Abstract

Various gratings with 700 nm feature spacings are patterned on the reverse side of organic solar cell active layers to increase the path length and constrain light to the cell through total internal reflection. The absorption enhancement is studied for 15, 40, and 120 nm active layers. We were able to confine 9% of the incident light over the wavelength range of 400–650 nm, with thinner gratings having a greater enhancement potential. The measurement setup utilizing an integrating sphere to fully characterize scattered or diffracted light is also fully described.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Kalowekamo and E. Baker, “Estimating the manufacturing cost of purely organic solar cells,” Solar Energy 83, 1224–1231 (2009).
    [CrossRef]
  2. A. L. Roes, E. A. Alsema, K. Blok, and M. K. Patel, “Ex-ante environmental and economic evaluation of polymer photovoltaics,” Prog. Photovoltaics 17, 372–393 (2009).
    [CrossRef]
  3. F. He and L. Yu, “How far can polymer solar cells go? In need of a synergistic approach,” J. Phys. Chem. Lett. 2, 3102–3113 (2011).
    [CrossRef]
  4. P. Peumans, A. Yakimov, and S. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys. 93, 3693–3723 (2003).
    [CrossRef]
  5. M. Born, E. Wolf, and A. B. Bhatia, Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 2005).
  6. Y. Liang, Z. Xu, J. Xia, S. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. 22, E135–E138 (2010).
    [CrossRef]
  7. P. Kumar and S. Chand, “Recent progress and future aspects of organic solar cells,” Prog. Photovoltaics 20, 377–415 (2012).
    [CrossRef]
  8. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovoltaics 20, 12–20 (2012).
    [CrossRef]
  9. C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia, and S. P. Williams, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater. 22, 3839–3856 (2010).
    [CrossRef]
  10. S. Shahin, P. Gangopadhyay, and R. A. Norwood, “Ultrathin organic bulk heterojunction solar cells: plasmon enhanced performance using au nanoparticles,” Appl. Phys. Lett. 101, 053109 (2012).
    [CrossRef]
  11. A. J. Moule, J. B. Bonekamp, and K. Meerholz, “The effect of active layer thickness and composition on the performance of bulk-heterojunction solar cells,” J. Appl. Phys. 100, 094503 (2006).
    [CrossRef]
  12. S. Na, S. Kim, S. Kwon, J. Jo, J. Kim, T. Lee, and D. Kim, “Surface relief gratings on poly (3-hexylthiophene) and fullerene blends for efficient organic solar cells,” Appl. Phys. Lett. 91, 173509 (2007).
    [CrossRef]
  13. P. Campbell, and M. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
    [CrossRef]
  14. L. Roman, O. Inganas, T. Granlund, T. Nyberg, M. Svensson, M. Andersson, and J. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12, 189–195 (2000).
    [CrossRef]
  15. F. Llopis and I. Tobias, “The role of rear surface in thin silicon solar cells,” Solar Energy Mater. Solar Cells 87, 481–492 (2005).
    [CrossRef]
  16. M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes—architectures for organic solar cells,” Thin Solid Films 451, 619–623 (2004).
    [CrossRef]
  17. F. Monestier, J. Simon, P. Torchio, L. Escoubas, F. Florya, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Solar Energy Mater. Solar Cells 91, 405–410 (2007).
    [CrossRef]
  18. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).
  19. K. Rajkanan, R. Singh, and J. Shewchun, “Absorption-coefficient of silicon for solar-cell calculations,” Solid-State Electron. 22, 793–795 (1979).
    [CrossRef]
  20. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA 107, 17491–17496 (2010).
    [CrossRef]
  21. E. G. Loewen and E. Popov, Diffraction Gratings and Applications (M. Dekker, 1997).
  22. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72, 899–907 (1982).
    [CrossRef]
  23. J. Bendickson, E. Glytsis, and T. Gaylord, “Scalar integral diffraction methods: unification, accuracy, and comparison with a rigorous boundary element method with application to diffractive cylindrical lenses,” J. Opt. Soc. Am. A 15, 1822–1837 (1998).
    [CrossRef]
  24. J. R. Tumbleston, D. Ko, E. T. Samulski, and R. Lopez, “Electrophotonic enhancement of bulk heterojunction organic solar cells through photonic crystal photoactive layer,” Appl. Phys. Lett. 94, 043305 (2009).
    [CrossRef]
  25. J. M. Palmer and B. G. Grant, The Art of Radiometry (SPIE, 2010).
  26. J. Hodgkinson, D. Masiyano, and R. P. Tatam, “Using integrating spheres as absorption cells: path-length distribution and application of Beer’s law,” Appl. Opt. 48, 5748–5758 (2009).
    [CrossRef]
  27. A. Lopez-Santiago, H. R. Grant, P. Gangopadhyay, R. Voorakaranam, R. A. Norwood, and N. Peyghambarian, “Cobalt ferrite nanoparticles polymer composites based all-optical magnetometer,” Opt. Mater. Express 2, 978–986 (2012).
    [CrossRef]
  28. V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “Accurate measurement and characterization of organic solar cells RID D-7774-2011 RID A-2944-2011,” Adv. Funct. Mater. 16, 2016–2023 (2006).
    [CrossRef]
  29. J. Thomas, P. Gangopadhyay, E. Araci, R. A. Norwood, and N. Peyghambarian, “Nanoimprinting by melt processing: an easy technique to fabricate versatile nanostructures,” Adv. Mater 23, 4782–4787 (2011).
    [CrossRef]

