, and Z. Yang, “Interface-related in-plane optical anisotropy in GaAs/AlxGa1−xAs single-quantum-well structures studied by reflectance difference spectroscopy,” Phys. Rev. B 66, 195321 (2002).
[CrossRef]

P. Debernardi, G. P. Bava, C. Degen, I. Fischer, and W. Elsaber, “Influence of anisotropies on transverse modes in oxide-confined vcsels,” IEEE J. Quantum. Electron. 38, 73–84 (2002).
[CrossRef]

2000 (1)

Y. S. Huang, L. Malikova, F. H. Pollak, H. Shen, J. Pamulapati, and P. Newman, “Surface photovoltage spectroscopy, photoreflectance, and reflectivity characterization of an InGaAs/GaAs/GaAlAs vertical-cavity surface-emitting laser including temperature dependence,” Appl. Phys. Lett. 77, 37–39(2000).
[CrossRef]

1999 (2)

P. J. Klar, G. Rowland, P. J. S. Thomas, A. Onischenko, T. E. Sale, T. J. C. Hosea, and R. Grey, “Photomodulated reflectance study of InxGa1−xAs/GaAs/AlAs microcavity vertical-cavity surface emitting laser structures in the weak-coupling regime: The cavity/ground-state-exciton resonance,” Phys. Rev. B 59, 2894–2901 (1999).
[CrossRef]

S. Balle, E. Tolkachova, M. San Miguel, J. R. Tredicce, J. Martin-Regalado, and A. Gahl, “Mechanisms of polarization switching in single-transverse-mode vertical-cavity surface-emitting lasers: thermal shift and nonlinear semiconductor dynamics,” Opt. Lett. 24, 1121–1123 (1999).
[CrossRef]

1998 (1)

P. J. Klar, G. Rowland, T. E. Sale, T. J. C. Hosea, and R. Grey, “Reflectance and photomodulated reflectance studies of cavity mode and excitonic transitions in an InGaAs/GaAs/AlAs/AlGaAs VCSEL structure,” Phys. Status Solidi A 170, 145–158 (1998).
[CrossRef]

1997 (2)

R. F. M. Hendriks, M. P. van Exter, J. P. Woerdman, A. van Geelen, L. Weegels, K. H. Gulden, and M. Moser, “Electro-optic birefringence in semiconductor vertical-cavity lasers,” Appl. Phys. Lett. 71, 2599–2601 (1997).
[CrossRef]

C. Thompson and B. L. Weiss, “Acoustooptic interactions in AlGaAs-GaAs planar multilayer waveguide structures,” IEEE J. Quantum. Electron. 33, 1601–1607 (1997).
[CrossRef]

1996 (3)

D. T. Schaafsma and D. H. Christensen, “Mode splitting in side emission from vertical-cavity surface-emitting lasers,” Phys. Rev. B 54, 14618–14622 (1996).
[CrossRef]

A. K. J. van Doorn, M. P. van Exter, and J. P. Woerdman, “Elasto-optic anisotropy and polarization orientation of vertical-cavity surface-emitting semiconductor lasers,” Appl. Phys. Lett. 69, 1041–1043 (1996).
[CrossRef]

P. D. Berger, C. Bru, T. Benyattou, G. Guillot, A. Chenevas Paule, L. Couturier, and P. Grosse, “Investigations of vertical cavity surface emitting laser by photoreflectance spectroscopy,” Appl. Phys. Lett. 68, 4–6 (1996).
[CrossRef]

1995 (1)

K. D. Choquette, K. L. Schneider, R. P. Lear, and R. E. Leibenguth, “Gain-dependent polarization properties of vertical-cavity lasers,” IEEE J. Sel. Top. Quantum. Electron. 1, 661–666 (1995).
[CrossRef]

1994 (2)

K. D. Choquette and R. E. Leibenguth, “Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries,” IEEE Photonics Technol. Lett. 6, 40–42 (1994).
[CrossRef]

A. K. J. van Doorn, M. P. van Exter, and J. P. Woerdman, “Effects of transverse anisotropy on vcsel spectra,” Electron. Lett. 30, 1941–1943 (1994).
[CrossRef]

1993 (1)

T. Mukaihara, F. Koyama, and K. Iga, “Engineered polarization control of GaAs/AlGaAs surface-emitting lasers by anisotropic stress from elliptic etched substrate hole,” IEEE Photonics Technol. Lett. 5, 133–135 (1993).
[CrossRef]

1988 (1)

D. E. Aspnes, J. P. Harbison, A. A. Studna, and L. T. Florez, “Application of reflectance difference spectroscopy to molecular-beam epitaxy growth of GaAs and AlAs,” J. Vac. Sci. Technol. A. 6, 1327–1332 (1988).
[CrossRef]

Ackemann, T.

P. Debernardi, J. M. Ostermann, M. Sondermann, T. Ackemann, G. P. Bava, and R. Michalzik, “Theoretical-experimental study of the vectorial modal properties of polarization-stable multimode grating vcsels,” IEEE J. Sel. Top. Quantum. Electron. 13, 1340–1348 (2007).
[CrossRef]

M. Sondermann, M. Weinkath, T. Ackemann, J. Mulet, and S. Balle, “Two-frequency emission and polarization dynamics at lasing threshold in vertical-cavity surface-emitting lasers,” Phys. Rev. A 68, 033822 (2003).
[CrossRef]

Al-Omari, A. N.

R. Safaisini, J. R. Joseph, D. Louderback, X. J. Jin, A. N. Al-Omari, and K. L. Lear, “Temperature dependence of 980 nm oxide-confined vcsel dynamics,” IEEE Photonics Technol. Lett. 20, 1273–1275 (2008).
[CrossRef]

Aspnes, D. E.

D. E. Aspnes, J. P. Harbison, A. A. Studna, and L. T. Florez, “Application of reflectance difference spectroscopy to molecular-beam epitaxy growth of GaAs and AlAs,” J. Vac. Sci. Technol. A. 6, 1327–1332 (1988).
[CrossRef]

Balle, S.

