Abstract

Fifty-five compost samples were collected and scanned as received by visible and near-IR (VisNIR, 350–2500 nm) diffuse reflectance spectroscopy. The raw reflectance and first-derivative spectra were used to predict log10-transformed organic matter (OM) using partial least squares (PLS) regression, penalized spline regression (PSR), and boosted regression trees (BRTs). Incorporating compost pH, moisture percentage, and electrical conductivity as auxiliary predictors along with reflectance, both PLS and PSR models showed comparable cross-validation r2 and validation root-mean-square deviation (RMSD). The BRT–reflectance model exhibited best predictability (residual prediction deviation=1.61, cross-validation r2=0.65, and RMSD=0.09log10%). These results proved that the VisNIR–BRT model, along with easy-to-measure auxiliary variables, has the potential to quantify compost OM with reasonable accuracy.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. USDA-USCC, “Test methods for the evaluation of composts and composting” (CD ROM) (Composting Council Research and Education Foundation, 2002).
  2. A. Walkley and I. A. Black, “An examination of the Degtjareff method for determining organic carbon in soils: effect of variations in digestion conditions and of inorganic soil constituents,” Soil Sci. 63, 251–264 (1934).
    [CrossRef]
  3. D. W. Nelson and L. E. Sommers, “Total carbon, organic carbon and organic matter,” in Methods of Soil Analysis, Part 3: Chemical Methods, J. M. Bigham, ed. (ASA, 1996), pp. 961–1010.
  4. S. Chakraborty, D. C. Weindorf, C. L. S. Morgan, Y. Ge, J. M. Galbraith, and C. S. Kahlon, “Rapid identification of oil-contaminated soils using visible near-infrared diffuse reflectance spectroscopy,” J. Environ. Qual. 39, 1378–1387 (2010).
    [CrossRef]
  5. D. C. Weindorf, J. P. Muir, and C. Landeros-Sánchez, “Organic compost and manufactured fertilizers: economics and ecology,” in Integrating Agriculture, Conservation, and Ecotourism: Examples from the Field (Issues In Agroecology—Present Status and Future Prospectus 1), W. B. Campbell and O. S. Lopez, eds. (Springer, 2011), pp. 27–53.
  6. S. Chakraborty, D. C. Weindorf, Y. Zhu, C. L. S. Morgan, Y. Ge, and J. M. Galbraith, “Spectral reflectance variability from soil physicochemical properties in oil contaminated soils,” Geoderma 177–178, 80–89 (2012).
    [CrossRef]
  7. D. F. Malley, L. Yesmin, and R. G. Eilers, “Rapid analysis of hog manure and manure-amended soils using near-infrared spectroscopy,” Soil Sci. Soc. Am. J. 66, 1677–1686 (2002).
    [CrossRef]
  8. J. B. Reeves, G. W. McCarty, and J. J. Meisinger, “Near infrared reflectance spectroscopy for the analysis of agricultural soils,” J. Near Infrared Spectrosc. 7, 179–193 (1999).
    [CrossRef]
  9. W. S. Lee, J. F. Sanchez, R. S. Mylavarapu, and J. S. Choe, “Estimating chemical properties of Florida soils using spectral reflectance,” Trans. ASAE 46, 1443–1453 (2003).
  10. C. Chang, D. A. Laird, and C. R. Hurburgh, “Influence of soil moisture on near-infrared reflectance spectroscopic measurement of soil properties,” Soil Sci. 170, 244–255 (2005).
    [CrossRef]
  11. G. W. McCarty, J. B. Reeves, V. B. Reeves, R. F. Follett, and J. M. Kimble, “Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement,” Soil Sci. Soc. Am. J. 66, 640–646 (2002).
    [CrossRef]
  12. K. D. Shepherd and M. G. Walsh, “Development of reflectance spectral libraries for characterization of soil properties,” Soil Sci. Soc. Am. J. 66, 988–998 (2002).
    [CrossRef]
  13. E. Ben-Dor and A. Banin, “Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties,” Soil Sci. Soc. Am. J. 59, 364–372 (1995).
    [CrossRef]
  14. B. W. Dunn, H. G. Beecher, G. D. Batten, and S. Ciavarella, “The potential of near-infrared reflectance spectroscopy for soil analysis—a case study from the Riverine Plain of south-eastern Australia,” Aust. J. Exp. Agric. 42, 607–614 (2002).
    [CrossRef]
  15. K. Islam, B. Singh, and A. McBratney, “Simultaneous estimation of several soil properties by ultraviolet, visible, and near-infrared reflectance spectroscopy,” Aust. J. Soil Res. 41, 1101–1114 (2003).
    [CrossRef]
  16. K. A. Sudduth and J. W. Hummel, “Soil organic matter, CEC, and moisture sensing with a portable NIR spectrophotometer,” Trans. ASAE 36, 1571–1582 (1993).
  17. M. Kang, “Quantification of soil organic carbon using mid- and near-DRIFT spectroscopy,” Master’s thesis (Texas A&M University, 2002).
  18. S. Tanner, H. Shu, A. Frank, L. Wang, E. Zandi, M. Mumby, P. A. Pevzner, and V. Bafna, “Inspect: fast and accurate identification of post-translationally modified peptides from tandem mass spectra,” Anal. Chem. 77, 4626–4639 (2005).
    [CrossRef]
  19. J. W. T. Tung, “Determination of metal components in marine sediments using energy dispersive x-ray fluorescence (ED-XRF) spectrometry,” Ann. Chim. 94, 837–846 (2004).
    [CrossRef]
  20. D. M. Smith, J. J. Griffin, and E. D. Goldberg, “Spectrometric method for the quantitative determination of elemental carbon,” Anal. Chem. 47, 233–238 (1975).
    [CrossRef]
  21. R. C. Dalal and R. J. Henry, “Simultaneous determination of moisture, organic carbon and total nitrogen by near infrared reflectance spectrophotometry,” Soil Sci. Soc. Am. J. 50, 120–123 (1986).
    [CrossRef]
  22. M. J. Morra, M. H. Hall, and L. L. Freeborn, “Carbon and nitrogen analysis of soil fractions using near-infrared reflectance spectroscopy,” Soil Sci. Soc. Am. J. 55, 288–291 (1991).
    [CrossRef]
  23. L. Tremblay and J. Gagné, “Fast quantification of humic substances and organic matter by direct analysis of sediments using DRIFT spectroscopy,” Anal. Chem. 74, 2985–2993 (2002).
    [CrossRef]
  24. E. K. Kemsley, H. S. Tapp, A. J. Scarlett, S. J. Miles, R. Hammond, and R. H. Wilson, “Comparison of spectroscopic techniques for the determination of Kjeldahl and ammoniacal nitrogen content of farmyard manure,” J. Agric. Food Chem. 49, 603–609 (2001).
    [CrossRef]
  25. W. Saeys, A. M. Mouazen, and H. Ramon, “Potential for on-site and on-line analysis of hog manure using visual and near-infrared reflectance spectroscopy,” in Precision Livestock Farming’05, S. Cox, ed. (Wageningen Academic, 2005), pp. 131–138.
  26. J. B. Reeves and J. S. Van Kessel, “Determination of ammonium-N, moisture, total C and total N in dairy manures using a near infrared fibre-optic spectrometer,” J. Near Infrared Spectrosc. 8, 151–160 (2000).
    [CrossRef]
  27. S. L. Preece, C. L. S. Morgan, B. W. Auvermann, K. Wilke, and K. Heflin, “Determination of ash content in solid cattle manure with visible near-infrared diffuse reflectance spectroscopy,” Trans. ASABE 52, 609–614 (2009).
  28. S. L. P. Sakirkin, C. L. S. Morgan, and B. W. Auvermann, “Effects of sample processing on ash content determination in solid cattle manure with visible/near-infrared spectroscopy,” Trans. ASABE 53: 421–428 (2010).
  29. W. Ye, J. C. Lorimor, C. Hurburgh, H. Zhang, and J. Hattery, “Application of near-infrared reflectance spectroscopy for determination of nutrient contents in liquid and solid manures,” Trans. ASAE 48, 1911–1918 (2005).
  30. Z. Yang, L. Han, and X. Fan, “Rapidly estimating nutrient contents of fattening pig manure from floor scrapings by near infrared reflectance spectroscopy,” J. Near Infrared Spectrosc. 14, 261–268 (2006).
    [CrossRef]
  31. K. Suehara, Y. Nakano, and T. Yano, “Simultaneous measurement of the carbon and nitrogen content of compost using near-infrared spectroscopy,” J. Near Infrared Spectrosc. 9, 35–41 (2001).
    [CrossRef]
  32. D. F. Malley, C. McClure, P. D. Martin, K. Buckley, and W. P. McCaughe, “Compositional analysis of cattle manure during composting using a field-portable near-infrared spectrometer,” Commun. Soil Sci. Plant Anal. 36, 455–475 (2005).
    [CrossRef]
  33. E. Ben-Dor, Y. Inbar, and Y. Chen, “The reflectance spectra of organic matter in the visible near infrared and short wave infrared region (400–2500 nm) during a control decomposition process,” Remote Sens. Environ. 61, 1–15 (1997).
    [CrossRef]
  34. H. S. S. Sharma, M. Kilpatrick, G. Lyons, S. Sturgeon, J. Archer, S. Moore, L. Cheung, and K. Finegan, “Visible and near-infrared calibrations for quality assessment of fresh phase I and II mushroom (Agaricus bisporus) compost,” Appl. Spectrosc. 59, 1399–1405 (2005).
    [CrossRef]
  35. A. L. McWhirt, D. C. Weindorf, S. Chakraborty, and B. Li, “Visible near infrared diffuse reflectance spectroscopy (VisNIR DRS) for rapid measurement of organic matter in compost,” Waste Manag. Res. 30, 1049–1058 (2012).
    [CrossRef]
  36. Y. Zhu, D. C. Weindorf, S. Chakraborty, B. Haggard, S. Johnson, and N. Bakr, “Characterizing surface soil water with field portable diffuse reflectance spectroscopy,” J. Hydrol. 391, 133–140 (2010).
    [CrossRef]
  37. T. H. Demetriades-Shah, M. D. Steven, and J. A. Clark, “High-resolution derivative spectra in remote sensing,” Remote Sens. Environ. 33, 55–64 (1990).
    [CrossRef]
  38. R Development Core Team, “R: a language and environment for statistical computing,” http://www.cran.r-project.org (2008).
  39. D. J. Brown, K. D. Shepherd, M. G. Walsh, M. D. Mays, and T. G. Reinsch, “Global soil characterization with VNIR diffuse reflectance spectroscopy,” Geoderma 132, 273–290 (2006).
    [CrossRef]
  40. G. E. P. Box and D. R. Cox, “An analysis of transformations,” J. R. Stat. Soc. Ser. B 26, 211–252 (1964).
    [CrossRef]
  41. H. Steinhaus, “Sur la division des corp materiels en parties,” Bull. Acad. Pol. Sci. 4, 801–804 (1956) (in French).
  42. J. H. Ward, “Hierarchical grouping to optimize an objective function,” J. Am. Stat. Assoc. 48, 236–244.(1963).
    [CrossRef]
  43. T. H. Waiser, C. L. S. Morgan, D. J. Brown, and C. T. Hallmark, “In situ characterization of soil clay content with visible near-infrared diffuse reflectance spectroscopy,” Soil Sci. Soc. Am. J. 71, 389–396 (2007).
    [CrossRef]
  44. D. M. Haaland and E. V. Thomas, “Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60, 1193–1202 (1988).
    [CrossRef]
  45. P. H. C. Eilers and B. D. Marx, “Generalized linear additive smooth structures,” J. Comput. Graph. Statist. 11, 758–783 (2002).
    [CrossRef]
  46. J. H. Friedman, “Greedy function approximation: a gradient boosting machine,” Technical report (Department of Statistics, Stanford University, 1999).
  47. R. A. V. Rossel and T. Behrens, “Using data mining to model and interpret soil diffuse reflectance spectra,” Geoderma 158, 46–54 (2010).
    [CrossRef]
  48. G. A. Shonk, L. D. Gaultney, D. G. Schulze, and G. E. Van Scoyoc, “Spectroscopic sensing of soil organic matter content,” Trans. ASAE 34, 1978–1984 (1991).
  49. P. C. Williams, “Commercial near-infrared reflectance analyzers,” in Near-infrared Technology in the Agricultural and Food Industries, P. C. Williams and K. H. Norris, eds. (American Association of Cereal Chemists, 1987), pp. 107–136.
  50. B. Minasny and A. B. McBratney, “Regression rules as a tool for predicting soil properties from infrared reflectance spectroscopy,” Chemom. Intell. Lab. Syst. 94, 72–79 (2008).
    [CrossRef]
  51. L. Kooistra, R. Wehrens, R. S. E. W. Leuven, and L. M. C. Buydens, “Possibilities of VNIR spectroscopy for the assessment of soil contamination in river floodplains,” Anal. Chim. Acta 446, 97–105 (2001).
    [CrossRef]
  52. S. Shibusawa, S. W. I. Anom, S. Sato, A. Sasao, and S. Hirako, “Soil mapping using the real-time soil spectrophotometer,” in ECPA 2001, Third European Conference on Precision Agriculture, G. Grenier and S. Blackmore, eds. (Agro Montpellier, 2001), Vol. 1, pp. 497– 508.
  53. American Association for State Highway and Transportation Officials, “Standard specifications for compost for erosion/sediment control,” http://compostingcouncil.org/admin/wp-content/plugins/wp-pdfupload/pdf/32/AASHTO-Specifications.pdf .
  54. J. L. Bishop, M. D. Lane, M. D. Dyar, and A. J. Brown, “Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite–serpentines, chlorites and micas,” Clay Miner. 43, 35–54 (2008).
    [CrossRef]
  55. G. R. Hunt, “Spectral signatures of particulate minerals in visible and near IR,” Geophysics 42, 501–513 (1977).
    [CrossRef]
  56. R. N. Clark, “Spectroscopy of rocks and minerals, and principles of spectroscopy,” in Remote Sensing for the Earth Sciences: Manual of Remote Sensing, N. Rencz, ed. (Wiley, 1999), pp. 3–52.
  57. J. Elith, J. R. Leathwick, and T. Hastie, “A working guide to boosted regression trees,” J. Anim. Ecol. 77, 802–813 (2008).
    [CrossRef]
  58. F. J. Calderon, J. B. Reeves, H. P. Collins, and E. A. Paul, “Chemical differences in soil organic matter fractions determined by diffuse-reflectance mid-infrared spectroscopy,” Soil Sci. Soc. Am. J. 75, 568–579 (2011).
    [CrossRef]
  59. Y. Ge, C. L. S. Morgan, J. A. Thomasson, and T. Waiser, “A new perspective to near-infrared reflectance spectroscopy: a wavelet approach,” Trans. ASABE 50, 303–311 (2007).

