Abstract

We present the results of calculation and experimental testing of an achromatic polarization converter and a composite terahertz waveplate (WP), which are represented by sets of plane-parallel birefringent plates with in-plane birefringence axis. The calculations took into account the effect of interference, which was especially prominent when plates were separated by an air gap. The possibility of development of a spectrum analyzer design based on a set of WPs is also discussed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
    [CrossRef]
  2. F. Friederich, W. von Spiegel, M. Bauer, F. Meng, M. Thomson, S. Boppel, A. Lisauskas, B. Hils, V. Krozer, A. Keil, T. Loffler, R. Henneberger, A. Huhn, G. Spickermann, P. Bolivar, and H. Roskos, “THz active imaging system with real-time capabilities,” IEEE Trans. Terahertz Sci. Technol. 1, 183–200 (2011).
    [CrossRef]
  3. K. Ajito and Y. Ueno, “THz chemical imaging for biological applications,” IEEE Trans. Terahertz Sci. Technol. 1, 293–300 (2011).
    [CrossRef]
  4. K. Humphreys, J. Loughran, W. Lanigan, T. Ward, J. Murphy, and C. O’Sullivan, “Medical applications of terahertz imaging: a review of current technology and potential applications in biomedical engineering,” in Proceedings of IEEE 26th Annual International Conference of the Engineering in Medicine and Biology Society (IEEE, 2004), pp. 1302–1305.
  5. X.-C. Zhang and J. Xu, Introduction to THz Wave Photonics (Springer, 2010).
  6. Z. Taylor, R. Singh, D. Bennett, P. Tewari, N. Bajwa, M. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. Brown, and W. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
    [CrossRef]
  7. D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw terahertz spectrometer pumped at 1.5 μm wavelength,” Int. J. Infrared Millim. Waves 32, 225–232 (2011).
    [CrossRef]
  8. Z. Popovic, and E. Grossman, “THz metrology and instrumentation,” IEEE Trans. Terahertz Sci. Technol. 1, 133–144 (2011).
    [CrossRef]
  9. F. Sizov and A. Rogalski, “THz detectors,” Prog. Quantum Electron. 34, 278–347 (2010).
    [CrossRef]
  10. F. Brehat and B. Wyncke, “Measurement of the optical constants of crystal quartz at 10 K and 300 K in the far infrared spectral range: 10–600  cm−1,” Int. J. Infrared Millim. Waves 18, 1663–1679 (1997).
    [CrossRef]
  11. A. Yariv and P. Yeh, Optical Waves in Crystals (Mir, 1987).
  12. J.-B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett. 31, 265–267 (2006).
    [CrossRef]
  13. G. Savini, G. Pisano, and P. Ade, “Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: modeling and simulation,” Appl. Opt. 45, 8907–8915 (2006).
    [CrossRef]
  14. S. Pancharatnam, “Achromatic combination of birefringent plates,” Proc. Ind. Ac. Sci. XLI, 130–144 (1955).
  15. J. Ma, J.-S. Wang, C. Denker, and H.-M. Wang, “Optical design of multilayer achromatic waveplate by simulated annealing algorithm,” Chin. J. Astrophys. 8, 349–361 (2008).
    [CrossRef]
  16. G. Kang, Q. Tan, X. Wang, and G. Jin, “Achromatic phase retarder applied to MWIR & LWIR dual-band,” Opt. Express 18, 1695–1703 (2010).
    [CrossRef]
  17. R. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. 31, 488–503 (1941).
    [CrossRef]
  18. W. Press, W. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C. The Art of Scientific Computing(Cambridge University, 1997).
  19. P. Schneider, J. Kainz, S. D. Ganichev, V. V. Bel’kov, S. N. Danilov, M. M. Glazov, L. E. Golub, U. Roessler, W. Wegscheider, D. Weiss, D. Schuh, and W. Prettl, “Spin relaxation times of 2D holes from spin sensitive bleaching of inter-subband absorption,” J. Appl. Phys. 96, 420–433 (2004).
    [CrossRef]
  20. Z. D. Kvon, S. N. Danilov, N. N. Mikhailov, S. A. Dvoretsky, and S. D. Ganichev, “Cyclotron resonance photoconductivity of a two-dimensional electron gas in HgTe quantum wells,” Phys. E 40, 1885–1887 (2008).
    [CrossRef]
  21. S. D. Ganichev and W. Prettl, Intense Terahertz Excitation of Semiconductors (Oxford University, 2006).
  22. D. Oepts, A. F. G. van der Meer, and P. W. van Amersfoort, “The free-electron-laser user facility FELIX,” Infrared Phys. Technol. 36, 297–308 (1995).
    [CrossRef]
  23. S. N. Danilov, B. Wittmann, P. Olbrich, W. Eder, W. Prettl, L. E. Golub, E. V. Beregulin, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, V. A. Shalygin, N. Q. Vinh, A. F. G. van der Meer, B. Murdin, and S. D. Ganichev, “Fast detector of the ellipticity of infrared and terahertz radiation based on HgTe quantum well structures,” J. Appl. Phys. 105, 013106 (2009).
    [CrossRef]
  24. M. Darsht, “The effect of an environment and external impacts on the polarized light propagation,” Ph.D. thesis (Chelyabinsk State Technical University, 1996, in Russian).
  25. A. Tichonov, Methods of Incorrect Problems Solving (Nauka, 1979).
  26. A. Zhiglinsky and V. Kuchinsky, Real Fabry–Perot Interferometer (Mashinostroyeniete, 1983).
  27. http://plasma.karelia.ru/~ekostq/PUBLIC/fs/index_2.html .
  28. R. Deyanov and B. Schedrin, “Algorithm of subsequent descent on local minima system,” Appl. Math. Inf. 30, 46–54(2008).
  29. A. Malakhov, Cumulant Analysis of Random Non-Gaussian Processes and their Transformations (Sovetskoye Radio, 1978, in Russian).
  30. A. Tikhonov and V. Arsenin, Solution Methods for Ill-Conditioned Problems (Nauka, 1986, in Russian).
  31. A. I. Zhdanov, “The method of augmented regularized normal equations,” Comput. Math. Math. Phys. 52, 194–197(2012).
    [CrossRef]