M. Sondermann, M. Weinkath, T. Ackemann, J. Mulet, and S. Balle, “Two-frequency emission and polarization dynamics at lasing threshold in vertical-cavity surface-emitting lasers,” Phys. Rev. A 68, 033822 (2003).
[CrossRef]

S. Balle, E. Tolkachova, M. San Miguel, J. R. Tredicce, J. Martin-Regalado, and A. Gahl, “Mechanisms of polarization switching in single-transverse-mode vertical-cavity surface-emitting lasers: thermal shift and nonlinear semiconductor dynamics,” Opt. Lett. 24, 1121–1123 (1999).
[CrossRef]

Bava, G. P.

P. Debernardi, J. M. Ostermann, M. Sondermann, T. Ackemann, G. P. Bava, and R. Michalzik, “Theoretical-experimental study of the vectorial modal properties of polarization-stable multimode grating vcsels,” IEEE J. Sel. Top. Quantum. Electron. 13, 1340–1348 (2007).
[CrossRef]

P. Debernardi, G. P. Bava, C. Degen, I. Fischer, and W. Elsaber, “Influence of anisotropies on transverse modes in oxide-confined vcsels,” IEEE J. Quantum. Electron. 38, 73–84 (2002).
[CrossRef]

Benyattou, T.

P. D. Berger, C. Bru, T. Benyattou, G. Guillot, A. Chenevas Paule, L. Couturier, and P. Grosse, “Investigations of vertical cavity surface emitting laser by photoreflectance spectroscopy,” Appl. Phys. Lett. 68, 4–6 (1996).
[CrossRef]

Berger, P. D.

P. D. Berger, C. Bru, T. Benyattou, G. Guillot, A. Chenevas Paule, L. Couturier, and P. Grosse, “Investigations of vertical cavity surface emitting laser by photoreflectance spectroscopy,” Appl. Phys. Lett. 68, 4–6 (1996).
[CrossRef]

Bru, C.

P. D. Berger, C. Bru, T. Benyattou, G. Guillot, A. Chenevas Paule, L. Couturier, and P. Grosse, “Investigations of vertical cavity surface emitting laser by photoreflectance spectroscopy,” Appl. Phys. Lett. 68, 4–6 (1996).
[CrossRef]

Chellappan, K. V.

Chen, T. C.

S. T. Su, S. F. Tang, T. C. Chen, C. D. Chiang, S. T. Yang, and W. K. Su, “Temperature dependent vcsel optical characteristics based on graded AlxGa1−xAs/GaAs distributed bragg reflectors: reflectivity and beam profile analyses,” Proc. SPIE 6132, L1320 (2006).
[CrossRef]

Chen, Y. H.

J. L. Yu, Y. H. Chen, C. Y. Jiang, X. L. Ye, and H. Y. Zhang, “Detecting and tuning anisotropic mode splitting induced by birefringence in an InGaAs/GaAs/AlGaAs vertical-cavity surface-emitting laser,” J. Appl. Phys. 111, 043109 (2012).
[CrossRef]

Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Strong in-plane optical anisotropy of asymmetric (001) quantum wells,” J. Appl. Phys. 99, 096102 (2006).
[CrossRef]

Y. H. Chen, X. L. Ye, J. Z. Wang, Z. G. Wang, and Z. Yang, “Interface-related in-plane optical anisotropy in GaAs/AlxGa1−xAs single-quantum-well structures studied by reflectance difference spectroscopy,” Phys. Rev. B 66, 195321 (2002).
[CrossRef]

Chenevas Paule, A.

P. D. Berger, C. Bru, T. Benyattou, G. Guillot, A. Chenevas Paule, L. Couturier, and P. Grosse, “Investigations of vertical cavity surface emitting laser by photoreflectance spectroscopy,” Appl. Phys. Lett. 68, 4–6 (1996).
[CrossRef]

Chiang, C. D.

S. T. Su, S. F. Tang, T. C. Chen, C. D. Chiang, S. T. Yang, and W. K. Su, “Temperature dependent vcsel optical characteristics based on graded AlxGa1−xAs/GaAs distributed bragg reflectors: reflectivity and beam profile analyses,” Proc. SPIE 6132, L1320 (2006).
[CrossRef]

Choquette, K. D.

K. D. Choquette, K. L. Schneider, R. P. Lear, and R. E. Leibenguth, “Gain-dependent polarization properties of vertical-cavity lasers,” IEEE J. Sel. Top. Quantum. Electron. 1, 661–666 (1995).
[CrossRef]

K. D. Choquette and R. E. Leibenguth, “Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries,” IEEE Photonics Technol. Lett. 6, 40–42 (1994).
[CrossRef]

Christensen, D. H.

D. T. Schaafsma and D. H. Christensen, “Mode splitting in side emission from vertical-cavity surface-emitting lasers,” Phys. Rev. B 54, 14618–14622 (1996).
[CrossRef]

Couturier, L.

P. D. Berger, C. Bru, T. Benyattou, G. Guillot, A. Chenevas Paule, L. Couturier, and P. Grosse, “Investigations of vertical cavity surface emitting laser by photoreflectance spectroscopy,” Appl. Phys. Lett. 68, 4–6 (1996).
[CrossRef]

Cui, J. J.

Debernardi, P.

P. Debernardi, J. M. Ostermann, M. Sondermann, T. Ackemann, G. P. Bava, and R. Michalzik, “Theoretical-experimental study of the vectorial modal properties of polarization-stable multimode grating vcsels,” IEEE J. Sel. Top. Quantum. Electron. 13, 1340–1348 (2007).
[CrossRef]

J. Ostermann, P. Debernardi, C. Jalics, and R. Michalzik, “Shallow surface gratings for high-power VCSELs with one preferred polarization for all modes,” IEEE Photonics Technol. Lett. 17, 1593–1595 (2005).
[CrossRef]

P. Debernardi, G. P. Bava, C. Degen, I. Fischer, and W. Elsaber, “Influence of anisotropies on transverse modes in oxide-confined vcsels,” IEEE J. Quantum. Electron. 38, 73–84 (2002).
[CrossRef]

Degen, C.