2012

S. Chakraborty, D. C. Weindorf, Y. Zhu, C. L. S. Morgan, Y. Ge, and J. M. Galbraith, “Spectral reflectance variability from soil physicochemical properties in oil contaminated soils,” Geoderma 177–178, 80–89 (2012).
[CrossRef]

A. L. McWhirt, D. C. Weindorf, S. Chakraborty, and B. Li, “Visible near infrared diffuse reflectance spectroscopy (VisNIR DRS) for rapid measurement of organic matter in compost,” Waste Manag. Res. 30, 1049–1058 (2012).
[CrossRef]

2011

F. J. Calderon, J. B. Reeves, H. P. Collins, and E. A. Paul, “Chemical differences in soil organic matter fractions determined by diffuse-reflectance mid-infrared spectroscopy,” Soil Sci. Soc. Am. J. 75, 568–579 (2011).
[CrossRef]

2010

R. A. V. Rossel and T. Behrens, “Using data mining to model and interpret soil diffuse reflectance spectra,” Geoderma 158, 46–54 (2010).
[CrossRef]

Y. Zhu, D. C. Weindorf, S. Chakraborty, B. Haggard, S. Johnson, and N. Bakr, “Characterizing surface soil water with field portable diffuse reflectance spectroscopy,” J. Hydrol. 391, 133–140 (2010).
[CrossRef]

S. L. P. Sakirkin, C. L. S. Morgan, and B. W. Auvermann, “Effects of sample processing on ash content determination in solid cattle manure with visible/near-infrared spectroscopy,” Trans. ASABE 53: 421–428 (2010).

S. Chakraborty, D. C. Weindorf, C. L. S. Morgan, Y. Ge, J. M. Galbraith, and C. S. Kahlon, “Rapid identification of oil-contaminated soils using visible near-infrared diffuse reflectance spectroscopy,” J. Environ. Qual. 39, 1378–1387 (2010).
[CrossRef]

2009

S. L. Preece, C. L. S. Morgan, B. W. Auvermann, K. Wilke, and K. Heflin, “Determination of ash content in solid cattle manure with visible near-infrared diffuse reflectance spectroscopy,” Trans. ASABE 52, 609–614 (2009).

2008

B. Minasny and A. B. McBratney, “Regression rules as a tool for predicting soil properties from infrared reflectance spectroscopy,” Chemom. Intell. Lab. Syst. 94, 72–79 (2008).
[CrossRef]

J. L. Bishop, M. D. Lane, M. D. Dyar, and A. J. Brown, “Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite–serpentines, chlorites and micas,” Clay Miner. 43, 35–54 (2008).
[CrossRef]

J. Elith, J. R. Leathwick, and T. Hastie, “A working guide to boosted regression trees,” J. Anim. Ecol. 77, 802–813 (2008).
[CrossRef]

2007

Y. Ge, C. L. S. Morgan, J. A. Thomasson, and T. Waiser, “A new perspective to near-infrared reflectance spectroscopy: a wavelet approach,” Trans. ASABE 50, 303–311 (2007).

T. H. Waiser, C. L. S. Morgan, D. J. Brown, and C. T. Hallmark, “In situ characterization of soil clay content with visible near-infrared diffuse reflectance spectroscopy,” Soil Sci. Soc. Am. J. 71, 389–396 (2007).
[CrossRef]

2006

D. J. Brown, K. D. Shepherd, M. G. Walsh, M. D. Mays, and T. G. Reinsch, “Global soil characterization with VNIR diffuse reflectance spectroscopy,” Geoderma 132, 273–290 (2006).
[CrossRef]

Z. Yang, L. Han, and X. Fan, “Rapidly estimating nutrient contents of fattening pig manure from floor scrapings by near infrared reflectance spectroscopy,” J. Near Infrared Spectrosc. 14, 261–268 (2006).
[CrossRef]

2005

D. F. Malley, C. McClure, P. D. Martin, K. Buckley, and W. P. McCaughe, “Compositional analysis of cattle manure during composting using a field-portable near-infrared spectrometer,” Commun. Soil Sci. Plant Anal. 36, 455–475 (2005).
[CrossRef]

W. Ye, J. C. Lorimor, C. Hurburgh, H. Zhang, and J. Hattery, “Application of near-infrared reflectance spectroscopy for determination of nutrient contents in liquid and solid manures,” Trans. ASAE 48, 1911–1918 (2005).

H. S. S. Sharma, M. Kilpatrick, G. Lyons, S. Sturgeon, J. Archer, S. Moore, L. Cheung, and K. Finegan, “Visible and near-infrared calibrations for quality assessment of fresh phase I and II mushroom (Agaricus bisporus) compost,” Appl. Spectrosc. 59, 1399–1405 (2005).
[CrossRef]

C. Chang, D. A. Laird, and C. R. Hurburgh, “Influence of soil moisture on near-infrared reflectance spectroscopic measurement of soil properties,” Soil Sci. 170, 244–255 (2005).
[CrossRef]

S. Tanner, H. Shu, A. Frank, L. Wang, E. Zandi, M. Mumby, P. A. Pevzner, and V. Bafna, “Inspect: fast and accurate identification of post-translationally modified peptides from tandem mass spectra,” Anal. Chem. 77, 4626–4639 (2005).
[CrossRef]

2004

J. W. T. Tung, “Determination of metal components in marine sediments using energy dispersive x-ray fluorescence (ED-XRF) spectrometry,” Ann. Chim. 94, 837–846 (2004).
[CrossRef]

2003

W. S. Lee, J. F. Sanchez, R. S. Mylavarapu, and J. S. Choe, “Estimating chemical properties of Florida soils using spectral reflectance,” Trans. ASAE 46, 1443–1453 (2003).

K. Islam, B. Singh, and A. McBratney, “Simultaneous estimation of several soil properties by ultraviolet, visible, and near-infrared reflectance spectroscopy,” Aust. J. Soil Res. 41, 1101–1114 (2003).
[CrossRef]

2002

B. W. Dunn, H. G. Beecher, G. D. Batten, and S. Ciavarella, “The potential of near-infrared reflectance spectroscopy for soil analysis—a case study from the Riverine Plain of south-eastern Australia,” Aust. J. Exp. Agric. 42, 607–614 (2002).
[CrossRef]

G. W. McCarty, J. B. Reeves, V. B. Reeves, R. F. Follett, and J. M. Kimble, “Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement,” Soil Sci. Soc. Am. J. 66, 640–646 (2002).
[CrossRef]

K. D. Shepherd and M. G. Walsh, “Development of reflectance spectral libraries for characterization of soil properties,” Soil Sci. Soc. Am. J. 66, 988–998 (2002).
[CrossRef]

D. F. Malley, L. Yesmin, and R. G. Eilers, “Rapid analysis of hog manure and manure-amended soils using near-infrared spectroscopy,” Soil Sci. Soc. Am. J. 66, 1677–1686 (2002).
[CrossRef]

L. Tremblay and J. Gagné, “Fast quantification of humic substances and organic matter by direct analysis of sediments using DRIFT spectroscopy,” Anal. Chem. 74, 2985–2993 (2002).
[CrossRef]

P. H. C. Eilers and B. D. Marx, “Generalized linear additive smooth structures,” J. Comput. Graph. Statist. 11, 758–783 (2002).
[CrossRef]

2001

L. Kooistra, R. Wehrens, R. S. E. W. Leuven, and L. M. C. Buydens, “Possibilities of VNIR spectroscopy for the assessment of soil contamination in river floodplains,” Anal. Chim. Acta 446, 97–105 (2001).
[CrossRef]

E. K. Kemsley, H. S. Tapp, A. J. Scarlett, S. J. Miles, R. Hammond, and R. H. Wilson, “Comparison of spectroscopic techniques for the determination of Kjeldahl and ammoniacal nitrogen content of farmyard manure,” J. Agric. Food Chem. 49, 603–609 (2001).
[CrossRef]

K. Suehara, Y. Nakano, and T. Yano, “Simultaneous measurement of the carbon and nitrogen content of compost using near-infrared spectroscopy,” J. Near Infrared Spectrosc. 9, 35–41 (2001).
[CrossRef]

2000

J. B. Reeves and J. S. Van Kessel, “Determination of ammonium-N, moisture, total C and total N in dairy manures using a near infrared fibre-optic spectrometer,” J. Near Infrared Spectrosc. 8, 151–160 (2000).
[CrossRef]

1999

J. B. Reeves, G. W. McCarty, and J. J. Meisinger, “Near infrared reflectance spectroscopy for the analysis of agricultural soils,” J. Near Infrared Spectrosc. 7, 179–193 (1999).
[CrossRef]

1997

E. Ben-Dor, Y. Inbar, and Y. Chen, “The reflectance spectra of organic matter in the visible near infrared and short wave infrared region (400–2500 nm) during a control decomposition process,” Remote Sens. Environ. 61, 1–15 (1997).
[CrossRef]

1995

E. Ben-Dor and A. Banin, “Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties,” Soil Sci. Soc. Am. J. 59, 364–372 (1995).
[CrossRef]

1993

K. A. Sudduth and J. W. Hummel, “Soil organic matter, CEC, and moisture sensing with a portable NIR spectrophotometer,” Trans. ASAE 36, 1571–1582 (1993).