2012

P. Kumar and S. Chand, “Recent progress and future aspects of organic solar cells,” Prog. Photovoltaics 20, 377–415 (2012).
[CrossRef]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovoltaics 20, 12–20 (2012).
[CrossRef]

S. Shahin, P. Gangopadhyay, and R. A. Norwood, “Ultrathin organic bulk heterojunction solar cells: plasmon enhanced performance using au nanoparticles,” Appl. Phys. Lett. 101, 053109 (2012).
[CrossRef]

A. Lopez-Santiago, H. R. Grant, P. Gangopadhyay, R. Voorakaranam, R. A. Norwood, and N. Peyghambarian, “Cobalt ferrite nanoparticles polymer composites based all-optical magnetometer,” Opt. Mater. Express 2, 978–986 (2012).
[CrossRef]

2011

J. Thomas, P. Gangopadhyay, E. Araci, R. A. Norwood, and N. Peyghambarian, “Nanoimprinting by melt processing: an easy technique to fabricate versatile nanostructures,” Adv. Mater 23, 4782–4787 (2011).
[CrossRef]

F. He and L. Yu, “How far can polymer solar cells go? In need of a synergistic approach,” J. Phys. Chem. Lett. 2, 3102–3113 (2011).
[CrossRef]

2010

C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia, and S. P. Williams, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater. 22, 3839–3856 (2010).
[CrossRef]

Y. Liang, Z. Xu, J. Xia, S. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. 22, E135–E138 (2010).
[CrossRef]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA 107, 17491–17496 (2010).
[CrossRef]

2009

J. R. Tumbleston, D. Ko, E. T. Samulski, and R. Lopez, “Electrophotonic enhancement of bulk heterojunction organic solar cells through photonic crystal photoactive layer,” Appl. Phys. Lett. 94, 043305 (2009).
[CrossRef]

J. Hodgkinson, D. Masiyano, and R. P. Tatam, “Using integrating spheres as absorption cells: path-length distribution and application of Beer’s law,” Appl. Opt. 48, 5748–5758 (2009).
[CrossRef]

J. Kalowekamo and E. Baker, “Estimating the manufacturing cost of purely organic solar cells,” Solar Energy 83, 1224–1231 (2009).
[CrossRef]

A. L. Roes, E. A. Alsema, K. Blok, and M. K. Patel, “Ex-ante environmental and economic evaluation of polymer photovoltaics,” Prog. Photovoltaics 17, 372–393 (2009).
[CrossRef]

2007

S. Na, S. Kim, S. Kwon, J. Jo, J. Kim, T. Lee, and D. Kim, “Surface relief gratings on poly (3-hexylthiophene) and fullerene blends for efficient organic solar cells,” Appl. Phys. Lett. 91, 173509 (2007).
[CrossRef]

F. Monestier, J. Simon, P. Torchio, L. Escoubas, F. Florya, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Solar Energy Mater. Solar Cells 91, 405–410 (2007).
[CrossRef]

2006

A. J. Moule, J. B. Bonekamp, and K. Meerholz, “The effect of active layer thickness and composition on the performance of bulk-heterojunction solar cells,” J. Appl. Phys. 100, 094503 (2006).
[CrossRef]

V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “Accurate measurement and characterization of organic solar cells RID D-7774-2011 RID A-2944-2011,” Adv. Funct. Mater. 16, 2016–2023 (2006).
[CrossRef]

2005

F. Llopis and I. Tobias, “The role of rear surface in thin silicon solar cells,” Solar Energy Mater. Solar Cells 87, 481–492 (2005).
[CrossRef]

2004

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes—architectures for organic solar cells,” Thin Solid Films 451, 619–623 (2004).
[CrossRef]

2003

P. Peumans, A. Yakimov, and S. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys. 93, 3693–3723 (2003).
[CrossRef]

2000

L. Roman, O. Inganas, T. Granlund, T. Nyberg, M. Svensson, M. Andersson, and J. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12, 189–195 (2000).
[CrossRef]

1998

1987

P. Campbell, and M. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[CrossRef]

1982

1979

K. Rajkanan, R. Singh, and J. Shewchun, “Absorption-coefficient of silicon for solar-cell calculations,” Solid-State Electron. 22, 793–795 (1979).
[CrossRef]

Alsema, E. A.