P. Debernardi, G. P. Bava, C. Degen, I. Fischer, and W. Elsaber, “Influence of anisotropies on transverse modes in oxide-confined vcsels,” IEEE J. Quantum. Electron. 38, 73–84 (2002).
[CrossRef]

Elsaber, W.

P. Debernardi, G. P. Bava, C. Degen, I. Fischer, and W. Elsaber, “Influence of anisotropies on transverse modes in oxide-confined vcsels,” IEEE J. Quantum. Electron. 38, 73–84 (2002).
[CrossRef]

Erden, E.

Feng, Y. A.

Fischer, I.

P. Debernardi, G. P. Bava, C. Degen, I. Fischer, and W. Elsaber, “Influence of anisotropies on transverse modes in oxide-confined vcsels,” IEEE J. Quantum. Electron. 38, 73–84 (2002).
[CrossRef]

Florez, L. T.

D. E. Aspnes, J. P. Harbison, A. A. Studna, and L. T. Florez, “Application of reflectance difference spectroscopy to molecular-beam epitaxy growth of GaAs and AlAs,” J. Vac. Sci. Technol. A. 6, 1327–1332 (1988).
[CrossRef]

Gahl, A.

Grey, R.

P. J. Klar, G. Rowland, P. J. S. Thomas, A. Onischenko, T. E. Sale, T. J. C. Hosea, and R. Grey, “Photomodulated reflectance study of InxGa1−xAs/GaAs/AlAs microcavity vertical-cavity surface emitting laser structures in the weak-coupling regime: The cavity/ground-state-exciton resonance,” Phys. Rev. B 59, 2894–2901 (1999).
[CrossRef]

P. J. Klar, G. Rowland, T. E. Sale, T. J. C. Hosea, and R. Grey, “Reflectance and photomodulated reflectance studies of cavity mode and excitonic transitions in an InGaAs/GaAs/AlAs/AlGaAs VCSEL structure,” Phys. Status Solidi A 170, 145–158 (1998).
[CrossRef]

Grosse, P.

P. D. Berger, C. Bru, T. Benyattou, G. Guillot, A. Chenevas Paule, L. Couturier, and P. Grosse, “Investigations of vertical cavity surface emitting laser by photoreflectance spectroscopy,” Appl. Phys. Lett. 68, 4–6 (1996).
[CrossRef]

Guillot, G.

P. D. Berger, C. Bru, T. Benyattou, G. Guillot, A. Chenevas Paule, L. Couturier, and P. Grosse, “Investigations of vertical cavity surface emitting laser by photoreflectance spectroscopy,” Appl. Phys. Lett. 68, 4–6 (1996).
[CrossRef]

Gulden, K. H.

R. F. M. Hendriks, M. P. van Exter, J. P. Woerdman, A. van Geelen, L. Weegels, K. H. Gulden, and M. Moser, “Electro-optic birefringence in semiconductor vertical-cavity lasers,” Appl. Phys. Lett. 71, 2599–2601 (1997).
[CrossRef]

Hao, Y. Q.

Harbison, J. P.

D. E. Aspnes, J. P. Harbison, A. A. Studna, and L. T. Florez, “Application of reflectance difference spectroscopy to molecular-beam epitaxy growth of GaAs and AlAs,” J. Vac. Sci. Technol. A. 6, 1327–1332 (1988).
[CrossRef]

Hendriks, R. F. M.

R. F. M. Hendriks, M. P. van Exter, J. P. Woerdman, A. van Geelen, L. Weegels, K. H. Gulden, and M. Moser, “Electro-optic birefringence in semiconductor vertical-cavity lasers,” Appl. Phys. Lett. 71, 2599–2601 (1997).
[CrossRef]

Hosea, T. J. C.

P. J. Klar, G. Rowland, P. J. S. Thomas, A. Onischenko, T. E. Sale, T. J. C. Hosea, and R. Grey, “Photomodulated reflectance study of InxGa1−xAs/GaAs/AlAs microcavity vertical-cavity surface emitting laser structures in the weak-coupling regime: The cavity/ground-state-exciton resonance,” Phys. Rev. B 59, 2894–2901 (1999).
[CrossRef]

P. J. Klar, G. Rowland, T. E. Sale, T. J. C. Hosea, and R. Grey, “Reflectance and photomodulated reflectance studies of cavity mode and excitonic transitions in an InGaAs/GaAs/AlAs/AlGaAs VCSEL structure,” Phys. Status Solidi A 170, 145–158 (1998).
[CrossRef]

Huang, Y. S.

Y. S. Huang, L. Malikova, F. H. Pollak, H. Shen, J. Pamulapati, and P. Newman, “Surface photovoltage spectroscopy, photoreflectance, and reflectivity characterization of an InGaAs/GaAs/GaAlAs vertical-cavity surface-emitting laser including temperature dependence,” Appl. Phys. Lett. 77, 37–39(2000).
[CrossRef]

Iga, K.

T. Mukaihara, F. Koyama, and K. Iga, “Engineered polarization control of GaAs/AlGaAs surface-emitting lasers by anisotropic stress from elliptic etched substrate hole,” IEEE Photonics Technol. Lett. 5, 133–135 (1993).
[CrossRef]

Jalics, C.

J. Ostermann, P. Debernardi, C. Jalics, and R. Michalzik, “Shallow surface gratings for high-power VCSELs with one preferred polarization for all modes,” IEEE Photonics Technol. Lett. 17, 1593–1595 (2005).
[CrossRef]

Jiang, C. Y.