2012 (1)

A. I. Zhdanov, “The method of augmented regularized normal equations,” Comput. Math. Math. Phys. 52, 194–197(2012).
[CrossRef]

2011 (5)

F. Friederich, W. von Spiegel, M. Bauer, F. Meng, M. Thomson, S. Boppel, A. Lisauskas, B. Hils, V. Krozer, A. Keil, T. Loffler, R. Henneberger, A. Huhn, G. Spickermann, P. Bolivar, and H. Roskos, “THz active imaging system with real-time capabilities,” IEEE Trans. Terahertz Sci. Technol. 1, 183–200 (2011).
[CrossRef]

K. Ajito and Y. Ueno, “THz chemical imaging for biological applications,” IEEE Trans. Terahertz Sci. Technol. 1, 293–300 (2011).
[CrossRef]

Z. Taylor, R. Singh, D. Bennett, P. Tewari, N. Bajwa, M. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. Brown, and W. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[CrossRef]

D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw terahertz spectrometer pumped at 1.5 μm wavelength,” Int. J. Infrared Millim. Waves 32, 225–232 (2011).
[CrossRef]

Z. Popovic, and E. Grossman, “THz metrology and instrumentation,” IEEE Trans. Terahertz Sci. Technol. 1, 133–144 (2011).
[CrossRef]

2010 (2)

F. Sizov and A. Rogalski, “THz detectors,” Prog. Quantum Electron. 34, 278–347 (2010).
[CrossRef]

G. Kang, Q. Tan, X. Wang, and G. Jin, “Achromatic phase retarder applied to MWIR & LWIR dual-band,” Opt. Express 18, 1695–1703 (2010).
[CrossRef]

2009 (1)

S. N. Danilov, B. Wittmann, P. Olbrich, W. Eder, W. Prettl, L. E. Golub, E. V. Beregulin, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, V. A. Shalygin, N. Q. Vinh, A. F. G. van der Meer, B. Murdin, and S. D. Ganichev, “Fast detector of the ellipticity of infrared and terahertz radiation based on HgTe quantum well structures,” J. Appl. Phys. 105, 013106 (2009).
[CrossRef]

2008 (3)

R. Deyanov and B. Schedrin, “Algorithm of subsequent descent on local minima system,” Appl. Math. Inf. 30, 46–54(2008).

Z. D. Kvon, S. N. Danilov, N. N. Mikhailov, S. A. Dvoretsky, and S. D. Ganichev, “Cyclotron resonance photoconductivity of a two-dimensional electron gas in HgTe quantum wells,” Phys. E 40, 1885–1887 (2008).
[CrossRef]