1991

M. J. Morra, M. H. Hall, and L. L. Freeborn, “Carbon and nitrogen analysis of soil fractions using near-infrared reflectance spectroscopy,” Soil Sci. Soc. Am. J. 55, 288–291 (1991).
[CrossRef]

G. A. Shonk, L. D. Gaultney, D. G. Schulze, and G. E. Van Scoyoc, “Spectroscopic sensing of soil organic matter content,” Trans. ASAE 34, 1978–1984 (1991).

1990

T. H. Demetriades-Shah, M. D. Steven, and J. A. Clark, “High-resolution derivative spectra in remote sensing,” Remote Sens. Environ. 33, 55–64 (1990).
[CrossRef]

1988

D. M. Haaland and E. V. Thomas, “Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60, 1193–1202 (1988).
[CrossRef]

1986

R. C. Dalal and R. J. Henry, “Simultaneous determination of moisture, organic carbon and total nitrogen by near infrared reflectance spectrophotometry,” Soil Sci. Soc. Am. J. 50, 120–123 (1986).
[CrossRef]

1977

G. R. Hunt, “Spectral signatures of particulate minerals in visible and near IR,” Geophysics 42, 501–513 (1977).
[CrossRef]

1975

D. M. Smith, J. J. Griffin, and E. D. Goldberg, “Spectrometric method for the quantitative determination of elemental carbon,” Anal. Chem. 47, 233–238 (1975).
[CrossRef]

1964

G. E. P. Box and D. R. Cox, “An analysis of transformations,” J. R. Stat. Soc. Ser. B 26, 211–252 (1964).
[CrossRef]

1963

J. H. Ward, “Hierarchical grouping to optimize an objective function,” J. Am. Stat. Assoc. 48, 236–244.(1963).
[CrossRef]

1956

H. Steinhaus, “Sur la division des corp materiels en parties,” Bull. Acad. Pol. Sci. 4, 801–804 (1956) (in French).

1934

A. Walkley and I. A. Black, “An examination of the Degtjareff method for determining organic carbon in soils: effect of variations in digestion conditions and of inorganic soil constituents,” Soil Sci. 63, 251–264 (1934).
[CrossRef]

Anom, S. W. I.

S. Shibusawa, S. W. I. Anom, S. Sato, A. Sasao, and S. Hirako, “Soil mapping using the real-time soil spectrophotometer,” in ECPA 2001, Third European Conference on Precision Agriculture, G. Grenier and S. Blackmore, eds. (Agro Montpellier, 2001), Vol. 1, pp. 497– 508.

Archer, J.

H. S. S. Sharma, M. Kilpatrick, G. Lyons, S. Sturgeon, J. Archer, S. Moore, L. Cheung, and K. Finegan, “Visible and near-infrared calibrations for quality assessment of fresh phase I and II mushroom (Agaricus bisporus) compost,” Appl. Spectrosc. 59, 1399–1405 (2005).
[CrossRef]

Auvermann, B. W.

S. L. P. Sakirkin, C. L. S. Morgan, and B. W. Auvermann, “Effects of sample processing on ash content determination in solid cattle manure with visible/near-infrared spectroscopy,” Trans. ASABE 53: 421–428 (2010).

S. L. Preece, C. L. S. Morgan, B. W. Auvermann, K. Wilke, and K. Heflin, “Determination of ash content in solid cattle manure with visible near-infrared diffuse reflectance spectroscopy,” Trans. ASABE 52, 609–614 (2009).

Bafna, V.

S. Tanner, H. Shu, A. Frank, L. Wang, E. Zandi, M. Mumby, P. A. Pevzner, and V. Bafna, “Inspect: fast and accurate identification of post-translationally modified peptides from tandem mass spectra,” Anal. Chem. 77, 4626–4639 (2005).
[CrossRef]

Bakr, N.

Y. Zhu, D. C. Weindorf, S. Chakraborty, B. Haggard, S. Johnson, and N. Bakr, “Characterizing surface soil water with field portable diffuse reflectance spectroscopy,” J. Hydrol. 391, 133–140 (2010).
[CrossRef]

Banin, A.

E. Ben-Dor and A. Banin, “Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties,” Soil Sci. Soc. Am. J. 59, 364–372 (1995).
[CrossRef]

Batten, G. D.

B. W. Dunn, H. G. Beecher, G. D. Batten, and S. Ciavarella, “The potential of near-infrared reflectance spectroscopy for soil analysis—a case study from the Riverine Plain of south-eastern Australia,” Aust. J. Exp. Agric. 42, 607–614 (2002).
[CrossRef]

Beecher, H. G.

B. W. Dunn, H. G. Beecher, G. D. Batten, and S. Ciavarella, “The potential of near-infrared reflectance spectroscopy for soil analysis—a case study from the Riverine Plain of south-eastern Australia,” Aust. J. Exp. Agric. 42, 607–614 (2002).
[CrossRef]

Behrens, T.

R. A. V. Rossel and T. Behrens, “Using data mining to model and interpret soil diffuse reflectance spectra,” Geoderma 158, 46–54 (2010).
[CrossRef]

Ben-Dor, E.

E. Ben-Dor, Y. Inbar, and Y. Chen, “The reflectance spectra of organic matter in the visible near infrared and short wave infrared region (400–2500 nm) during a control decomposition process,” Remote Sens. Environ. 61, 1–15 (1997).
[CrossRef]

E. Ben-Dor and A. Banin, “Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties,” Soil Sci. Soc. Am. J. 59, 364–372 (1995).
[CrossRef]

Bishop, J. L.

J. L. Bishop, M. D. Lane, M. D. Dyar, and A. J. Brown, “Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite–serpentines, chlorites and micas,” Clay Miner. 43, 35–54 (2008).
[CrossRef]

Black, I. A.

A. Walkley and I. A. Black, “An examination of the Degtjareff method for determining organic carbon in soils: effect of variations in digestion conditions and of inorganic soil constituents,” Soil Sci. 63, 251–264 (1934).
[CrossRef]

Box, G. E. P.

G. E. P. Box and D. R. Cox, “An analysis of transformations,” J. R. Stat. Soc. Ser. B 26, 211–252 (1964).
[CrossRef]

Brown, A. J.

J. L. Bishop, M. D. Lane, M. D. Dyar, and A. J. Brown, “Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite–serpentines, chlorites and micas,” Clay Miner. 43, 35–54 (2008).
[CrossRef]

Brown, D. J.

T. H. Waiser, C. L. S. Morgan, D. J. Brown, and C. T. Hallmark, “In situ characterization of soil clay content with visible near-infrared diffuse reflectance spectroscopy,” Soil Sci. Soc. Am. J. 71, 389–396 (2007).
[CrossRef]

D. J. Brown, K. D. Shepherd, M. G. Walsh, M. D. Mays, and T. G. Reinsch, “Global soil characterization with VNIR diffuse reflectance spectroscopy,” Geoderma 132, 273–290 (2006).
[CrossRef]

Buckley, K.

D. F. Malley, C. McClure, P. D. Martin, K. Buckley, and W. P. McCaughe, “Compositional analysis of cattle manure during composting using a field-portable near-infrared spectrometer,” Commun. Soil Sci. Plant Anal. 36, 455–475 (2005).
[CrossRef]

Buydens, L. M. C.

L. Kooistra, R. Wehrens, R. S. E. W. Leuven, and L. M. C. Buydens, “Possibilities of VNIR spectroscopy for the assessment of soil contamination in river floodplains,” Anal. Chim. Acta 446, 97–105 (2001).
[CrossRef]

Calderon, F. J.

F. J. Calderon, J. B. Reeves, H. P. Collins, and E. A. Paul, “Chemical differences in soil organic matter fractions determined by diffuse-reflectance mid-infrared spectroscopy,” Soil Sci. Soc. Am. J. 75, 568–579 (2011).
[CrossRef]

Chakraborty, S.

A. L. McWhirt, D. C. Weindorf, S. Chakraborty, and B. Li, “Visible near infrared diffuse reflectance spectroscopy (VisNIR DRS) for rapid measurement of organic matter in compost,” Waste Manag. Res. 30, 1049–1058 (2012).
[CrossRef]

S. Chakraborty, D. C. Weindorf, Y. Zhu, C. L. S. Morgan, Y. Ge, and J. M. Galbraith, “Spectral reflectance variability from soil physicochemical properties in oil contaminated soils,” Geoderma 177–178, 80–89 (2012).
[CrossRef]

S. Chakraborty, D. C. Weindorf, C. L. S. Morgan, Y. Ge, J. M. Galbraith, and C. S. Kahlon, “Rapid identification of oil-contaminated soils using visible near-infrared diffuse reflectance spectroscopy,” J. Environ. Qual. 39, 1378–1387 (2010).
[CrossRef]

Y. Zhu, D. C. Weindorf, S. Chakraborty, B. Haggard, S. Johnson, and N. Bakr, “Characterizing surface soil water with field portable diffuse reflectance spectroscopy,” J. Hydrol. 391, 133–140 (2010).
[CrossRef]

Chang, C.

C. Chang, D. A. Laird, and C. R. Hurburgh, “Influence of soil moisture on near-infrared reflectance spectroscopic measurement of soil properties,” Soil Sci. 170, 244–255 (2005).
[CrossRef]

Chen, Y.

E. Ben-Dor, Y. Inbar, and Y. Chen, “The reflectance spectra of organic matter in the visible near infrared and short wave infrared region (400–2500 nm) during a control decomposition process,” Remote Sens. Environ. 61, 1–15 (1997).
[CrossRef]

Cheung, L.

H. S. S. Sharma, M. Kilpatrick, G. Lyons, S. Sturgeon, J. Archer, S. Moore, L. Cheung, and K. Finegan, “Visible and near-infrared calibrations for quality assessment of fresh phase I and II mushroom (Agaricus bisporus) compost,” Appl. Spectrosc. 59, 1399–1405 (2005).
[CrossRef]

Choe, J. S.

W. S. Lee, J. F. Sanchez, R. S. Mylavarapu, and J. S. Choe, “Estimating chemical properties of Florida soils using spectral reflectance,” Trans. ASAE 46, 1443–1453 (2003).

Ciavarella, S.

B. W. Dunn, H. G. Beecher, G. D. Batten, and S. Ciavarella, “The potential of near-infrared reflectance spectroscopy for soil analysis—a case study from the Riverine Plain of south-eastern Australia,” Aust. J. Exp. Agric. 42, 607–614 (2002).
[CrossRef]

Clark, J. A.

T. H. Demetriades-Shah, M. D. Steven, and J. A. Clark, “High-resolution derivative spectra in remote sensing,” Remote Sens. Environ. 33, 55–64 (1990).
[CrossRef]

Clark, R. N.