J. L. Yu, Y. H. Chen, C. Y. Jiang, X. L. Ye, and H. Y. Zhang, “Detecting and tuning anisotropic mode splitting induced by birefringence in an InGaAs/GaAs/AlGaAs vertical-cavity surface-emitting laser,” J. Appl. Phys. 111, 043109 (2012).
[CrossRef]

Jin, X. J.

R. Safaisini, J. R. Joseph, D. Louderback, X. J. Jin, A. N. Al-Omari, and K. L. Lear, “Temperature dependence of 980 nm oxide-confined vcsel dynamics,” IEEE Photonics Technol. Lett. 20, 1273–1275 (2008).
[CrossRef]

Joseph, J. R.

R. Safaisini, J. R. Joseph, D. Louderback, X. J. Jin, A. N. Al-Omari, and K. L. Lear, “Temperature dependence of 980 nm oxide-confined vcsel dynamics,” IEEE Photonics Technol. Lett. 20, 1273–1275 (2008).
[CrossRef]

Klar, P. J.

P. J. Klar, G. Rowland, P. J. S. Thomas, A. Onischenko, T. E. Sale, T. J. C. Hosea, and R. Grey, “Photomodulated reflectance study of InxGa1−xAs/GaAs/AlAs microcavity vertical-cavity surface emitting laser structures in the weak-coupling regime: The cavity/ground-state-exciton resonance,” Phys. Rev. B 59, 2894–2901 (1999).
[CrossRef]

P. J. Klar, G. Rowland, T. E. Sale, T. J. C. Hosea, and R. Grey, “Reflectance and photomodulated reflectance studies of cavity mode and excitonic transitions in an InGaAs/GaAs/AlAs/AlGaAs VCSEL structure,” Phys. Status Solidi A 170, 145–158 (1998).
[CrossRef]

Kong, P.

Koyama, F.

T. Mukaihara, F. Koyama, and K. Iga, “Engineered polarization control of GaAs/AlGaAs surface-emitting lasers by anisotropic stress from elliptic etched substrate hole,” IEEE Photonics Technol. Lett. 5, 133–135 (1993).
[CrossRef]

Lear, K. L.

R. Safaisini, J. R. Joseph, D. Louderback, X. J. Jin, A. N. Al-Omari, and K. L. Lear, “Temperature dependence of 980 nm oxide-confined vcsel dynamics,” IEEE Photonics Technol. Lett. 20, 1273–1275 (2008).
[CrossRef]

Lear, R. P.

K. D. Choquette, K. L. Schneider, R. P. Lear, and R. E. Leibenguth, “Gain-dependent polarization properties of vertical-cavity lasers,” IEEE J. Sel. Top. Quantum. Electron. 1, 661–666 (1995).
[CrossRef]

Leibenguth, R. E.

K. D. Choquette, K. L. Schneider, R. P. Lear, and R. E. Leibenguth, “Gain-dependent polarization properties of vertical-cavity lasers,” IEEE J. Sel. Top. Quantum. Electron. 1, 661–666 (1995).
[CrossRef]

K. D. Choquette and R. E. Leibenguth, “Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries,” IEEE Photonics Technol. Lett. 6, 40–42 (1994).
[CrossRef]

Li, T.

Liu, G. J.

Liu, G. Y.

Louderback, D.

R. Safaisini, J. R. Joseph, D. Louderback, X. J. Jin, A. N. Al-Omari, and K. L. Lear, “Temperature dependence of 980 nm oxide-confined vcsel dynamics,” IEEE Photonics Technol. Lett. 20, 1273–1275 (2008).
[CrossRef]

Luo, Y.

Malikova, L.

Y. S. Huang, L. Malikova, F. H. Pollak, H. Shen, J. Pamulapati, and P. Newman, “Surface photovoltage spectroscopy, photoreflectance, and reflectivity characterization of an InGaAs/GaAs/GaAlAs vertical-cavity surface-emitting laser including temperature dependence,” Appl. Phys. Lett. 77, 37–39(2000).
[CrossRef]

Martin-Regalado, J.

Michalzik, R.

P. Debernardi, J. M. Ostermann, M. Sondermann, T. Ackemann, G. P. Bava, and R. Michalzik, “Theoretical-experimental study of the vectorial modal properties of polarization-stable multimode grating vcsels,” IEEE J. Sel. Top. Quantum. Electron. 13, 1340–1348 (2007).
[CrossRef]

J. Ostermann, P. Debernardi, C. Jalics, and R. Michalzik, “Shallow surface gratings for high-power VCSELs with one preferred polarization for all modes,” IEEE Photonics Technol. Lett. 17, 1593–1595 (2005).
[CrossRef]

Moser, M.

R. F. M. Hendriks, M. P. van Exter, J. P. Woerdman, A. van Geelen, L. Weegels, K. H. Gulden, and M. Moser, “Electro-optic birefringence in semiconductor vertical-cavity lasers,” Appl. Phys. Lett. 71, 2599–2601 (1997).
[CrossRef]

Mukaihara, T.

T. Mukaihara, F. Koyama, and K. Iga, “Engineered polarization control of GaAs/AlGaAs surface-emitting lasers by anisotropic stress from elliptic etched substrate hole,” IEEE Photonics Technol. Lett. 5, 133–135 (1993).
[CrossRef]

Mulet, J.

M. Sondermann, M. Weinkath, T. Ackemann, J. Mulet, and S. Balle, “Two-frequency emission and polarization dynamics at lasing threshold in vertical-cavity surface-emitting lasers,” Phys. Rev. A 68, 033822 (2003).
[CrossRef]

Newman, P.

Y. S. Huang, L. Malikova, F. H. Pollak, H. Shen, J. Pamulapati, and P. Newman, “Surface photovoltage spectroscopy, photoreflectance, and reflectivity characterization of an InGaAs/GaAs/GaAlAs vertical-cavity surface-emitting laser including temperature dependence,” Appl. Phys. Lett. 77, 37–39(2000).
[CrossRef]

Ning, Y. Q.

Onischenko, A.