J. Ma, J.-S. Wang, C. Denker, and H.-M. Wang, “Optical design of multilayer achromatic waveplate by simulated annealing algorithm,” Chin. J. Astrophys. 8, 349–361 (2008).
[CrossRef]

2006 (2)

J.-B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett. 31, 265–267 (2006).
[CrossRef]

G. Savini, G. Pisano, and P. Ade, “Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: modeling and simulation,” Appl. Opt. 45, 8907–8915 (2006).
[CrossRef]

2005 (1)

J. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[CrossRef]

2004 (1)

P. Schneider, J. Kainz, S. D. Ganichev, V. V. Bel’kov, S. N. Danilov, M. M. Glazov, L. E. Golub, U. Roessler, W. Wegscheider, D. Weiss, D. Schuh, and W. Prettl, “Spin relaxation times of 2D holes from spin sensitive bleaching of inter-subband absorption,” J. Appl. Phys. 96, 420–433 (2004).
[CrossRef]

1997 (1)

F. Brehat and B. Wyncke, “Measurement of the optical constants of crystal quartz at 10 K and 300 K in the far infrared spectral range: 10–600  cm−1,” Int. J. Infrared Millim. Waves 18, 1663–1679 (1997).
[CrossRef]

1995 (1)

D. Oepts, A. F. G. van der Meer, and P. W. van Amersfoort, “The free-electron-laser user facility FELIX,” Infrared Phys. Technol. 36, 297–308 (1995).
[CrossRef]

1955 (1)

S. Pancharatnam, “Achromatic combination of birefringent plates,” Proc. Ind. Ac. Sci. XLI, 130–144 (1955).

1941 (1)

R. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. 31, 488–503 (1941).
[CrossRef]

Ade, P.

G. Savini, G. Pisano, and P. Ade, “Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: modeling and simulation,” Appl. Opt. 45, 8907–8915 (2006).
[CrossRef]

Ajito, K.

K. Ajito and Y. Ueno, “THz chemical imaging for biological applications,” IEEE Trans. Terahertz Sci. Technol. 1, 293–300 (2011).
[CrossRef]

Arsenin, V.

A. Tikhonov and V. Arsenin, Solution Methods for Ill-Conditioned Problems (Nauka, 1986, in Russian).

Bajwa, N.

Z. Taylor, R. Singh, D. Bennett, P. Tewari, N. Bajwa, M. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. Brown, and W. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[CrossRef]

Barat, R.

J. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[CrossRef]

Bauer, M.

F. Friederich, W. von Spiegel, M. Bauer, F. Meng, M. Thomson, S. Boppel, A. Lisauskas, B. Hils, V. Krozer, A. Keil, T. Loffler, R. Henneberger, A. Huhn, G. Spickermann, P. Bolivar, and H. Roskos, “THz active imaging system with real-time capabilities,” IEEE Trans. Terahertz Sci. Technol. 1, 183–200 (2011).
[CrossRef]

Bel’kov, V. V.

P. Schneider, J. Kainz, S. D. Ganichev, V. V. Bel’kov, S. N. Danilov, M. M. Glazov, L. E. Golub, U. Roessler, W. Wegscheider, D. Weiss, D. Schuh, and W. Prettl, “Spin relaxation times of 2D holes from spin sensitive bleaching of inter-subband absorption,” J. Appl. Phys. 96, 420–433 (2004).
[CrossRef]

Bennett, D.

Z. Taylor, R. Singh, D. Bennett, P. Tewari, N. Bajwa, M. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. Brown, and W. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[CrossRef]

Beregulin, E. V.

S. N. Danilov, B. Wittmann, P. Olbrich, W. Eder, W. Prettl, L. E. Golub, E. V. Beregulin, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, V. A. Shalygin, N. Q. Vinh, A. F. G. van der Meer, B. Murdin, and S. D. Ganichev, “Fast detector of the ellipticity of infrared and terahertz radiation based on HgTe quantum well structures,” J. Appl. Phys. 105, 013106 (2009).
[CrossRef]

Bolivar, P.

F. Friederich, W. von Spiegel, M. Bauer, F. Meng, M. Thomson, S. Boppel, A. Lisauskas, B. Hils, V. Krozer, A. Keil, T. Loffler, R. Henneberger, A. Huhn, G. Spickermann, P. Bolivar, and H. Roskos, “THz active imaging system with real-time capabilities,” IEEE Trans. Terahertz Sci. Technol. 1, 183–200 (2011).
[CrossRef]

Boppel, S.