A. L. Roes, E. A. Alsema, K. Blok, and M. K. Patel, “Ex-ante environmental and economic evaluation of polymer photovoltaics,” Prog. Photovoltaics 17, 372–393 (2009).
[CrossRef]

Andersson, M.

L. Roman, O. Inganas, T. Granlund, T. Nyberg, M. Svensson, M. Andersson, and J. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12, 189–195 (2000).
[CrossRef]

Araci, E.

J. Thomas, P. Gangopadhyay, E. Araci, R. A. Norwood, and N. Peyghambarian, “Nanoimprinting by melt processing: an easy technique to fabricate versatile nanostructures,” Adv. Mater 23, 4782–4787 (2011).
[CrossRef]

Bailly, S.

F. Monestier, J. Simon, P. Torchio, L. Escoubas, F. Florya, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Solar Energy Mater. Solar Cells 91, 405–410 (2007).
[CrossRef]

Baker, E.

J. Kalowekamo and E. Baker, “Estimating the manufacturing cost of purely organic solar cells,” Solar Energy 83, 1224–1231 (2009).
[CrossRef]

Bendickson, J.

Bhatia, A. B.

M. Born, E. Wolf, and A. B. Bhatia, Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 2005).

Blok, K.

A. L. Roes, E. A. Alsema, K. Blok, and M. K. Patel, “Ex-ante environmental and economic evaluation of polymer photovoltaics,” Prog. Photovoltaics 17, 372–393 (2009).
[CrossRef]

Bonekamp, J. B.

A. J. Moule, J. B. Bonekamp, and K. Meerholz, “The effect of active layer thickness and composition on the performance of bulk-heterojunction solar cells,” J. Appl. Phys. 100, 094503 (2006).
[CrossRef]

Born, M.

M. Born, E. Wolf, and A. B. Bhatia, Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 2005).

Brabec, C. J.

C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia, and S. P. Williams, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater. 22, 3839–3856 (2010).
[CrossRef]

Campbell, P.

P. Campbell, and M. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[CrossRef]

Chand, S.

P. Kumar and S. Chand, “Recent progress and future aspects of organic solar cells,” Prog. Photovoltaics 20, 377–415 (2012).
[CrossRef]

de Bettignies, R.

F. Monestier, J. Simon, P. Torchio, L. Escoubas, F. Florya, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Solar Energy Mater. Solar Cells 91, 405–410 (2007).
[CrossRef]

Defranoux, C.

F. Monestier, J. Simon, P. Torchio, L. Escoubas, F. Florya, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Solar Energy Mater. Solar Cells 91, 405–410 (2007).
[CrossRef]

Dunlop, E. D.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovoltaics 20, 12–20 (2012).
[CrossRef]

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovoltaics 20, 12–20 (2012).
[CrossRef]

V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “Accurate measurement and characterization of organic solar cells RID D-7774-2011 RID A-2944-2011,” Adv. Funct. Mater. 16, 2016–2023 (2006).
[CrossRef]

Escoubas, L.

F. Monestier, J. Simon, P. Torchio, L. Escoubas, F. Florya, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Solar Energy Mater. Solar Cells 91, 405–410 (2007).
[CrossRef]

Fan, S.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA 107, 17491–17496 (2010).
[CrossRef]

Florya, F.

F. Monestier, J. Simon, P. Torchio, L. Escoubas, F. Florya, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Solar Energy Mater. Solar Cells 91, 405–410 (2007).
[CrossRef]

Forrest, S.

P. Peumans, A. Yakimov, and S. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys. 93, 3693–3723 (2003).
[CrossRef]

Gangopadhyay, P.

A. Lopez-Santiago, H. R. Grant, P. Gangopadhyay, R. Voorakaranam, R. A. Norwood, and N. Peyghambarian, “Cobalt ferrite nanoparticles polymer composites based all-optical magnetometer,” Opt. Mater. Express 2, 978–986 (2012).
[CrossRef]

S. Shahin, P. Gangopadhyay, and R. A. Norwood, “Ultrathin organic bulk heterojunction solar cells: plasmon enhanced performance using au nanoparticles,” Appl. Phys. Lett. 101, 053109 (2012).
[CrossRef]

J. Thomas, P. Gangopadhyay, E. Araci, R. A. Norwood, and N. Peyghambarian, “Nanoimprinting by melt processing: an easy technique to fabricate versatile nanostructures,” Adv. Mater 23, 4782–4787 (2011).
[CrossRef]

Gaylord, T.