P. J. Klar, G. Rowland, P. J. S. Thomas, A. Onischenko, T. E. Sale, T. J. C. Hosea, and R. Grey, “Photomodulated reflectance study of InxGa1−xAs/GaAs/AlAs microcavity vertical-cavity surface emitting laser structures in the weak-coupling regime: The cavity/ground-state-exciton resonance,” Phys. Rev. B 59, 2894–2901 (1999).
[CrossRef]

Ostermann, J.

J. Ostermann, P. Debernardi, C. Jalics, and R. Michalzik, “Shallow surface gratings for high-power VCSELs with one preferred polarization for all modes,” IEEE Photonics Technol. Lett. 17, 1593–1595 (2005).
[CrossRef]

Ostermann, J. M.

P. Debernardi, J. M. Ostermann, M. Sondermann, T. Ackemann, G. P. Bava, and R. Michalzik, “Theoretical-experimental study of the vectorial modal properties of polarization-stable multimode grating vcsels,” IEEE J. Sel. Top. Quantum. Electron. 13, 1340–1348 (2007).
[CrossRef]

Pamulapati, J.

Y. S. Huang, L. Malikova, F. H. Pollak, H. Shen, J. Pamulapati, and P. Newman, “Surface photovoltage spectroscopy, photoreflectance, and reflectivity characterization of an InGaAs/GaAs/GaAlAs vertical-cavity surface-emitting laser including temperature dependence,” Appl. Phys. Lett. 77, 37–39(2000).
[CrossRef]

Pollak, F. H.

Y. S. Huang, L. Malikova, F. H. Pollak, H. Shen, J. Pamulapati, and P. Newman, “Surface photovoltage spectroscopy, photoreflectance, and reflectivity characterization of an InGaAs/GaAs/GaAlAs vertical-cavity surface-emitting laser including temperature dependence,” Appl. Phys. Lett. 77, 37–39(2000).
[CrossRef]

Qu, Y.

Rowland, G.

P. J. Klar, G. Rowland, P. J. S. Thomas, A. Onischenko, T. E. Sale, T. J. C. Hosea, and R. Grey, “Photomodulated reflectance study of InxGa1−xAs/GaAs/AlAs microcavity vertical-cavity surface emitting laser structures in the weak-coupling regime: The cavity/ground-state-exciton resonance,” Phys. Rev. B 59, 2894–2901 (1999).
[CrossRef]

P. J. Klar, G. Rowland, T. E. Sale, T. J. C. Hosea, and R. Grey, “Reflectance and photomodulated reflectance studies of cavity mode and excitonic transitions in an InGaAs/GaAs/AlAs/AlGaAs VCSEL structure,” Phys. Status Solidi A 170, 145–158 (1998).
[CrossRef]

Safaisini, R.

R. Safaisini, J. R. Joseph, D. Louderback, X. J. Jin, A. N. Al-Omari, and K. L. Lear, “Temperature dependence of 980 nm oxide-confined vcsel dynamics,” IEEE Photonics Technol. Lett. 20, 1273–1275 (2008).
[CrossRef]

Sale, T. E.

P. J. Klar, G. Rowland, P. J. S. Thomas, A. Onischenko, T. E. Sale, T. J. C. Hosea, and R. Grey, “Photomodulated reflectance study of InxGa1−xAs/GaAs/AlAs microcavity vertical-cavity surface emitting laser structures in the weak-coupling regime: The cavity/ground-state-exciton resonance,” Phys. Rev. B 59, 2894–2901 (1999).
[CrossRef]

P. J. Klar, G. Rowland, T. E. Sale, T. J. C. Hosea, and R. Grey, “Reflectance and photomodulated reflectance studies of cavity mode and excitonic transitions in an InGaAs/GaAs/AlAs/AlGaAs VCSEL structure,” Phys. Status Solidi A 170, 145–158 (1998).
[CrossRef]

San Miguel, M.

Schaafsma, D. T.

D. T. Schaafsma and D. H. Christensen, “Mode splitting in side emission from vertical-cavity surface-emitting lasers,” Phys. Rev. B 54, 14618–14622 (1996).
[CrossRef]

Schneider, K. L.

K. D. Choquette, K. L. Schneider, R. P. Lear, and R. E. Leibenguth, “Gain-dependent polarization properties of vertical-cavity lasers,” IEEE J. Sel. Top. Quantum. Electron. 1, 661–666 (1995).
[CrossRef]

Shen, H.

Y. S. Huang, L. Malikova, F. H. Pollak, H. Shen, J. Pamulapati, and P. Newman, “Surface photovoltage spectroscopy, photoreflectance, and reflectivity characterization of an InGaAs/GaAs/GaAlAs vertical-cavity surface-emitting laser including temperature dependence,” Appl. Phys. Lett. 77, 37–39(2000).
[CrossRef]

Sondermann, M.

P. Debernardi, J. M. Ostermann, M. Sondermann, T. Ackemann, G. P. Bava, and R. Michalzik, “Theoretical-experimental study of the vectorial modal properties of polarization-stable multimode grating vcsels,” IEEE J. Sel. Top. Quantum. Electron. 13, 1340–1348 (2007).
[CrossRef]

M. Sondermann, M. Weinkath, T. Ackemann, J. Mulet, and S. Balle, “Two-frequency emission and polarization dynamics at lasing threshold in vertical-cavity surface-emitting lasers,” Phys. Rev. A 68, 033822 (2003).
[CrossRef]

Studna, A. A.

D. E. Aspnes, J. P. Harbison, A. A. Studna, and L. T. Florez, “Application of reflectance difference spectroscopy to molecular-beam epitaxy growth of GaAs and AlAs,” J. Vac. Sci. Technol. A. 6, 1327–1332 (1988).
[CrossRef]

Su, S. T.

S. T. Su, S. F. Tang, T. C. Chen, C. D. Chiang, S. T. Yang, and W. K. Su, “Temperature dependent vcsel optical characteristics based on graded AlxGa1−xAs/GaAs distributed bragg reflectors: reflectivity and beam profile analyses,” Proc. SPIE 6132, L1320 (2006).
[CrossRef]

Su, W. K.