R. N. Clark, “Spectroscopy of rocks and minerals, and principles of spectroscopy,” in Remote Sensing for the Earth Sciences: Manual of Remote Sensing, N. Rencz, ed. (Wiley, 1999), pp. 3–52.

Collins, H. P.

F. J. Calderon, J. B. Reeves, H. P. Collins, and E. A. Paul, “Chemical differences in soil organic matter fractions determined by diffuse-reflectance mid-infrared spectroscopy,” Soil Sci. Soc. Am. J. 75, 568–579 (2011).
[CrossRef]

Cox, D. R.

G. E. P. Box and D. R. Cox, “An analysis of transformations,” J. R. Stat. Soc. Ser. B 26, 211–252 (1964).
[CrossRef]

Dalal, R. C.

R. C. Dalal and R. J. Henry, “Simultaneous determination of moisture, organic carbon and total nitrogen by near infrared reflectance spectrophotometry,” Soil Sci. Soc. Am. J. 50, 120–123 (1986).
[CrossRef]

Demetriades-Shah, T. H.

T. H. Demetriades-Shah, M. D. Steven, and J. A. Clark, “High-resolution derivative spectra in remote sensing,” Remote Sens. Environ. 33, 55–64 (1990).
[CrossRef]

Dunn, B. W.

B. W. Dunn, H. G. Beecher, G. D. Batten, and S. Ciavarella, “The potential of near-infrared reflectance spectroscopy for soil analysis—a case study from the Riverine Plain of south-eastern Australia,” Aust. J. Exp. Agric. 42, 607–614 (2002).
[CrossRef]

Dyar, M. D.

J. L. Bishop, M. D. Lane, M. D. Dyar, and A. J. Brown, “Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite–serpentines, chlorites and micas,” Clay Miner. 43, 35–54 (2008).
[CrossRef]

Eilers, P. H. C.

P. H. C. Eilers and B. D. Marx, “Generalized linear additive smooth structures,” J. Comput. Graph. Statist. 11, 758–783 (2002).
[CrossRef]

Eilers, R. G.

D. F. Malley, L. Yesmin, and R. G. Eilers, “Rapid analysis of hog manure and manure-amended soils using near-infrared spectroscopy,” Soil Sci. Soc. Am. J. 66, 1677–1686 (2002).
[CrossRef]

Elith, J.

J. Elith, J. R. Leathwick, and T. Hastie, “A working guide to boosted regression trees,” J. Anim. Ecol. 77, 802–813 (2008).
[CrossRef]

Fan, X.

Z. Yang, L. Han, and X. Fan, “Rapidly estimating nutrient contents of fattening pig manure from floor scrapings by near infrared reflectance spectroscopy,” J. Near Infrared Spectrosc. 14, 261–268 (2006).
[CrossRef]

Finegan, K.

H. S. S. Sharma, M. Kilpatrick, G. Lyons, S. Sturgeon, J. Archer, S. Moore, L. Cheung, and K. Finegan, “Visible and near-infrared calibrations for quality assessment of fresh phase I and II mushroom (Agaricus bisporus) compost,” Appl. Spectrosc. 59, 1399–1405 (2005).
[CrossRef]

Follett, R. F.

G. W. McCarty, J. B. Reeves, V. B. Reeves, R. F. Follett, and J. M. Kimble, “Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement,” Soil Sci. Soc. Am. J. 66, 640–646 (2002).
[CrossRef]

Frank, A.

S. Tanner, H. Shu, A. Frank, L. Wang, E. Zandi, M. Mumby, P. A. Pevzner, and V. Bafna, “Inspect: fast and accurate identification of post-translationally modified peptides from tandem mass spectra,” Anal. Chem. 77, 4626–4639 (2005).
[CrossRef]

Freeborn, L. L.

M. J. Morra, M. H. Hall, and L. L. Freeborn, “Carbon and nitrogen analysis of soil fractions using near-infrared reflectance spectroscopy,” Soil Sci. Soc. Am. J. 55, 288–291 (1991).
[CrossRef]

Friedman, J. H.

J. H. Friedman, “Greedy function approximation: a gradient boosting machine,” Technical report (Department of Statistics, Stanford University, 1999).

Gagné, J.

L. Tremblay and J. Gagné, “Fast quantification of humic substances and organic matter by direct analysis of sediments using DRIFT spectroscopy,” Anal. Chem. 74, 2985–2993 (2002).
[CrossRef]

Galbraith, J. M.

S. Chakraborty, D. C. Weindorf, Y. Zhu, C. L. S. Morgan, Y. Ge, and J. M. Galbraith, “Spectral reflectance variability from soil physicochemical properties in oil contaminated soils,” Geoderma 177–178, 80–89 (2012).
[CrossRef]

S. Chakraborty, D. C. Weindorf, C. L. S. Morgan, Y. Ge, J. M. Galbraith, and C. S. Kahlon, “Rapid identification of oil-contaminated soils using visible near-infrared diffuse reflectance spectroscopy,” J. Environ. Qual. 39, 1378–1387 (2010).
[CrossRef]

Gaultney, L. D.

G. A. Shonk, L. D. Gaultney, D. G. Schulze, and G. E. Van Scoyoc, “Spectroscopic sensing of soil organic matter content,” Trans. ASAE 34, 1978–1984 (1991).

Ge, Y.

S. Chakraborty, D. C. Weindorf, Y. Zhu, C. L. S. Morgan, Y. Ge, and J. M. Galbraith, “Spectral reflectance variability from soil physicochemical properties in oil contaminated soils,” Geoderma 177–178, 80–89 (2012).
[CrossRef]

S. Chakraborty, D. C. Weindorf, C. L. S. Morgan, Y. Ge, J. M. Galbraith, and C. S. Kahlon, “Rapid identification of oil-contaminated soils using visible near-infrared diffuse reflectance spectroscopy,” J. Environ. Qual. 39, 1378–1387 (2010).
[CrossRef]

Y. Ge, C. L. S. Morgan, J. A. Thomasson, and T. Waiser, “A new perspective to near-infrared reflectance spectroscopy: a wavelet approach,” Trans. ASABE 50, 303–311 (2007).

Goldberg, E. D.

D. M. Smith, J. J. Griffin, and E. D. Goldberg, “Spectrometric method for the quantitative determination of elemental carbon,” Anal. Chem. 47, 233–238 (1975).
[CrossRef]

Griffin, J. J.

D. M. Smith, J. J. Griffin, and E. D. Goldberg, “Spectrometric method for the quantitative determination of elemental carbon,” Anal. Chem. 47, 233–238 (1975).
[CrossRef]

Haaland, D. M.

D. M. Haaland and E. V. Thomas, “Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60, 1193–1202 (1988).
[CrossRef]

Haggard, B.

Y. Zhu, D. C. Weindorf, S. Chakraborty, B. Haggard, S. Johnson, and N. Bakr, “Characterizing surface soil water with field portable diffuse reflectance spectroscopy,” J. Hydrol. 391, 133–140 (2010).
[CrossRef]

Hall, M. H.

M. J. Morra, M. H. Hall, and L. L. Freeborn, “Carbon and nitrogen analysis of soil fractions using near-infrared reflectance spectroscopy,” Soil Sci. Soc. Am. J. 55, 288–291 (1991).
[CrossRef]

Hallmark, C. T.

T. H. Waiser, C. L. S. Morgan, D. J. Brown, and C. T. Hallmark, “In situ characterization of soil clay content with visible near-infrared diffuse reflectance spectroscopy,” Soil Sci. Soc. Am. J. 71, 389–396 (2007).
[CrossRef]

Hammond, R.

E. K. Kemsley, H. S. Tapp, A. J. Scarlett, S. J. Miles, R. Hammond, and R. H. Wilson, “Comparison of spectroscopic techniques for the determination of Kjeldahl and ammoniacal nitrogen content of farmyard manure,” J. Agric. Food Chem. 49, 603–609 (2001).
[CrossRef]

Han, L.

Z. Yang, L. Han, and X. Fan, “Rapidly estimating nutrient contents of fattening pig manure from floor scrapings by near infrared reflectance spectroscopy,” J. Near Infrared Spectrosc. 14, 261–268 (2006).
[CrossRef]

Hastie, T.

J. Elith, J. R. Leathwick, and T. Hastie, “A working guide to boosted regression trees,” J. Anim. Ecol. 77, 802–813 (2008).
[CrossRef]

Hattery, J.

W. Ye, J. C. Lorimor, C. Hurburgh, H. Zhang, and J. Hattery, “Application of near-infrared reflectance spectroscopy for determination of nutrient contents in liquid and solid manures,” Trans. ASAE 48, 1911–1918 (2005).

Heflin, K.

S. L. Preece, C. L. S. Morgan, B. W. Auvermann, K. Wilke, and K. Heflin, “Determination of ash content in solid cattle manure with visible near-infrared diffuse reflectance spectroscopy,” Trans. ASABE 52, 609–614 (2009).

Henry, R. J.

R. C. Dalal and R. J. Henry, “Simultaneous determination of moisture, organic carbon and total nitrogen by near infrared reflectance spectrophotometry,” Soil Sci. Soc. Am. J. 50, 120–123 (1986).
[CrossRef]

Hirako, S.

S. Shibusawa, S. W. I. Anom, S. Sato, A. Sasao, and S. Hirako, “Soil mapping using the real-time soil spectrophotometer,” in ECPA 2001, Third European Conference on Precision Agriculture, G. Grenier and S. Blackmore, eds. (Agro Montpellier, 2001), Vol. 1, pp. 497– 508.

Hummel, J. W.

K. A. Sudduth and J. W. Hummel, “Soil organic matter, CEC, and moisture sensing with a portable NIR spectrophotometer,” Trans. ASAE 36, 1571–1582 (1993).

Hunt, G. R.

G. R. Hunt, “Spectral signatures of particulate minerals in visible and near IR,” Geophysics 42, 501–513 (1977).
[CrossRef]

Hurburgh, C.

W. Ye, J. C. Lorimor, C. Hurburgh, H. Zhang, and J. Hattery, “Application of near-infrared reflectance spectroscopy for determination of nutrient contents in liquid and solid manures,” Trans. ASAE 48, 1911–1918 (2005).

Hurburgh, C. R.

C. Chang, D. A. Laird, and C. R. Hurburgh, “Influence of soil moisture on near-infrared reflectance spectroscopic measurement of soil properties,” Soil Sci. 170, 244–255 (2005).
[CrossRef]

Inbar, Y.

E. Ben-Dor, Y. Inbar, and Y. Chen, “The reflectance spectra of organic matter in the visible near infrared and short wave infrared region (400–2500 nm) during a control decomposition process,” Remote Sens. Environ. 61, 1–15 (1997).
[CrossRef]

Islam, K.

K. Islam, B. Singh, and A. McBratney, “Simultaneous estimation of several soil properties by ultraviolet, visible, and near-infrared reflectance spectroscopy,” Aust. J. Soil Res. 41, 1101–1114 (2003).
[CrossRef]

Johnson, S.

Y. Zhu, D. C. Weindorf, S. Chakraborty, B. Haggard, S. Johnson, and N. Bakr, “Characterizing surface soil water with field portable diffuse reflectance spectroscopy,” J. Hydrol. 391, 133–140 (2010).
[CrossRef]

Kahlon, C. S.

S. Chakraborty, D. C. Weindorf, C. L. S. Morgan, Y. Ge, J. M. Galbraith, and C. S. Kahlon, “Rapid identification of oil-contaminated soils using visible near-infrared diffuse reflectance spectroscopy,” J. Environ. Qual. 39, 1378–1387 (2010).
[CrossRef]

Kang, M.