Glatthaar, M.

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes—architectures for organic solar cells,” Thin Solid Films 451, 619–623 (2004).
[CrossRef]

Glytsis, E.

Gombert, A.

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes—architectures for organic solar cells,” Thin Solid Films 451, 619–623 (2004).
[CrossRef]

Gowrisanker, S.

C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia, and S. P. Williams, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater. 22, 3839–3856 (2010).
[CrossRef]

Granlund, T.

L. Roman, O. Inganas, T. Granlund, T. Nyberg, M. Svensson, M. Andersson, and J. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12, 189–195 (2000).
[CrossRef]

Grant, B. G.

J. M. Palmer and B. G. Grant, The Art of Radiometry (SPIE, 2010).

Grant, H. R.

Green, M.

P. Campbell, and M. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[CrossRef]

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovoltaics 20, 12–20 (2012).
[CrossRef]

Guillerez, S.

F. Monestier, J. Simon, P. Torchio, L. Escoubas, F. Florya, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Solar Energy Mater. Solar Cells 91, 405–410 (2007).
[CrossRef]

Halls, J. J. M.

C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia, and S. P. Williams, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater. 22, 3839–3856 (2010).
[CrossRef]

He, F.

F. He and L. Yu, “How far can polymer solar cells go? In need of a synergistic approach,” J. Phys. Chem. Lett. 2, 3102–3113 (2011).
[CrossRef]

Hinsch, A.

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes—architectures for organic solar cells,” Thin Solid Films 451, 619–623 (2004).
[CrossRef]

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovoltaics 20, 12–20 (2012).
[CrossRef]

Hodgkinson, J.

Hummelen, J.

L. Roman, O. Inganas, T. Granlund, T. Nyberg, M. Svensson, M. Andersson, and J. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12, 189–195 (2000).
[CrossRef]

Inganas, O.

L. Roman, O. Inganas, T. Granlund, T. Nyberg, M. Svensson, M. Andersson, and J. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12, 189–195 (2000).
[CrossRef]

Jia, S.

C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia, and S. P. Williams, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater. 22, 3839–3856 (2010).
[CrossRef]

Jo, J.

S. Na, S. Kim, S. Kwon, J. Jo, J. Kim, T. Lee, and D. Kim, “Surface relief gratings on poly (3-hexylthiophene) and fullerene blends for efficient organic solar cells,” Appl. Phys. Lett. 91, 173509 (2007).
[CrossRef]

Kalowekamo, J.

J. Kalowekamo and E. Baker, “Estimating the manufacturing cost of purely organic solar cells,” Solar Energy 83, 1224–1231 (2009).
[CrossRef]

Kim, D.

S. Na, S. Kim, S. Kwon, J. Jo, J. Kim, T. Lee, and D. Kim, “Surface relief gratings on poly (3-hexylthiophene) and fullerene blends for efficient organic solar cells,” Appl. Phys. Lett. 91, 173509 (2007).
[CrossRef]

Kim, J.

S. Na, S. Kim, S. Kwon, J. Jo, J. Kim, T. Lee, and D. Kim, “Surface relief gratings on poly (3-hexylthiophene) and fullerene blends for efficient organic solar cells,” Appl. Phys. Lett. 91, 173509 (2007).
[CrossRef]

Kim, S.

S. Na, S. Kim, S. Kwon, J. Jo, J. Kim, T. Lee, and D. Kim, “Surface relief gratings on poly (3-hexylthiophene) and fullerene blends for efficient organic solar cells,” Appl. Phys. Lett. 91, 173509 (2007).
[CrossRef]

Ko, D.

J. R. Tumbleston, D. Ko, E. T. Samulski, and R. Lopez, “Electrophotonic enhancement of bulk heterojunction organic solar cells through photonic crystal photoactive layer,” Appl. Phys. Lett. 94, 043305 (2009).
[CrossRef]

Kumar, P.

P. Kumar and S. Chand, “Recent progress and future aspects of organic solar cells,” Prog. Photovoltaics 20, 377–415 (2012).
[CrossRef]

Kwon, S.

S. Na, S. Kim, S. Kwon, J. Jo, J. Kim, T. Lee, and D. Kim, “Surface relief gratings on poly (3-hexylthiophene) and fullerene blends for efficient organic solar cells,” Appl. Phys. Lett. 91, 173509 (2007).
[CrossRef]

Laird, D.

C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia, and S. P. Williams, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater. 22, 3839–3856 (2010).
[CrossRef]

Lee, T.