S. T. Su, S. F. Tang, T. C. Chen, C. D. Chiang, S. T. Yang, and W. K. Su, “Temperature dependent vcsel optical characteristics based on graded AlxGa1−xAs/GaAs distributed bragg reflectors: reflectivity and beam profile analyses,” Proc. SPIE 6132, L1320 (2006).
[CrossRef]

Sun, Y. F.

Tang, S. F.

S. T. Su, S. F. Tang, T. C. Chen, C. D. Chiang, S. T. Yang, and W. K. Su, “Temperature dependent vcsel optical characteristics based on graded AlxGa1−xAs/GaAs distributed bragg reflectors: reflectivity and beam profile analyses,” Proc. SPIE 6132, L1320 (2006).
[CrossRef]

Thomas, P. J. S.

P. J. Klar, G. Rowland, P. J. S. Thomas, A. Onischenko, T. E. Sale, T. J. C. Hosea, and R. Grey, “Photomodulated reflectance study of InxGa1−xAs/GaAs/AlAs microcavity vertical-cavity surface emitting laser structures in the weak-coupling regime: The cavity/ground-state-exciton resonance,” Phys. Rev. B 59, 2894–2901 (1999).
[CrossRef]

Thompson, C.

C. Thompson and B. L. Weiss, “Acoustooptic interactions in AlGaAs-GaAs planar multilayer waveguide structures,” IEEE J. Quantum. Electron. 33, 1601–1607 (1997).
[CrossRef]

Tolkachova, E.

Tredicce, J. R.

Urey, H.

van Doorn, A. K. J.

A. K. J. van Doorn, M. P. van Exter, and J. P. Woerdman, “Elasto-optic anisotropy and polarization orientation of vertical-cavity surface-emitting semiconductor lasers,” Appl. Phys. Lett. 69, 1041–1043 (1996).
[CrossRef]

A. K. J. van Doorn, M. P. van Exter, and J. P. Woerdman, “Effects of transverse anisotropy on vcsel spectra,” Electron. Lett. 30, 1941–1943 (1994).
[CrossRef]

van Exter, M. P.

R. F. M. Hendriks, M. P. van Exter, J. P. Woerdman, A. van Geelen, L. Weegels, K. H. Gulden, and M. Moser, “Electro-optic birefringence in semiconductor vertical-cavity lasers,” Appl. Phys. Lett. 71, 2599–2601 (1997).
[CrossRef]

A. K. J. van Doorn, M. P. van Exter, and J. P. Woerdman, “Elasto-optic anisotropy and polarization orientation of vertical-cavity surface-emitting semiconductor lasers,” Appl. Phys. Lett. 69, 1041–1043 (1996).
[CrossRef]

A. K. J. van Doorn, M. P. van Exter, and J. P. Woerdman, “Effects of transverse anisotropy on vcsel spectra,” Electron. Lett. 30, 1941–1943 (1994).
[CrossRef]

van Geelen, A.

R. F. M. Hendriks, M. P. van Exter, J. P. Woerdman, A. van Geelen, L. Weegels, K. H. Gulden, and M. Moser, “Electro-optic birefringence in semiconductor vertical-cavity lasers,” Appl. Phys. Lett. 71, 2599–2601 (1997).
[CrossRef]

Wang, J. Z.

Y. H. Chen, X. L. Ye, J. Z. Wang, Z. G. Wang, and Z. Yang, “Interface-related in-plane optical anisotropy in GaAs/AlxGa1−xAs single-quantum-well structures studied by reflectance difference spectroscopy,” Phys. Rev. B 66, 195321 (2002).
[CrossRef]

Wang, L. J.

Wang, X. H.

Wang, Y. X.

Wang, Z. F.

Wang, Z. G.

Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Strong in-plane optical anisotropy of asymmetric (001) quantum wells,” J. Appl. Phys. 99, 096102 (2006).
[CrossRef]

Y. H. Chen, X. L. Ye, J. Z. Wang, Z. G. Wang, and Z. Yang, “Interface-related in-plane optical anisotropy in GaAs/AlxGa1−xAs single-quantum-well structures studied by reflectance difference spectroscopy,” Phys. Rev. B 66, 195321 (2002).
[CrossRef]

Weegels, L.

R. F. M. Hendriks, M. P. van Exter, J. P. Woerdman, A. van Geelen, L. Weegels, K. H. Gulden, and M. Moser, “Electro-optic birefringence in semiconductor vertical-cavity lasers,” Appl. Phys. Lett. 71, 2599–2601 (1997).
[CrossRef]

Weinkath, M.

M. Sondermann, M. Weinkath, T. Ackemann, J. Mulet, and S. Balle, “Two-frequency emission and polarization dynamics at lasing threshold in vertical-cavity surface-emitting lasers,” Phys. Rev. A 68, 033822 (2003).
[CrossRef]

Weiss, B. L.

C. Thompson and B. L. Weiss, “Acoustooptic interactions in AlGaAs-GaAs planar multilayer waveguide structures,” IEEE J. Quantum. Electron. 33, 1601–1607 (1997).
[CrossRef]

Woerdman, J. P.

R. F. M. Hendriks, M. P. van Exter, J. P. Woerdman, A. van Geelen, L. Weegels, K. H. Gulden, and M. Moser, “Electro-optic birefringence in semiconductor vertical-cavity lasers,” Appl. Phys. Lett. 71, 2599–2601 (1997).
[CrossRef]

A. K. J. van Doorn, M. P. van Exter, and J. P. Woerdman, “Elasto-optic anisotropy and polarization orientation of vertical-cavity surface-emitting semiconductor lasers,” Appl. Phys. Lett. 69, 1041–1043 (1996).
[CrossRef]

A. K. J. van Doorn, M. P. van Exter, and J. P. Woerdman, “Effects of transverse anisotropy on vcsel spectra,” Electron. Lett. 30, 1941–1943 (1994).
[CrossRef]

Xu, B.

Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Strong in-plane optical anisotropy of asymmetric (001) quantum wells,” J. Appl. Phys. 99, 096102 (2006).
[CrossRef]

Yan, C. L.

Yang, S. T.

S. T. Su, S. F. Tang, T. C. Chen, C. D. Chiang, S. T. Yang, and W. K. Su, “Temperature dependent vcsel optical characteristics based on graded AlxGa1−xAs/GaAs distributed bragg reflectors: reflectivity and beam profile analyses,” Proc. SPIE 6132, L1320 (2006).
[CrossRef]

Yang, Z.

Y. H. Chen, X. L. Ye, J. Z. Wang, Z. G. Wang, and Z. Yang, “Interface-related in-plane optical anisotropy in GaAs/AlxGa1−xAs single-quantum-well structures studied by reflectance difference spectroscopy,” Phys. Rev. B 66, 195321 (2002).
[CrossRef]

Ye, X. L.

J. L. Yu, Y. H. Chen, C. Y. Jiang, X. L. Ye, and H. Y. Zhang, “Detecting and tuning anisotropic mode splitting induced by birefringence in an InGaAs/GaAs/AlGaAs vertical-cavity surface-emitting laser,” J. Appl. Phys. 111, 043109 (2012).
[CrossRef]

Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Strong in-plane optical anisotropy of asymmetric (001) quantum wells,” J. Appl. Phys. 99, 096102 (2006).
[CrossRef]

Y. H. Chen, X. L. Ye, J. Z. Wang, Z. G. Wang, and Z. Yang, “Interface-related in-plane optical anisotropy in GaAs/AlxGa1−xAs single-quantum-well structures studied by reflectance difference spectroscopy,” Phys. Rev. B 66, 195321 (2002).
[CrossRef]

Yu, J. L.

J. L. Yu, Y. H. Chen, C. Y. Jiang, X. L. Ye, and H. Y. Zhang, “Detecting and tuning anisotropic mode splitting induced by birefringence in an InGaAs/GaAs/AlGaAs vertical-cavity surface-emitting laser,” J. Appl. Phys. 111, 043109 (2012).
[CrossRef]

Zhang, H. Y.

J. L. Yu, Y. H. Chen, C. Y. Jiang, X. L. Ye, and H. Y. Zhang, “Detecting and tuning anisotropic mode splitting induced by birefringence in an InGaAs/GaAs/AlGaAs vertical-cavity surface-emitting laser,” J. Appl. Phys. 111, 043109 (2012).
[CrossRef]

Zhang, X.

Zhang, Y.

Zhao, Y. J.

Appl. Opt. (3)

Appl. Phys. Lett. (4)

P. D. Berger, C. Bru, T. Benyattou, G. Guillot, A. Chenevas Paule, L. Couturier, and P. Grosse, “Investigations of vertical cavity surface emitting laser by photoreflectance spectroscopy,” Appl. Phys. Lett. 68, 4–6 (1996).
[CrossRef]

Y. S. Huang, L. Malikova, F. H. Pollak, H. Shen, J. Pamulapati, and P. Newman, “Surface photovoltage spectroscopy, photoreflectance, and reflectivity characterization of an InGaAs/GaAs/GaAlAs vertical-cavity surface-emitting laser including temperature dependence,” Appl. Phys. Lett. 77, 37–39(2000).
[CrossRef]

R. F. M. Hendriks, M. P. van Exter, J. P. Woerdman, A. van Geelen, L. Weegels, K. H. Gulden, and M. Moser, “Electro-optic birefringence in semiconductor vertical-cavity lasers,” Appl. Phys. Lett. 71, 2599–2601 (1997).
[CrossRef]

A. K. J. van Doorn, M. P. van Exter, and J. P. Woerdman, “Elasto-optic anisotropy and polarization orientation of vertical-cavity surface-emitting semiconductor lasers,” Appl. Phys. Lett. 69, 1041–1043 (1996).
[CrossRef]

Electron. Lett. (1)

A. K. J. van Doorn, M. P. van Exter, and J. P. Woerdman, “Effects of transverse anisotropy on vcsel spectra,” Electron. Lett. 30, 1941–1943 (1994).
[CrossRef]

IEEE J. Quantum. Electron. (2)

P. Debernardi, G. P. Bava, C. Degen, I. Fischer, and W. Elsaber, “Influence of anisotropies on transverse modes in oxide-confined vcsels,” IEEE J. Quantum. Electron. 38, 73–84 (2002).
[CrossRef]

C. Thompson and B. L. Weiss, “Acoustooptic interactions in AlGaAs-GaAs planar multilayer waveguide structures,” IEEE J. Quantum. Electron. 33, 1601–1607 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum. Electron. (2)

P. Debernardi, J. M. Ostermann, M. Sondermann, T. Ackemann, G. P. Bava, and R. Michalzik, “Theoretical-experimental study of the vectorial modal properties of polarization-stable multimode grating vcsels,” IEEE J. Sel. Top. Quantum. Electron. 13, 1340–1348 (2007).
[CrossRef]

K. D. Choquette, K. L. Schneider, R. P. Lear, and R. E. Leibenguth, “Gain-dependent polarization properties of vertical-cavity lasers,” IEEE J. Sel. Top. Quantum. Electron. 1, 661–666 (1995).
[CrossRef]

IEEE Photonics Technol. Lett. (4)

T. Mukaihara, F. Koyama, and K. Iga, “Engineered polarization control of GaAs/AlGaAs surface-emitting lasers by anisotropic stress from elliptic etched substrate hole,” IEEE Photonics Technol. Lett. 5, 133–135 (1993).
[CrossRef]

K. D. Choquette and R. E. Leibenguth, “Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries,” IEEE Photonics Technol. Lett. 6, 40–42 (1994).
[CrossRef]