M. Kang, “Quantification of soil organic carbon using mid- and near-DRIFT spectroscopy,” Master’s thesis (Texas A&M University, 2002).

Kemsley, E. K.

E. K. Kemsley, H. S. Tapp, A. J. Scarlett, S. J. Miles, R. Hammond, and R. H. Wilson, “Comparison of spectroscopic techniques for the determination of Kjeldahl and ammoniacal nitrogen content of farmyard manure,” J. Agric. Food Chem. 49, 603–609 (2001).
[CrossRef]

Kilpatrick, M.

H. S. S. Sharma, M. Kilpatrick, G. Lyons, S. Sturgeon, J. Archer, S. Moore, L. Cheung, and K. Finegan, “Visible and near-infrared calibrations for quality assessment of fresh phase I and II mushroom (Agaricus bisporus) compost,” Appl. Spectrosc. 59, 1399–1405 (2005).
[CrossRef]

Kimble, J. M.

G. W. McCarty, J. B. Reeves, V. B. Reeves, R. F. Follett, and J. M. Kimble, “Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement,” Soil Sci. Soc. Am. J. 66, 640–646 (2002).
[CrossRef]

Kooistra, L.

L. Kooistra, R. Wehrens, R. S. E. W. Leuven, and L. M. C. Buydens, “Possibilities of VNIR spectroscopy for the assessment of soil contamination in river floodplains,” Anal. Chim. Acta 446, 97–105 (2001).
[CrossRef]

Laird, D. A.

C. Chang, D. A. Laird, and C. R. Hurburgh, “Influence of soil moisture on near-infrared reflectance spectroscopic measurement of soil properties,” Soil Sci. 170, 244–255 (2005).
[CrossRef]

Landeros-Sánchez, C.

D. C. Weindorf, J. P. Muir, and C. Landeros-Sánchez, “Organic compost and manufactured fertilizers: economics and ecology,” in Integrating Agriculture, Conservation, and Ecotourism: Examples from the Field (Issues In Agroecology—Present Status and Future Prospectus 1), W. B. Campbell and O. S. Lopez, eds. (Springer, 2011), pp. 27–53.

Lane, M. D.

J. L. Bishop, M. D. Lane, M. D. Dyar, and A. J. Brown, “Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite–serpentines, chlorites and micas,” Clay Miner. 43, 35–54 (2008).
[CrossRef]

Leathwick, J. R.

J. Elith, J. R. Leathwick, and T. Hastie, “A working guide to boosted regression trees,” J. Anim. Ecol. 77, 802–813 (2008).
[CrossRef]

Lee, W. S.

W. S. Lee, J. F. Sanchez, R. S. Mylavarapu, and J. S. Choe, “Estimating chemical properties of Florida soils using spectral reflectance,” Trans. ASAE 46, 1443–1453 (2003).

Leuven, R. S. E. W.

L. Kooistra, R. Wehrens, R. S. E. W. Leuven, and L. M. C. Buydens, “Possibilities of VNIR spectroscopy for the assessment of soil contamination in river floodplains,” Anal. Chim. Acta 446, 97–105 (2001).
[CrossRef]

Li, B.

A. L. McWhirt, D. C. Weindorf, S. Chakraborty, and B. Li, “Visible near infrared diffuse reflectance spectroscopy (VisNIR DRS) for rapid measurement of organic matter in compost,” Waste Manag. Res. 30, 1049–1058 (2012).
[CrossRef]

Lorimor, J. C.

W. Ye, J. C. Lorimor, C. Hurburgh, H. Zhang, and J. Hattery, “Application of near-infrared reflectance spectroscopy for determination of nutrient contents in liquid and solid manures,” Trans. ASAE 48, 1911–1918 (2005).

Lyons, G.

H. S. S. Sharma, M. Kilpatrick, G. Lyons, S. Sturgeon, J. Archer, S. Moore, L. Cheung, and K. Finegan, “Visible and near-infrared calibrations for quality assessment of fresh phase I and II mushroom (Agaricus bisporus) compost,” Appl. Spectrosc. 59, 1399–1405 (2005).
[CrossRef]

Malley, D. F.

D. F. Malley, C. McClure, P. D. Martin, K. Buckley, and W. P. McCaughe, “Compositional analysis of cattle manure during composting using a field-portable near-infrared spectrometer,” Commun. Soil Sci. Plant Anal. 36, 455–475 (2005).
[CrossRef]

D. F. Malley, L. Yesmin, and R. G. Eilers, “Rapid analysis of hog manure and manure-amended soils using near-infrared spectroscopy,” Soil Sci. Soc. Am. J. 66, 1677–1686 (2002).
[CrossRef]

Martin, P. D.

D. F. Malley, C. McClure, P. D. Martin, K. Buckley, and W. P. McCaughe, “Compositional analysis of cattle manure during composting using a field-portable near-infrared spectrometer,” Commun. Soil Sci. Plant Anal. 36, 455–475 (2005).
[CrossRef]

Marx, B. D.

P. H. C. Eilers and B. D. Marx, “Generalized linear additive smooth structures,” J. Comput. Graph. Statist. 11, 758–783 (2002).
[CrossRef]

Mays, M. D.

D. J. Brown, K. D. Shepherd, M. G. Walsh, M. D. Mays, and T. G. Reinsch, “Global soil characterization with VNIR diffuse reflectance spectroscopy,” Geoderma 132, 273–290 (2006).
[CrossRef]

McBratney, A.

K. Islam, B. Singh, and A. McBratney, “Simultaneous estimation of several soil properties by ultraviolet, visible, and near-infrared reflectance spectroscopy,” Aust. J. Soil Res. 41, 1101–1114 (2003).
[CrossRef]

McBratney, A. B.

B. Minasny and A. B. McBratney, “Regression rules as a tool for predicting soil properties from infrared reflectance spectroscopy,” Chemom. Intell. Lab. Syst. 94, 72–79 (2008).
[CrossRef]

McCarty, G. W.

G. W. McCarty, J. B. Reeves, V. B. Reeves, R. F. Follett, and J. M. Kimble, “Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement,” Soil Sci. Soc. Am. J. 66, 640–646 (2002).
[CrossRef]

J. B. Reeves, G. W. McCarty, and J. J. Meisinger, “Near infrared reflectance spectroscopy for the analysis of agricultural soils,” J. Near Infrared Spectrosc. 7, 179–193 (1999).
[CrossRef]

McCaughe, W. P.

D. F. Malley, C. McClure, P. D. Martin, K. Buckley, and W. P. McCaughe, “Compositional analysis of cattle manure during composting using a field-portable near-infrared spectrometer,” Commun. Soil Sci. Plant Anal. 36, 455–475 (2005).
[CrossRef]

McClure, C.

D. F. Malley, C. McClure, P. D. Martin, K. Buckley, and W. P. McCaughe, “Compositional analysis of cattle manure during composting using a field-portable near-infrared spectrometer,” Commun. Soil Sci. Plant Anal. 36, 455–475 (2005).
[CrossRef]

McWhirt, A. L.

A. L. McWhirt, D. C. Weindorf, S. Chakraborty, and B. Li, “Visible near infrared diffuse reflectance spectroscopy (VisNIR DRS) for rapid measurement of organic matter in compost,” Waste Manag. Res. 30, 1049–1058 (2012).
[CrossRef]

Meisinger, J. J.

J. B. Reeves, G. W. McCarty, and J. J. Meisinger, “Near infrared reflectance spectroscopy for the analysis of agricultural soils,” J. Near Infrared Spectrosc. 7, 179–193 (1999).
[CrossRef]

Miles, S. J.

E. K. Kemsley, H. S. Tapp, A. J. Scarlett, S. J. Miles, R. Hammond, and R. H. Wilson, “Comparison of spectroscopic techniques for the determination of Kjeldahl and ammoniacal nitrogen content of farmyard manure,” J. Agric. Food Chem. 49, 603–609 (2001).
[CrossRef]

Minasny, B.

B. Minasny and A. B. McBratney, “Regression rules as a tool for predicting soil properties from infrared reflectance spectroscopy,” Chemom. Intell. Lab. Syst. 94, 72–79 (2008).
[CrossRef]

Moore, S.

H. S. S. Sharma, M. Kilpatrick, G. Lyons, S. Sturgeon, J. Archer, S. Moore, L. Cheung, and K. Finegan, “Visible and near-infrared calibrations for quality assessment of fresh phase I and II mushroom (Agaricus bisporus) compost,” Appl. Spectrosc. 59, 1399–1405 (2005).
[CrossRef]

Morgan, C. L. S.

S. Chakraborty, D. C. Weindorf, Y. Zhu, C. L. S. Morgan, Y. Ge, and J. M. Galbraith, “Spectral reflectance variability from soil physicochemical properties in oil contaminated soils,” Geoderma 177–178, 80–89 (2012).
[CrossRef]

S. Chakraborty, D. C. Weindorf, C. L. S. Morgan, Y. Ge, J. M. Galbraith, and C. S. Kahlon, “Rapid identification of oil-contaminated soils using visible near-infrared diffuse reflectance spectroscopy,” J. Environ. Qual. 39, 1378–1387 (2010).
[CrossRef]

S. L. P. Sakirkin, C. L. S. Morgan, and B. W. Auvermann, “Effects of sample processing on ash content determination in solid cattle manure with visible/near-infrared spectroscopy,” Trans. ASABE 53: 421–428 (2010).

S. L. Preece, C. L. S. Morgan, B. W. Auvermann, K. Wilke, and K. Heflin, “Determination of ash content in solid cattle manure with visible near-infrared diffuse reflectance spectroscopy,” Trans. ASABE 52, 609–614 (2009).

T. H. Waiser, C. L. S. Morgan, D. J. Brown, and C. T. Hallmark, “In situ characterization of soil clay content with visible near-infrared diffuse reflectance spectroscopy,” Soil Sci. Soc. Am. J. 71, 389–396 (2007).
[CrossRef]

Y. Ge, C. L. S. Morgan, J. A. Thomasson, and T. Waiser, “A new perspective to near-infrared reflectance spectroscopy: a wavelet approach,” Trans. ASABE 50, 303–311 (2007).

Morra, M. J.

M. J. Morra, M. H. Hall, and L. L. Freeborn, “Carbon and nitrogen analysis of soil fractions using near-infrared reflectance spectroscopy,” Soil Sci. Soc. Am. J. 55, 288–291 (1991).
[CrossRef]

Mouazen, A. M.

W. Saeys, A. M. Mouazen, and H. Ramon, “Potential for on-site and on-line analysis of hog manure using visual and near-infrared reflectance spectroscopy,” in Precision Livestock Farming’05, S. Cox, ed. (Wageningen Academic, 2005), pp. 131–138.

Muir, J. P.

D. C. Weindorf, J. P. Muir, and C. Landeros-Sánchez, “Organic compost and manufactured fertilizers: economics and ecology,” in Integrating Agriculture, Conservation, and Ecotourism: Examples from the Field (Issues In Agroecology—Present Status and Future Prospectus 1), W. B. Campbell and O. S. Lopez, eds. (Springer, 2011), pp. 27–53.

Mumby, M.

S. Tanner, H. Shu, A. Frank, L. Wang, E. Zandi, M. Mumby, P. A. Pevzner, and V. Bafna, “Inspect: fast and accurate identification of post-translationally modified peptides from tandem mass spectra,” Anal. Chem. 77, 4626–4639 (2005).
[CrossRef]

Mylavarapu, R. S.