S. Na, S. Kim, S. Kwon, J. Jo, J. Kim, T. Lee, and D. Kim, “Surface relief gratings on poly (3-hexylthiophene) and fullerene blends for efficient organic solar cells,” Appl. Phys. Lett. 91, 173509 (2007).
[CrossRef]

Li, G.

Y. Liang, Z. Xu, J. Xia, S. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. 22, E135–E138 (2010).
[CrossRef]

V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “Accurate measurement and characterization of organic solar cells RID D-7774-2011 RID A-2944-2011,” Adv. Funct. Mater. 16, 2016–2023 (2006).
[CrossRef]

Liang, Y.

Y. Liang, Z. Xu, J. Xia, S. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. 22, E135–E138 (2010).
[CrossRef]

Llopis, F.

F. Llopis and I. Tobias, “The role of rear surface in thin silicon solar cells,” Solar Energy Mater. Solar Cells 87, 481–492 (2005).
[CrossRef]

Loewen, E. G.

E. G. Loewen and E. Popov, Diffraction Gratings and Applications (M. Dekker, 1997).

Lopez, R.

J. R. Tumbleston, D. Ko, E. T. Samulski, and R. Lopez, “Electrophotonic enhancement of bulk heterojunction organic solar cells through photonic crystal photoactive layer,” Appl. Phys. Lett. 94, 043305 (2009).
[CrossRef]

Lopez-Santiago, A.

Masiyano, D.

Meerholz, K.

A. J. Moule, J. B. Bonekamp, and K. Meerholz, “The effect of active layer thickness and composition on the performance of bulk-heterojunction solar cells,” J. Appl. Phys. 100, 094503 (2006).
[CrossRef]

Monestier, F.

F. Monestier, J. Simon, P. Torchio, L. Escoubas, F. Florya, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Solar Energy Mater. Solar Cells 91, 405–410 (2007).
[CrossRef]

Moriarty, T.

V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “Accurate measurement and characterization of organic solar cells RID D-7774-2011 RID A-2944-2011,” Adv. Funct. Mater. 16, 2016–2023 (2006).
[CrossRef]

Moule, A. J.

A. J. Moule, J. B. Bonekamp, and K. Meerholz, “The effect of active layer thickness and composition on the performance of bulk-heterojunction solar cells,” J. Appl. Phys. 100, 094503 (2006).
[CrossRef]

Na, S.

S. Na, S. Kim, S. Kwon, J. Jo, J. Kim, T. Lee, and D. Kim, “Surface relief gratings on poly (3-hexylthiophene) and fullerene blends for efficient organic solar cells,” Appl. Phys. Lett. 91, 173509 (2007).
[CrossRef]

Niggemann, M.

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes—architectures for organic solar cells,” Thin Solid Films 451, 619–623 (2004).
[CrossRef]

Norwood, R. A.

S. Shahin, P. Gangopadhyay, and R. A. Norwood, “Ultrathin organic bulk heterojunction solar cells: plasmon enhanced performance using au nanoparticles,” Appl. Phys. Lett. 101, 053109 (2012).
[CrossRef]

A. Lopez-Santiago, H. R. Grant, P. Gangopadhyay, R. Voorakaranam, R. A. Norwood, and N. Peyghambarian, “Cobalt ferrite nanoparticles polymer composites based all-optical magnetometer,” Opt. Mater. Express 2, 978–986 (2012).
[CrossRef]

J. Thomas, P. Gangopadhyay, E. Araci, R. A. Norwood, and N. Peyghambarian, “Nanoimprinting by melt processing: an easy technique to fabricate versatile nanostructures,” Adv. Mater 23, 4782–4787 (2011).
[CrossRef]

Nyberg, T.

L. Roman, O. Inganas, T. Granlund, T. Nyberg, M. Svensson, M. Andersson, and J. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12, 189–195 (2000).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

Palmer, J. M.

J. M. Palmer and B. G. Grant, The Art of Radiometry (SPIE, 2010).

Patel, M. K.

A. L. Roes, E. A. Alsema, K. Blok, and M. K. Patel, “Ex-ante environmental and economic evaluation of polymer photovoltaics,” Prog. Photovoltaics 17, 372–393 (2009).
[CrossRef]

Peumans, P.

P. Peumans, A. Yakimov, and S. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys. 93, 3693–3723 (2003).
[CrossRef]

Peyghambarian, N.

A. Lopez-Santiago, H. R. Grant, P. Gangopadhyay, R. Voorakaranam, R. A. Norwood, and N. Peyghambarian, “Cobalt ferrite nanoparticles polymer composites based all-optical magnetometer,” Opt. Mater. Express 2, 978–986 (2012).
[CrossRef]

J. Thomas, P. Gangopadhyay, E. Araci, R. A. Norwood, and N. Peyghambarian, “Nanoimprinting by melt processing: an easy technique to fabricate versatile nanostructures,” Adv. Mater 23, 4782–4787 (2011).
[CrossRef]

Popov, E.