J. Ostermann, P. Debernardi, C. Jalics, and R. Michalzik, “Shallow surface gratings for high-power VCSELs with one preferred polarization for all modes,” IEEE Photonics Technol. Lett. 17, 1593–1595 (2005).
[CrossRef]

R. Safaisini, J. R. Joseph, D. Louderback, X. J. Jin, A. N. Al-Omari, and K. L. Lear, “Temperature dependence of 980 nm oxide-confined vcsel dynamics,” IEEE Photonics Technol. Lett. 20, 1273–1275 (2008).
[CrossRef]

J. Appl. Phys. (2)

Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Strong in-plane optical anisotropy of asymmetric (001) quantum wells,” J. Appl. Phys. 99, 096102 (2006).
[CrossRef]

J. L. Yu, Y. H. Chen, C. Y. Jiang, X. L. Ye, and H. Y. Zhang, “Detecting and tuning anisotropic mode splitting induced by birefringence in an InGaAs/GaAs/AlGaAs vertical-cavity surface-emitting laser,” J. Appl. Phys. 111, 043109 (2012).
[CrossRef]

J. Vac. Sci. Technol. A. (1)

D. E. Aspnes, J. P. Harbison, A. A. Studna, and L. T. Florez, “Application of reflectance difference spectroscopy to molecular-beam epitaxy growth of GaAs and AlAs,” J. Vac. Sci. Technol. A. 6, 1327–1332 (1988).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (1)

M. Sondermann, M. Weinkath, T. Ackemann, J. Mulet, and S. Balle, “Two-frequency emission and polarization dynamics at lasing threshold in vertical-cavity surface-emitting lasers,” Phys. Rev. A 68, 033822 (2003).
[CrossRef]

Phys. Rev. B (3)

Y. H. Chen, X. L. Ye, J. Z. Wang, Z. G. Wang, and Z. Yang, “Interface-related in-plane optical anisotropy in GaAs/AlxGa1−xAs single-quantum-well structures studied by reflectance difference spectroscopy,” Phys. Rev. B 66, 195321 (2002).
[CrossRef]

D. T. Schaafsma and D. H. Christensen, “Mode splitting in side emission from vertical-cavity surface-emitting lasers,” Phys. Rev. B 54, 14618–14622 (1996).
[CrossRef]

P. J. Klar, G. Rowland, P. J. S. Thomas, A. Onischenko, T. E. Sale, T. J. C. Hosea, and R. Grey, “Photomodulated reflectance study of InxGa1−xAs/GaAs/AlAs microcavity vertical-cavity surface emitting laser structures in the weak-coupling regime: The cavity/ground-state-exciton resonance,” Phys. Rev. B 59, 2894–2901 (1999).
[CrossRef]

Phys. Status Solidi A (1)

P. J. Klar, G. Rowland, T. E. Sale, T. J. C. Hosea, and R. Grey, “Reflectance and photomodulated reflectance studies of cavity mode and excitonic transitions in an InGaAs/GaAs/AlAs/AlGaAs VCSEL structure,” Phys. Status Solidi A 170, 145–158 (1998).
[CrossRef]

Proc. SPIE (1)

S. T. Su, S. F. Tang, T. C. Chen, C. D. Chiang, S. T. Yang, and W. K. Su, “Temperature dependent vcsel optical characteristics based on graded AlxGa1−xAs/GaAs distributed bragg reflectors: reflectivity and beam profile analyses,” Proc. SPIE 6132, L1320 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Real part of RD spectra of an InGaAs/GaAs/AlGaAs VCSEL at different temperatures ranging between 80 and 330 K. The spectra are shifted vertically for clarity. The circles are experimental data, and the curves denote the fitting results using the right term of Eq. (4). The inset shows the RD intensity of the cavity mode as a function of temperature.

Fig. 2.
Fig. 2.

Fitting result of the real part of RD spectra of an InGaAs/GaAs/AlGaAs VCSEL at 210 K. The squares denote the experimental data, and the solid curve is the fitting result using the right term of Eq. (4). The dashed, dotted, and dashed–dotted curves indicate the fitting components corresponding to lnR0/A, lnR0/E, and lnR0/Γ obtained by experimental measured R0, respectively.

Fig. 3.
Fig. 3.

Mode splitting ΔE (solid squares, left axis), the anisotropy integrated area of the cavity mode ΔA (solid triangles, right axis) and broadening width ΔΓ (solid circles, right axis) versus temperature. The open squares are the calculated results of the mode splitting ΔE using a Jones matrix approach adopting Δn/n=0.0034%, (dn/dT)GaAs=2.67×104/K, (dn/dT)AlAs=1.43×104/K, and (dn/dT)AlGaAs to be their linear interpolation. The inset shows the temperature dependence of elasto-optic coefficient P44 used to simulate the temperature dependence of mode splitting observed in the experiments.

Fig. 4.
Fig. 4.

Temperature dependence of the energy position of the cavity mode (solid squares for the data after angle corrections, and open squares for the data without angle corrections) and the QW transitions (triangles) determined by NIR and PL, respectively. The solid line is the calculated results using a Jones matrix approach adopting Δn/n=0.0034%, (dn/dT)GaAs=2.67×104/K, (dn/dT)AlAs=1.43×104/K, and (dn/dT)AlGaAs to be their linear interpolation. The dashed line is the fitting result using the Bose–Einstein-type expression.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Re(Δr/r)R110R11¯02R0,
R110=R¯f(A110,EE110,Γ110),
R11¯0=R¯f(A11¯0,EE11¯0,Γ11¯0),
Re(Δr/r)=ΔA2lnR0AΔE2lnR0E+ΔΓ2lnR0Γ,
dndTGaAs=2.67×104/K,
dndTAlAs=1.43×104/K,
dndTAlxGa1xAs=xdndTAlAs+(1x)dndTGaAs.
n110=n012n03P44e110+12n03P44e11¯0,
n11¯0=n0+12n03P44e11012n03P44e11¯0,

Metrics