W. S. Lee, J. F. Sanchez, R. S. Mylavarapu, and J. S. Choe, “Estimating chemical properties of Florida soils using spectral reflectance,” Trans. ASAE 46, 1443–1453 (2003).

Nakano, Y.

K. Suehara, Y. Nakano, and T. Yano, “Simultaneous measurement of the carbon and nitrogen content of compost using near-infrared spectroscopy,” J. Near Infrared Spectrosc. 9, 35–41 (2001).
[CrossRef]

Nelson, D. W.

D. W. Nelson and L. E. Sommers, “Total carbon, organic carbon and organic matter,” in Methods of Soil Analysis, Part 3: Chemical Methods, J. M. Bigham, ed. (ASA, 1996), pp. 961–1010.

Paul, E. A.

F. J. Calderon, J. B. Reeves, H. P. Collins, and E. A. Paul, “Chemical differences in soil organic matter fractions determined by diffuse-reflectance mid-infrared spectroscopy,” Soil Sci. Soc. Am. J. 75, 568–579 (2011).
[CrossRef]

Pevzner, P. A.

S. Tanner, H. Shu, A. Frank, L. Wang, E. Zandi, M. Mumby, P. A. Pevzner, and V. Bafna, “Inspect: fast and accurate identification of post-translationally modified peptides from tandem mass spectra,” Anal. Chem. 77, 4626–4639 (2005).
[CrossRef]

Preece, S. L.

S. L. Preece, C. L. S. Morgan, B. W. Auvermann, K. Wilke, and K. Heflin, “Determination of ash content in solid cattle manure with visible near-infrared diffuse reflectance spectroscopy,” Trans. ASABE 52, 609–614 (2009).

Ramon, H.

W. Saeys, A. M. Mouazen, and H. Ramon, “Potential for on-site and on-line analysis of hog manure using visual and near-infrared reflectance spectroscopy,” in Precision Livestock Farming’05, S. Cox, ed. (Wageningen Academic, 2005), pp. 131–138.

Reeves, J. B.

F. J. Calderon, J. B. Reeves, H. P. Collins, and E. A. Paul, “Chemical differences in soil organic matter fractions determined by diffuse-reflectance mid-infrared spectroscopy,” Soil Sci. Soc. Am. J. 75, 568–579 (2011).
[CrossRef]

G. W. McCarty, J. B. Reeves, V. B. Reeves, R. F. Follett, and J. M. Kimble, “Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement,” Soil Sci. Soc. Am. J. 66, 640–646 (2002).
[CrossRef]

J. B. Reeves and J. S. Van Kessel, “Determination of ammonium-N, moisture, total C and total N in dairy manures using a near infrared fibre-optic spectrometer,” J. Near Infrared Spectrosc. 8, 151–160 (2000).
[CrossRef]

J. B. Reeves, G. W. McCarty, and J. J. Meisinger, “Near infrared reflectance spectroscopy for the analysis of agricultural soils,” J. Near Infrared Spectrosc. 7, 179–193 (1999).
[CrossRef]

Reeves, V. B.

G. W. McCarty, J. B. Reeves, V. B. Reeves, R. F. Follett, and J. M. Kimble, “Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement,” Soil Sci. Soc. Am. J. 66, 640–646 (2002).
[CrossRef]

Reinsch, T. G.

D. J. Brown, K. D. Shepherd, M. G. Walsh, M. D. Mays, and T. G. Reinsch, “Global soil characterization with VNIR diffuse reflectance spectroscopy,” Geoderma 132, 273–290 (2006).
[CrossRef]

Rossel, R. A. V.

R. A. V. Rossel and T. Behrens, “Using data mining to model and interpret soil diffuse reflectance spectra,” Geoderma 158, 46–54 (2010).
[CrossRef]

Saeys, W.

W. Saeys, A. M. Mouazen, and H. Ramon, “Potential for on-site and on-line analysis of hog manure using visual and near-infrared reflectance spectroscopy,” in Precision Livestock Farming’05, S. Cox, ed. (Wageningen Academic, 2005), pp. 131–138.

Sakirkin, S. L. P.

S. L. P. Sakirkin, C. L. S. Morgan, and B. W. Auvermann, “Effects of sample processing on ash content determination in solid cattle manure with visible/near-infrared spectroscopy,” Trans. ASABE 53: 421–428 (2010).

Sanchez, J. F.

W. S. Lee, J. F. Sanchez, R. S. Mylavarapu, and J. S. Choe, “Estimating chemical properties of Florida soils using spectral reflectance,” Trans. ASAE 46, 1443–1453 (2003).

Sasao, A.

S. Shibusawa, S. W. I. Anom, S. Sato, A. Sasao, and S. Hirako, “Soil mapping using the real-time soil spectrophotometer,” in ECPA 2001, Third European Conference on Precision Agriculture, G. Grenier and S. Blackmore, eds. (Agro Montpellier, 2001), Vol. 1, pp. 497– 508.

Sato, S.

S. Shibusawa, S. W. I. Anom, S. Sato, A. Sasao, and S. Hirako, “Soil mapping using the real-time soil spectrophotometer,” in ECPA 2001, Third European Conference on Precision Agriculture, G. Grenier and S. Blackmore, eds. (Agro Montpellier, 2001), Vol. 1, pp. 497– 508.

Scarlett, A. J.

E. K. Kemsley, H. S. Tapp, A. J. Scarlett, S. J. Miles, R. Hammond, and R. H. Wilson, “Comparison of spectroscopic techniques for the determination of Kjeldahl and ammoniacal nitrogen content of farmyard manure,” J. Agric. Food Chem. 49, 603–609 (2001).
[CrossRef]

Schulze, D. G.

G. A. Shonk, L. D. Gaultney, D. G. Schulze, and G. E. Van Scoyoc, “Spectroscopic sensing of soil organic matter content,” Trans. ASAE 34, 1978–1984 (1991).

Sharma, H. S. S.

H. S. S. Sharma, M. Kilpatrick, G. Lyons, S. Sturgeon, J. Archer, S. Moore, L. Cheung, and K. Finegan, “Visible and near-infrared calibrations for quality assessment of fresh phase I and II mushroom (Agaricus bisporus) compost,” Appl. Spectrosc. 59, 1399–1405 (2005).
[CrossRef]

Shepherd, K. D.

D. J. Brown, K. D. Shepherd, M. G. Walsh, M. D. Mays, and T. G. Reinsch, “Global soil characterization with VNIR diffuse reflectance spectroscopy,” Geoderma 132, 273–290 (2006).
[CrossRef]

K. D. Shepherd and M. G. Walsh, “Development of reflectance spectral libraries for characterization of soil properties,” Soil Sci. Soc. Am. J. 66, 988–998 (2002).
[CrossRef]

Shibusawa, S.

S. Shibusawa, S. W. I. Anom, S. Sato, A. Sasao, and S. Hirako, “Soil mapping using the real-time soil spectrophotometer,” in ECPA 2001, Third European Conference on Precision Agriculture, G. Grenier and S. Blackmore, eds. (Agro Montpellier, 2001), Vol. 1, pp. 497– 508.

Shonk, G. A.

G. A. Shonk, L. D. Gaultney, D. G. Schulze, and G. E. Van Scoyoc, “Spectroscopic sensing of soil organic matter content,” Trans. ASAE 34, 1978–1984 (1991).

Shu, H.

S. Tanner, H. Shu, A. Frank, L. Wang, E. Zandi, M. Mumby, P. A. Pevzner, and V. Bafna, “Inspect: fast and accurate identification of post-translationally modified peptides from tandem mass spectra,” Anal. Chem. 77, 4626–4639 (2005).
[CrossRef]

Singh, B.

K. Islam, B. Singh, and A. McBratney, “Simultaneous estimation of several soil properties by ultraviolet, visible, and near-infrared reflectance spectroscopy,” Aust. J. Soil Res. 41, 1101–1114 (2003).
[CrossRef]

Smith, D. M.

D. M. Smith, J. J. Griffin, and E. D. Goldberg, “Spectrometric method for the quantitative determination of elemental carbon,” Anal. Chem. 47, 233–238 (1975).
[CrossRef]

Sommers, L. E.

D. W. Nelson and L. E. Sommers, “Total carbon, organic carbon and organic matter,” in Methods of Soil Analysis, Part 3: Chemical Methods, J. M. Bigham, ed. (ASA, 1996), pp. 961–1010.

Steinhaus, H.

H. Steinhaus, “Sur la division des corp materiels en parties,” Bull. Acad. Pol. Sci. 4, 801–804 (1956) (in French).

Steven, M. D.

T. H. Demetriades-Shah, M. D. Steven, and J. A. Clark, “High-resolution derivative spectra in remote sensing,” Remote Sens. Environ. 33, 55–64 (1990).
[CrossRef]

Sturgeon, S.

H. S. S. Sharma, M. Kilpatrick, G. Lyons, S. Sturgeon, J. Archer, S. Moore, L. Cheung, and K. Finegan, “Visible and near-infrared calibrations for quality assessment of fresh phase I and II mushroom (Agaricus bisporus) compost,” Appl. Spectrosc. 59, 1399–1405 (2005).
[CrossRef]

Sudduth, K. A.

K. A. Sudduth and J. W. Hummel, “Soil organic matter, CEC, and moisture sensing with a portable NIR spectrophotometer,” Trans. ASAE 36, 1571–1582 (1993).

Suehara, K.

K. Suehara, Y. Nakano, and T. Yano, “Simultaneous measurement of the carbon and nitrogen content of compost using near-infrared spectroscopy,” J. Near Infrared Spectrosc. 9, 35–41 (2001).
[CrossRef]

Tanner, S.

S. Tanner, H. Shu, A. Frank, L. Wang, E. Zandi, M. Mumby, P. A. Pevzner, and V. Bafna, “Inspect: fast and accurate identification of post-translationally modified peptides from tandem mass spectra,” Anal. Chem. 77, 4626–4639 (2005).
[CrossRef]

Tapp, H. S.

E. K. Kemsley, H. S. Tapp, A. J. Scarlett, S. J. Miles, R. Hammond, and R. H. Wilson, “Comparison of spectroscopic techniques for the determination of Kjeldahl and ammoniacal nitrogen content of farmyard manure,” J. Agric. Food Chem. 49, 603–609 (2001).
[CrossRef]

Thomas, E. V.

D. M. Haaland and E. V. Thomas, “Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60, 1193–1202 (1988).
[CrossRef]

Thomasson, J. A.

Y. Ge, C. L. S. Morgan, J. A. Thomasson, and T. Waiser, “A new perspective to near-infrared reflectance spectroscopy: a wavelet approach,” Trans. ASABE 50, 303–311 (2007).

Tremblay, L.

L. Tremblay and J. Gagné, “Fast quantification of humic substances and organic matter by direct analysis of sediments using DRIFT spectroscopy,” Anal. Chem. 74, 2985–2993 (2002).
[CrossRef]

Tung, J. W. T.

J. W. T. Tung, “Determination of metal components in marine sediments using energy dispersive x-ray fluorescence (ED-XRF) spectrometry,” Ann. Chim. 94, 837–846 (2004).
[CrossRef]

Van Kessel, J. S.

J. B. Reeves and J. S. Van Kessel, “Determination of ammonium-N, moisture, total C and total N in dairy manures using a near infrared fibre-optic spectrometer,” J. Near Infrared Spectrosc. 8, 151–160 (2000).
[CrossRef]

Van Scoyoc, G. E.

G. A. Shonk, L. D. Gaultney, D. G. Schulze, and G. E. Van Scoyoc, “Spectroscopic sensing of soil organic matter content,” Trans. ASAE 34, 1978–1984 (1991).