E. G. Loewen and E. Popov, Diffraction Gratings and Applications (M. Dekker, 1997).

Rajkanan, K.

K. Rajkanan, R. Singh, and J. Shewchun, “Absorption-coefficient of silicon for solar-cell calculations,” Solid-State Electron. 22, 793–795 (1979).
[CrossRef]

Raman, A.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA 107, 17491–17496 (2010).
[CrossRef]

Ray, C.

Y. Liang, Z. Xu, J. Xia, S. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. 22, E135–E138 (2010).
[CrossRef]

Roes, A. L.

A. L. Roes, E. A. Alsema, K. Blok, and M. K. Patel, “Ex-ante environmental and economic evaluation of polymer photovoltaics,” Prog. Photovoltaics 17, 372–393 (2009).
[CrossRef]

Roman, L.

L. Roman, O. Inganas, T. Granlund, T. Nyberg, M. Svensson, M. Andersson, and J. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12, 189–195 (2000).
[CrossRef]

Samulski, E. T.

J. R. Tumbleston, D. Ko, E. T. Samulski, and R. Lopez, “Electrophotonic enhancement of bulk heterojunction organic solar cells through photonic crystal photoactive layer,” Appl. Phys. Lett. 94, 043305 (2009).
[CrossRef]

Shahin, S.

S. Shahin, P. Gangopadhyay, and R. A. Norwood, “Ultrathin organic bulk heterojunction solar cells: plasmon enhanced performance using au nanoparticles,” Appl. Phys. Lett. 101, 053109 (2012).
[CrossRef]

Shewchun, J.

K. Rajkanan, R. Singh, and J. Shewchun, “Absorption-coefficient of silicon for solar-cell calculations,” Solid-State Electron. 22, 793–795 (1979).
[CrossRef]

Shrotriya, V.

V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “Accurate measurement and characterization of organic solar cells RID D-7774-2011 RID A-2944-2011,” Adv. Funct. Mater. 16, 2016–2023 (2006).
[CrossRef]

Simon, J.

F. Monestier, J. Simon, P. Torchio, L. Escoubas, F. Florya, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Solar Energy Mater. Solar Cells 91, 405–410 (2007).
[CrossRef]

Singh, R.

K. Rajkanan, R. Singh, and J. Shewchun, “Absorption-coefficient of silicon for solar-cell calculations,” Solid-State Electron. 22, 793–795 (1979).
[CrossRef]

Svensson, M.

L. Roman, O. Inganas, T. Granlund, T. Nyberg, M. Svensson, M. Andersson, and J. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12, 189–195 (2000).
[CrossRef]

Tatam, R. P.

Thomas, J.

J. Thomas, P. Gangopadhyay, E. Araci, R. A. Norwood, and N. Peyghambarian, “Nanoimprinting by melt processing: an easy technique to fabricate versatile nanostructures,” Adv. Mater 23, 4782–4787 (2011).
[CrossRef]

Tobias, I.

F. Llopis and I. Tobias, “The role of rear surface in thin silicon solar cells,” Solar Energy Mater. Solar Cells 87, 481–492 (2005).
[CrossRef]

Torchio, P.

F. Monestier, J. Simon, P. Torchio, L. Escoubas, F. Florya, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Solar Energy Mater. Solar Cells 91, 405–410 (2007).
[CrossRef]

Tsai, S.

Y. Liang, Z. Xu, J. Xia, S. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. 22, E135–E138 (2010).
[CrossRef]

Tumbleston, J. R.

J. R. Tumbleston, D. Ko, E. T. Samulski, and R. Lopez, “Electrophotonic enhancement of bulk heterojunction organic solar cells through photonic crystal photoactive layer,” Appl. Phys. Lett. 94, 043305 (2009).
[CrossRef]

Voorakaranam, R.

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovoltaics 20, 12–20 (2012).
[CrossRef]

Williams, S. P.

C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia, and S. P. Williams, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater. 22, 3839–3856 (2010).
[CrossRef]

Wittwer, V.

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes—architectures for organic solar cells,” Thin Solid Films 451, 619–623 (2004).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, and A. B. Bhatia, Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 2005).

Wu, Y.

Y. Liang, Z. Xu, J. Xia, S. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. 22, E135–E138 (2010).
[CrossRef]

Xia, J.

Y. Liang, Z. Xu, J. Xia, S. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. 22, E135–E138 (2010).
[CrossRef]

Xu, Z.

Y. Liang, Z. Xu, J. Xia, S. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. 22, E135–E138 (2010).
[CrossRef]

Yablonovitch, E.

Yakimov, A.

P. Peumans, A. Yakimov, and S. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys. 93, 3693–3723 (2003).
[CrossRef]

Yang, Y.

V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “Accurate measurement and characterization of organic solar cells RID D-7774-2011 RID A-2944-2011,” Adv. Funct. Mater. 16, 2016–2023 (2006).
[CrossRef]

Yao, Y.

V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “Accurate measurement and characterization of organic solar cells RID D-7774-2011 RID A-2944-2011,” Adv. Funct. Mater. 16, 2016–2023 (2006).
[CrossRef]

Yu, L.

F. He and L. Yu, “How far can polymer solar cells go? In need of a synergistic approach,” J. Phys. Chem. Lett. 2, 3102–3113 (2011).
[CrossRef]

Y. Liang, Z. Xu, J. Xia, S. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. 22, E135–E138 (2010).
[CrossRef]

Yu, Z.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA 107, 17491–17496 (2010).
[CrossRef]

Adv. Funct. Mater.

V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “Accurate measurement and characterization of organic solar cells RID D-7774-2011 RID A-2944-2011,” Adv. Funct. Mater. 16, 2016–2023 (2006).
[CrossRef]

Adv. Mater

J. Thomas, P. Gangopadhyay, E. Araci, R. A. Norwood, and N. Peyghambarian, “Nanoimprinting by melt processing: an easy technique to fabricate versatile nanostructures,” Adv. Mater 23, 4782–4787 (2011).
[CrossRef]

Adv. Mater.

Y. Liang, Z. Xu, J. Xia, S. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. 22, E135–E138 (2010).
[CrossRef]

C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia, and S. P. Williams, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater. 22, 3839–3856 (2010).
[CrossRef]

L. Roman, O. Inganas, T. Granlund, T. Nyberg, M. Svensson, M. Andersson, and J. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12, 189–195 (2000).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J. R. Tumbleston, D. Ko, E. T. Samulski, and R. Lopez, “Electrophotonic enhancement of bulk heterojunction organic solar cells through photonic crystal photoactive layer,” Appl. Phys. Lett. 94, 043305 (2009).
[CrossRef]

S. Na, S. Kim, S. Kwon, J. Jo, J. Kim, T. Lee, and D. Kim, “Surface relief gratings on poly (3-hexylthiophene) and fullerene blends for efficient organic solar cells,” Appl. Phys. Lett. 91, 173509 (2007).
[CrossRef]

S. Shahin, P. Gangopadhyay, and R. A. Norwood, “Ultrathin organic bulk heterojunction solar cells: plasmon enhanced performance using au nanoparticles,” Appl. Phys. Lett. 101, 053109 (2012).
[CrossRef]

J. Appl. Phys.

A. J. Moule, J. B. Bonekamp, and K. Meerholz, “The effect of active layer thickness and composition on the performance of bulk-heterojunction solar cells,” J. Appl. Phys. 100, 094503 (2006).
[CrossRef]

P. Peumans, A. Yakimov, and S. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys. 93, 3693–3723 (2003).
[CrossRef]

P. Campbell, and M. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Phys. Chem. Lett.

F. He and L. Yu, “How far can polymer solar cells go? In need of a synergistic approach,” J. Phys. Chem. Lett. 2, 3102–3113 (2011).
[CrossRef]

Opt. Mater. Express

Proc. Natl. Acad. Sci. USA

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA 107, 17491–17496 (2010).
[CrossRef]

Prog. Photovoltaics

A. L. Roes, E. A. Alsema, K. Blok, and M. K. Patel, “Ex-ante environmental and economic evaluation of polymer photovoltaics,” Prog. Photovoltaics 17, 372–393 (2009).
[CrossRef]

P. Kumar and S. Chand, “Recent progress and future aspects of organic solar cells,” Prog. Photovoltaics 20, 377–415 (2012).
[CrossRef]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovoltaics 20, 12–20 (2012).
[CrossRef]

Solar Energy

J. Kalowekamo and E. Baker, “Estimating the manufacturing cost of purely organic solar cells,” Solar Energy 83, 1224–1231 (2009).
[CrossRef]

Solar Energy Mater. Solar Cells

F. Monestier, J. Simon, P. Torchio, L. Escoubas, F. Florya, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Solar Energy Mater. Solar Cells 91, 405–410 (2007).
[CrossRef]

F. Llopis and I. Tobias, “The role of rear surface in thin silicon solar cells,” Solar Energy Mater. Solar Cells 87, 481–492 (2005).
[CrossRef]

Solid-State Electron.