Waiser, T.

Y. Ge, C. L. S. Morgan, J. A. Thomasson, and T. Waiser, “A new perspective to near-infrared reflectance spectroscopy: a wavelet approach,” Trans. ASABE 50, 303–311 (2007).

Waiser, T. H.

T. H. Waiser, C. L. S. Morgan, D. J. Brown, and C. T. Hallmark, “In situ characterization of soil clay content with visible near-infrared diffuse reflectance spectroscopy,” Soil Sci. Soc. Am. J. 71, 389–396 (2007).
[CrossRef]

Walkley, A.

A. Walkley and I. A. Black, “An examination of the Degtjareff method for determining organic carbon in soils: effect of variations in digestion conditions and of inorganic soil constituents,” Soil Sci. 63, 251–264 (1934).
[CrossRef]

Walsh, M. G.

D. J. Brown, K. D. Shepherd, M. G. Walsh, M. D. Mays, and T. G. Reinsch, “Global soil characterization with VNIR diffuse reflectance spectroscopy,” Geoderma 132, 273–290 (2006).
[CrossRef]

K. D. Shepherd and M. G. Walsh, “Development of reflectance spectral libraries for characterization of soil properties,” Soil Sci. Soc. Am. J. 66, 988–998 (2002).
[CrossRef]

Wang, L.

S. Tanner, H. Shu, A. Frank, L. Wang, E. Zandi, M. Mumby, P. A. Pevzner, and V. Bafna, “Inspect: fast and accurate identification of post-translationally modified peptides from tandem mass spectra,” Anal. Chem. 77, 4626–4639 (2005).
[CrossRef]

Ward, J. H.

J. H. Ward, “Hierarchical grouping to optimize an objective function,” J. Am. Stat. Assoc. 48, 236–244.(1963).
[CrossRef]

Wehrens, R.

L. Kooistra, R. Wehrens, R. S. E. W. Leuven, and L. M. C. Buydens, “Possibilities of VNIR spectroscopy for the assessment of soil contamination in river floodplains,” Anal. Chim. Acta 446, 97–105 (2001).
[CrossRef]

Weindorf, D. C.

A. L. McWhirt, D. C. Weindorf, S. Chakraborty, and B. Li, “Visible near infrared diffuse reflectance spectroscopy (VisNIR DRS) for rapid measurement of organic matter in compost,” Waste Manag. Res. 30, 1049–1058 (2012).
[CrossRef]

S. Chakraborty, D. C. Weindorf, Y. Zhu, C. L. S. Morgan, Y. Ge, and J. M. Galbraith, “Spectral reflectance variability from soil physicochemical properties in oil contaminated soils,” Geoderma 177–178, 80–89 (2012).
[CrossRef]

S. Chakraborty, D. C. Weindorf, C. L. S. Morgan, Y. Ge, J. M. Galbraith, and C. S. Kahlon, “Rapid identification of oil-contaminated soils using visible near-infrared diffuse reflectance spectroscopy,” J. Environ. Qual. 39, 1378–1387 (2010).
[CrossRef]

Y. Zhu, D. C. Weindorf, S. Chakraborty, B. Haggard, S. Johnson, and N. Bakr, “Characterizing surface soil water with field portable diffuse reflectance spectroscopy,” J. Hydrol. 391, 133–140 (2010).
[CrossRef]

D. C. Weindorf, J. P. Muir, and C. Landeros-Sánchez, “Organic compost and manufactured fertilizers: economics and ecology,” in Integrating Agriculture, Conservation, and Ecotourism: Examples from the Field (Issues In Agroecology—Present Status and Future Prospectus 1), W. B. Campbell and O. S. Lopez, eds. (Springer, 2011), pp. 27–53.

Wilke, K.

S. L. Preece, C. L. S. Morgan, B. W. Auvermann, K. Wilke, and K. Heflin, “Determination of ash content in solid cattle manure with visible near-infrared diffuse reflectance spectroscopy,” Trans. ASABE 52, 609–614 (2009).

Williams, P. C.

P. C. Williams, “Commercial near-infrared reflectance analyzers,” in Near-infrared Technology in the Agricultural and Food Industries, P. C. Williams and K. H. Norris, eds. (American Association of Cereal Chemists, 1987), pp. 107–136.

Wilson, R. H.

E. K. Kemsley, H. S. Tapp, A. J. Scarlett, S. J. Miles, R. Hammond, and R. H. Wilson, “Comparison of spectroscopic techniques for the determination of Kjeldahl and ammoniacal nitrogen content of farmyard manure,” J. Agric. Food Chem. 49, 603–609 (2001).
[CrossRef]

Yang, Z.

Z. Yang, L. Han, and X. Fan, “Rapidly estimating nutrient contents of fattening pig manure from floor scrapings by near infrared reflectance spectroscopy,” J. Near Infrared Spectrosc. 14, 261–268 (2006).
[CrossRef]

Yano, T.

K. Suehara, Y. Nakano, and T. Yano, “Simultaneous measurement of the carbon and nitrogen content of compost using near-infrared spectroscopy,” J. Near Infrared Spectrosc. 9, 35–41 (2001).
[CrossRef]

Ye, W.

W. Ye, J. C. Lorimor, C. Hurburgh, H. Zhang, and J. Hattery, “Application of near-infrared reflectance spectroscopy for determination of nutrient contents in liquid and solid manures,” Trans. ASAE 48, 1911–1918 (2005).

Yesmin, L.

D. F. Malley, L. Yesmin, and R. G. Eilers, “Rapid analysis of hog manure and manure-amended soils using near-infrared spectroscopy,” Soil Sci. Soc. Am. J. 66, 1677–1686 (2002).
[CrossRef]

Zandi, E.

S. Tanner, H. Shu, A. Frank, L. Wang, E. Zandi, M. Mumby, P. A. Pevzner, and V. Bafna, “Inspect: fast and accurate identification of post-translationally modified peptides from tandem mass spectra,” Anal. Chem. 77, 4626–4639 (2005).
[CrossRef]

Zhang, H.

W. Ye, J. C. Lorimor, C. Hurburgh, H. Zhang, and J. Hattery, “Application of near-infrared reflectance spectroscopy for determination of nutrient contents in liquid and solid manures,” Trans. ASAE 48, 1911–1918 (2005).

Zhu, Y.

S. Chakraborty, D. C. Weindorf, Y. Zhu, C. L. S. Morgan, Y. Ge, and J. M. Galbraith, “Spectral reflectance variability from soil physicochemical properties in oil contaminated soils,” Geoderma 177–178, 80–89 (2012).
[CrossRef]

Y. Zhu, D. C. Weindorf, S. Chakraborty, B. Haggard, S. Johnson, and N. Bakr, “Characterizing surface soil water with field portable diffuse reflectance spectroscopy,” J. Hydrol. 391, 133–140 (2010).
[CrossRef]

Anal. Chem.

S. Tanner, H. Shu, A. Frank, L. Wang, E. Zandi, M. Mumby, P. A. Pevzner, and V. Bafna, “Inspect: fast and accurate identification of post-translationally modified peptides from tandem mass spectra,” Anal. Chem. 77, 4626–4639 (2005).
[CrossRef]

D. M. Smith, J. J. Griffin, and E. D. Goldberg, “Spectrometric method for the quantitative determination of elemental carbon,” Anal. Chem. 47, 233–238 (1975).
[CrossRef]

L. Tremblay and J. Gagné, “Fast quantification of humic substances and organic matter by direct analysis of sediments using DRIFT spectroscopy,” Anal. Chem. 74, 2985–2993 (2002).
[CrossRef]

D. M. Haaland and E. V. Thomas, “Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60, 1193–1202 (1988).
[CrossRef]

Anal. Chim. Acta

L. Kooistra, R. Wehrens, R. S. E. W. Leuven, and L. M. C. Buydens, “Possibilities of VNIR spectroscopy for the assessment of soil contamination in river floodplains,” Anal. Chim. Acta 446, 97–105 (2001).
[CrossRef]

Ann. Chim.

J. W. T. Tung, “Determination of metal components in marine sediments using energy dispersive x-ray fluorescence (ED-XRF) spectrometry,” Ann. Chim. 94, 837–846 (2004).
[CrossRef]

Appl. Spectrosc.

H. S. S. Sharma, M. Kilpatrick, G. Lyons, S. Sturgeon, J. Archer, S. Moore, L. Cheung, and K. Finegan, “Visible and near-infrared calibrations for quality assessment of fresh phase I and II mushroom (Agaricus bisporus) compost,” Appl. Spectrosc. 59, 1399–1405 (2005).
[CrossRef]

Aust. J. Exp. Agric.

B. W. Dunn, H. G. Beecher, G. D. Batten, and S. Ciavarella, “The potential of near-infrared reflectance spectroscopy for soil analysis—a case study from the Riverine Plain of south-eastern Australia,” Aust. J. Exp. Agric. 42, 607–614 (2002).
[CrossRef]

Aust. J. Soil Res.

K. Islam, B. Singh, and A. McBratney, “Simultaneous estimation of several soil properties by ultraviolet, visible, and near-infrared reflectance spectroscopy,” Aust. J. Soil Res. 41, 1101–1114 (2003).
[CrossRef]

Bull. Acad. Pol. Sci.

H. Steinhaus, “Sur la division des corp materiels en parties,” Bull. Acad. Pol. Sci. 4, 801–804 (1956) (in French).

Chemom. Intell. Lab. Syst.

B. Minasny and A. B. McBratney, “Regression rules as a tool for predicting soil properties from infrared reflectance spectroscopy,” Chemom. Intell. Lab. Syst. 94, 72–79 (2008).
[CrossRef]

Clay Miner.

J. L. Bishop, M. D. Lane, M. D. Dyar, and A. J. Brown, “Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite–serpentines, chlorites and micas,” Clay Miner. 43, 35–54 (2008).
[CrossRef]

Commun. Soil Sci. Plant Anal.

D. F. Malley, C. McClure, P. D. Martin, K. Buckley, and W. P. McCaughe, “Compositional analysis of cattle manure during composting using a field-portable near-infrared spectrometer,” Commun. Soil Sci. Plant Anal. 36, 455–475 (2005).
[CrossRef]

Geoderma

S. Chakraborty, D. C. Weindorf, Y. Zhu, C. L. S. Morgan, Y. Ge, and J. M. Galbraith, “Spectral reflectance variability from soil physicochemical properties in oil contaminated soils,” Geoderma 177–178, 80–89 (2012).
[CrossRef]

R. A. V. Rossel and T. Behrens, “Using data mining to model and interpret soil diffuse reflectance spectra,” Geoderma 158, 46–54 (2010).
[CrossRef]

D. J. Brown, K. D. Shepherd, M. G. Walsh, M. D. Mays, and T. G. Reinsch, “Global soil characterization with VNIR diffuse reflectance spectroscopy,” Geoderma 132, 273–290 (2006).
[CrossRef]

Geophysics

G. R. Hunt, “Spectral signatures of particulate minerals in visible and near IR,” Geophysics 42, 501–513 (1977).
[CrossRef]

J. Agric. Food Chem.

E. K. Kemsley, H. S. Tapp, A. J. Scarlett, S. J. Miles, R. Hammond, and R. H. Wilson, “Comparison of spectroscopic techniques for the determination of Kjeldahl and ammoniacal nitrogen content of farmyard manure,” J. Agric. Food Chem. 49, 603–609 (2001).
[CrossRef]

J. Am. Stat. Assoc.

J. H. Ward, “Hierarchical grouping to optimize an objective function,” J. Am. Stat. Assoc. 48, 236–244.(1963).
[CrossRef]

J. Anim. Ecol.

J. Elith, J. R. Leathwick, and T. Hastie, “A working guide to boosted regression trees,” J. Anim. Ecol. 77, 802–813 (2008).
[CrossRef]

J. Comput. Graph. Statist.

P. H. C. Eilers and B. D. Marx, “Generalized linear additive smooth structures,” J. Comput. Graph. Statist. 11, 758–783 (2002).
[CrossRef]

J. Environ. Qual.

S. Chakraborty, D. C. Weindorf, C. L. S. Morgan, Y. Ge, J. M. Galbraith, and C. S. Kahlon, “Rapid identification of oil-contaminated soils using visible near-infrared diffuse reflectance spectroscopy,” J. Environ. Qual. 39, 1378–1387 (2010).
[CrossRef]

J. Hydrol.

Y. Zhu, D. C. Weindorf, S. Chakraborty, B. Haggard, S. Johnson, and N. Bakr, “Characterizing surface soil water with field portable diffuse reflectance spectroscopy,” J. Hydrol. 391, 133–140 (2010).
[CrossRef]

J. Near Infrared Spectrosc.

J. B. Reeves, G. W. McCarty, and J. J. Meisinger, “Near infrared reflectance spectroscopy for the analysis of agricultural soils,” J. Near Infrared Spectrosc. 7, 179–193 (1999).
[CrossRef]

Z. Yang, L. Han, and X. Fan, “Rapidly estimating nutrient contents of fattening pig manure from floor scrapings by near infrared reflectance spectroscopy,” J. Near Infrared Spectrosc. 14, 261–268 (2006).
[CrossRef]

K. Suehara, Y. Nakano, and T. Yano, “Simultaneous measurement of the carbon and nitrogen content of compost using near-infrared spectroscopy,” J. Near Infrared Spectrosc. 9, 35–41 (2001).
[CrossRef]

J. B. Reeves and J. S. Van Kessel, “Determination of ammonium-N, moisture, total C and total N in dairy manures using a near infrared fibre-optic spectrometer,” J. Near Infrared Spectrosc. 8, 151–160 (2000).
[CrossRef]

J. R. Stat. Soc. Ser. B

G. E. P. Box and D. R. Cox, “An analysis of transformations,” J. R. Stat. Soc. Ser. B 26, 211–252 (1964).
[CrossRef]

Remote Sens. Environ.

T. H. Demetriades-Shah, M. D. Steven, and J. A. Clark, “High-resolution derivative spectra in remote sensing,” Remote Sens. Environ. 33, 55–64 (1990).
[CrossRef]

E. Ben-Dor, Y. Inbar, and Y. Chen, “The reflectance spectra of organic matter in the visible near infrared and short wave infrared region (400–2500 nm) during a control decomposition process,” Remote Sens. Environ. 61, 1–15 (1997).
[CrossRef]

Soil Sci.

A. Walkley and I. A. Black, “An examination of the Degtjareff method for determining organic carbon in soils: effect of variations in digestion conditions and of inorganic soil constituents,” Soil Sci. 63, 251–264 (1934).
[CrossRef]

C. Chang, D. A. Laird, and C. R. Hurburgh, “Influence of soil moisture on near-infrared reflectance spectroscopic measurement of soil properties,” Soil Sci. 170, 244–255 (2005).
[CrossRef]

Soil Sci. Soc. Am. J.

G. W. McCarty, J. B. Reeves, V. B. Reeves, R. F. Follett, and J. M. Kimble, “Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement,” Soil Sci. Soc. Am. J. 66, 640–646 (2002).
[CrossRef]

K. D. Shepherd and M. G. Walsh, “Development of reflectance spectral libraries for characterization of soil properties,” Soil Sci. Soc. Am. J. 66, 988–998 (2002).
[CrossRef]

E. Ben-Dor and A. Banin, “Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties,” Soil Sci. Soc. Am. J. 59, 364–372 (1995).
[CrossRef]

D. F. Malley, L. Yesmin, and R. G. Eilers, “Rapid analysis of hog manure and manure-amended soils using near-infrared spectroscopy,” Soil Sci. Soc. Am. J. 66, 1677–1686 (2002).
[CrossRef]

R. C. Dalal and R. J. Henry, “Simultaneous determination of moisture, organic carbon and total nitrogen by near infrared reflectance spectrophotometry,” Soil Sci. Soc. Am. J. 50, 120–123 (1986).
[CrossRef]

M. J. Morra, M. H. Hall, and L. L. Freeborn, “Carbon and nitrogen analysis of soil fractions using near-infrared reflectance spectroscopy,” Soil Sci. Soc. Am. J. 55, 288–291 (1991).
[CrossRef]

T. H. Waiser, C. L. S. Morgan, D. J. Brown, and C. T. Hallmark, “In situ characterization of soil clay content with visible near-infrared diffuse reflectance spectroscopy,” Soil Sci. Soc. Am. J. 71, 389–396 (2007).
[CrossRef]

F. J. Calderon, J. B. Reeves, H. P. Collins, and E. A. Paul, “Chemical differences in soil organic matter fractions determined by diffuse-reflectance mid-infrared spectroscopy,” Soil Sci. Soc. Am. J. 75, 568–579 (2011).
[CrossRef]

Trans. ASABE

Y. Ge, C. L. S. Morgan, J. A. Thomasson, and T. Waiser, “A new perspective to near-infrared reflectance spectroscopy: a wavelet approach,” Trans. ASABE 50, 303–311 (2007).

S. L. Preece, C. L. S. Morgan, B. W. Auvermann, K. Wilke, and K. Heflin, “Determination of ash content in solid cattle manure with visible near-infrared diffuse reflectance spectroscopy,” Trans. ASABE 52, 609–614 (2009).

S. L. P. Sakirkin, C. L. S. Morgan, and B. W. Auvermann, “Effects of sample processing on ash content determination in solid cattle manure with visible/near-infrared spectroscopy,” Trans. ASABE 53: 421–428 (2010).

Trans. ASAE

W. Ye, J. C. Lorimor, C. Hurburgh, H. Zhang, and J. Hattery, “Application of near-infrared reflectance spectroscopy for determination of nutrient contents in liquid and solid manures,” Trans. ASAE 48, 1911–1918 (2005).

W. S. Lee, J. F. Sanchez, R. S. Mylavarapu, and J. S. Choe, “Estimating chemical properties of Florida soils using spectral reflectance,” Trans. ASAE 46, 1443–1453 (2003).

K. A. Sudduth and J. W. Hummel, “Soil organic matter, CEC, and moisture sensing with a portable NIR spectrophotometer,” Trans. ASAE 36, 1571–1582 (1993).

G. A. Shonk, L. D. Gaultney, D. G. Schulze, and G. E. Van Scoyoc, “Spectroscopic sensing of soil organic matter content,” Trans. ASAE 34, 1978–1984 (1991).

Waste Manag. Res.

A. L. McWhirt, D. C. Weindorf, S. Chakraborty, and B. Li, “Visible near infrared diffuse reflectance spectroscopy (VisNIR DRS) for rapid measurement of organic matter in compost,” Waste Manag. Res. 30, 1049–1058 (2012).
[CrossRef]

Other

W. Saeys, A. M. Mouazen, and H. Ramon, “Potential for on-site and on-line analysis of hog manure using visual and near-infrared reflectance spectroscopy,” in Precision Livestock Farming’05, S. Cox, ed. (Wageningen Academic, 2005), pp. 131–138.

M. Kang, “Quantification of soil organic carbon using mid- and near-DRIFT spectroscopy,” Master’s thesis (Texas A&M University, 2002).

D. W. Nelson and L. E. Sommers, “Total carbon, organic carbon and organic matter,” in Methods of Soil Analysis, Part 3: Chemical Methods, J. M. Bigham, ed. (ASA, 1996), pp. 961–1010.

D. C. Weindorf, J. P. Muir, and C. Landeros-Sánchez, “Organic compost and manufactured fertilizers: economics and ecology,” in Integrating Agriculture, Conservation, and Ecotourism: Examples from the Field (Issues In Agroecology—Present Status and Future Prospectus 1), W. B. Campbell and O. S. Lopez, eds. (Springer, 2011), pp. 27–53.

P. C. Williams, “Commercial near-infrared reflectance analyzers,” in Near-infrared Technology in the Agricultural and Food Industries, P. C. Williams and K. H. Norris, eds. (American Association of Cereal Chemists, 1987), pp. 107–136.

USDA-USCC, “Test methods for the evaluation of composts and composting” (CD ROM) (Composting Council Research and Education Foundation, 2002).

R. N. Clark, “Spectroscopy of rocks and minerals, and principles of spectroscopy,” in Remote Sensing for the Earth Sciences: Manual of Remote Sensing, N. Rencz, ed. (Wiley, 1999), pp. 3–52.

S. Shibusawa, S. W. I. Anom, S. Sato, A. Sasao, and S. Hirako, “Soil mapping using the real-time soil spectrophotometer,” in ECPA 2001, Third European Conference on Precision Agriculture, G. Grenier and S. Blackmore, eds. (Agro Montpellier, 2001), Vol. 1, pp. 497– 508.

American Association for State Highway and Transportation Officials, “Standard specifications for compost for erosion/sediment control,” http://compostingcouncil.org/admin/wp-content/plugins/wp-pdfupload/pdf/32/AASHTO-Specifications.pdf .

J. H. Friedman, “Greedy function approximation: a gradient boosting machine,” Technical report (Department of Statistics, Stanford University, 1999).

R Development Core Team, “R: a language and environment for statistical computing,” http://www.cran.r-project.org (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Histograms for measured compost properties used to calibrate PLS, penalized spline, and BRT models.

Fig. 2.
Fig. 2.

Plots showing (a) VisNIR reflectance spectra of the two spectral clusters indicating spectral signatures of OM fractions and (b) the first three PLS regression factor loading weight vectors (i, ii, and iii) centered on zero for compost OM analyzed with VisNIR spectroscopy.

Fig. 3.
Fig. 3.

Regression coefficients (black) of the (a) reflectance and (b) first-derivative-based PLS model of compost samples. The magnitude of the regression coefficient at each wavelength is proportional to the height of the bar. Significant wave bands ( p < 0.05 ) as indicated by Tukey’s jackknife variance estimate procedure are shown in red. All plots are on the same x axis.

Fig. 4.
Fig. 4.

Predicted versus measured OM ( log 10 % ) for reflectance-based (a) auxiliary penalized spline (APSR) and (b) PLS models for 55 compost samples. The solid line is the regression line, and the dashed line is a 1 1 line. The fitted regression coefficient curves on the spectrum for reflectance-based (c) APSR and (d) PLS models are also shown.

Fig. 5.
Fig. 5.

Two-variable dependence plots of compost OM ( log 10 % ) for (a) EC versus moisture, (b) EC versus pH, and (c) pH versus moisture. Blue and red shades (bottom and top of data shown) represent lowest and highest concentration of OM, respectively.

Fig. 6.
Fig. 6.

Plot showing relative importance of BRT model predictor wavelengths. The magnitude of the score at each wavelength is proportional to the height of the bar.

Tables (2)

Tables Icon

Table 1. Descriptive Statistics of Measured Properties for 55 Compost Samples Analyzed with VisNIR DRS

Tables Icon

Table 2. Multivariate Model Results for 55 Compost Samples across the United States Evaluated for OM Using VisNIR DRSa

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

OM = ( 1 Ash w / d w ) × 100 ,
Zero order , R = f ( λ )
First order , d R / d λ = f ( λ )
Second order , d 2 R / d λ 2 = f ( λ ) .

Metrics