K. Rajkanan, R. Singh, and J. Shewchun, “Absorption-coefficient of silicon for solar-cell calculations,” Solid-State Electron. 22, 793–795 (1979).
[CrossRef]

Thin Solid Films

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes—architectures for organic solar cells,” Thin Solid Films 451, 619–623 (2004).
[CrossRef]

Other

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

M. Born, E. Wolf, and A. B. Bhatia, Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 2005).

E. G. Loewen and E. Popov, Diffraction Gratings and Applications (M. Dekker, 1997).

J. M. Palmer and B. G. Grant, The Art of Radiometry (SPIE, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Refractive index of PAN measured using an ellipsometer. (b) Diagram of the structure used to measure absorption enhancement. The top of the glass substrate is coated with a PAN grating, and the bottom is coated with P3HT:PCBM.

Fig. 2.
Fig. 2.

Diffractive properties of linear square wave gratings with 700 nm periods, 350 nm depths, and 45% duty cycles calculated using scalar theory. (a) Diffraction efficiencies for the first four orders calculated using Eq. (5). Over 80% of the light is in the 0 and ±1 orders. (b) Diffraction angles for the first three orders in a P3HT:PCBM layer calculated using Eq. (4). The ±2 orders become evanescent at 525 nm.

Fig. 3.
Fig. 3.

Total reflectance, R, and transmittance, T, of p- and s-polarized light for a grating on a glass substrate measured using an integrating sphere (a) and modeled using FDTD analysis (b). (c) Modeling approach used in the FDTD simulation. For both the modeled and measured gratings the s-polarized light has a much stronger interaction with the grating. The large feature starting at 700 nm is caused by TIR: diffracted light does not transmit through the grating, and is instead reflected, resulting in increased reflection and decreased transmission. The magnitude of the feature is reduced in the measured case compared to the modeled because of imperfections in the grating, and the differences between the finite size of the measured grating and infinite size of the modeled grating.

Fig. 4.
Fig. 4.

Integrating sphere setup to measure (a) total transmission and (b) total reflection of scattering or diffracting samples. These results may be combined to determine the absorptance of the sample.

Fig. 5.
Fig. 5.

Various samples demonstrating the importance of using both an integrating sphere and a UV–Vis spectrophotometer to measure scattered transmittance, scattered reflectance, and absorptance. (a) One of nature’s solar cells: a leaf. (b) TEM image of cobalt ferrite nanoparticles used in magneto-optic nanocomposite-based magnetometers (right). Plot of cobalt ferrite based polymer nanocomposite film optical properties (left). (c) Transparent Au honeycomb lattice.

Fig. 6.
Fig. 6.

SEM images of PAN gratings with 700 nm feature spacings and 350 nm depths: (a) linear grating, (b) rectangular grating, (c) hexagonal grating, and (d) PAN linear grating on a glass substrate.

Fig. 7.
Fig. 7.

(a) Fraction of diffracted light from linear, rectangular, and hexagonal gratings measured using an integrating sphere and UV–Vis spectrophotometer. (b) Absorptance of P3HT:PCBM layers of various thicknesses with and without gratings applied to the opposite side of the substrate. Absorptance is relative to total light incident on the sample.

Fig. 8.
Fig. 8.

Light confinement (a) light-confinement for the PAN gratings on glass substrates used in this study. Light at longer wavelengths TIRs and is confined in the device. A small fraction of the confined light diffracts out of the cell. (b) Fraction of light in the ±1 orders that exits the substrate through the grating. Wavelengths greater than 700 nm are confined in the sample, and have minimal leakage through the grating. The plot was calculated using FDTD analysis for a square wave grating with 700 nm period, 350 nm height, and index of 1.5. A separate simulation was run for each wavelength. The +1 order diffraction angle, θm, was calculated using Eq. (4). A monochromatic plane wave source at angle θm was inserted in a glass medium with a diffraction grating at its surface. A transmission monitor was used to measure the light diffracted out through the grating.

Fig. 9.
Fig. 9.

(a) Graphic of light passing through small and large gratings and entering the entrance port of an integrating sphere. Light is diffracted away from the entrance port, reducing the amount absorbed. Large gratings diffract light away from the port, but also diffract light into the port from neighboring sections. (b) The quantity 1RtotTtot for glass substrates with and without PAN gratings and/or P3HT:PCBM layers measured using an integrating sphere.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

PCE=η=ηAηDηC.
A=1eαl,
A=αl.
nsubsinθm=nisinθi+mλp,
Em,n=|1pxpyFξFη{fpx,py(x,y)rect(xpx,ypy)}|2,
n1sinθ1=n2sinθ2,
L(λ)=Rinc(λ)Φ(λ)πAsph[1Rsph(λ)(1f)][Wm2nmsr],
1=Rspec+Rdiff+Tspec+Tdiff+A.
Rdiff=RtotRspec
Tdiff=TtotTspec.

Metrics