F. Friederich, W. von Spiegel, M. Bauer, F. Meng, M. Thomson, S. Boppel, A. Lisauskas, B. Hils, V. Krozer, A. Keil, T. Loffler, R. Henneberger, A. Huhn, G. Spickermann, P. Bolivar, and H. Roskos, “THz active imaging system with real-time capabilities,” IEEE Trans. Terahertz Sci. Technol. 1, 183–200 (2011).
[CrossRef]

Brehat, F.

F. Brehat and B. Wyncke, “Measurement of the optical constants of crystal quartz at 10 K and 300 K in the far infrared spectral range: 10–600  cm−1,” Int. J. Infrared Millim. Waves 18, 1663–1679 (1997).
[CrossRef]

Brown, E.

Z. Taylor, R. Singh, D. Bennett, P. Tewari, N. Bajwa, M. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. Brown, and W. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[CrossRef]

Culjat, M.

Z. Taylor, R. Singh, D. Bennett, P. Tewari, N. Bajwa, M. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. Brown, and W. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[CrossRef]

Danilov, S. N.

S. N. Danilov, B. Wittmann, P. Olbrich, W. Eder, W. Prettl, L. E. Golub, E. V. Beregulin, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, V. A. Shalygin, N. Q. Vinh, A. F. G. van der Meer, B. Murdin, and S. D. Ganichev, “Fast detector of the ellipticity of infrared and terahertz radiation based on HgTe quantum well structures,” J. Appl. Phys. 105, 013106 (2009).
[CrossRef]

Z. D. Kvon, S. N. Danilov, N. N. Mikhailov, S. A. Dvoretsky, and S. D. Ganichev, “Cyclotron resonance photoconductivity of a two-dimensional electron gas in HgTe quantum wells,” Phys. E 40, 1885–1887 (2008).
[CrossRef]

P. Schneider, J. Kainz, S. D. Ganichev, V. V. Bel’kov, S. N. Danilov, M. M. Glazov, L. E. Golub, U. Roessler, W. Wegscheider, D. Weiss, D. Schuh, and W. Prettl, “Spin relaxation times of 2D holes from spin sensitive bleaching of inter-subband absorption,” J. Appl. Phys. 96, 420–433 (2004).
[CrossRef]

Darsht, M.

M. Darsht, “The effect of an environment and external impacts on the polarized light propagation,” Ph.D. thesis (Chelyabinsk State Technical University, 1996, in Russian).

Deninger, A.

D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw terahertz spectrometer pumped at 1.5 μm wavelength,” Int. J. Infrared Millim. Waves 32, 225–232 (2011).
[CrossRef]

Denker, C.

J. Ma, J.-S. Wang, C. Denker, and H.-M. Wang, “Optical design of multilayer achromatic waveplate by simulated annealing algorithm,” Chin. J. Astrophys. 8, 349–361 (2008).
[CrossRef]

Deyanov, R.

R. Deyanov and B. Schedrin, “Algorithm of subsequent descent on local minima system,” Appl. Math. Inf. 30, 46–54(2008).

Dvoretsky, S. A.

S. N. Danilov, B. Wittmann, P. Olbrich, W. Eder, W. Prettl, L. E. Golub, E. V. Beregulin, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, V. A. Shalygin, N. Q. Vinh, A. F. G. van der Meer, B. Murdin, and S. D. Ganichev, “Fast detector of the ellipticity of infrared and terahertz radiation based on HgTe quantum well structures,” J. Appl. Phys. 105, 013106 (2009).
[CrossRef]

Z. D. Kvon, S. N. Danilov, N. N. Mikhailov, S. A. Dvoretsky, and S. D. Ganichev, “Cyclotron resonance photoconductivity of a two-dimensional electron gas in HgTe quantum wells,” Phys. E 40, 1885–1887 (2008).
[CrossRef]

Eder, W.

S. N. Danilov, B. Wittmann, P. Olbrich, W. Eder, W. Prettl, L. E. Golub, E. V. Beregulin, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, V. A. Shalygin, N. Q. Vinh, A. F. G. van der Meer, B. Murdin, and S. D. Ganichev, “Fast detector of the ellipticity of infrared and terahertz radiation based on HgTe quantum well structures,” J. Appl. Phys. 105, 013106 (2009).
[CrossRef]

Federici, J.

J. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[CrossRef]

Flannery, B.

W. Press, W. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C. The Art of Scientific Computing(Cambridge University, 1997).

Friederich, F.

F. Friederich, W. von Spiegel, M. Bauer, F. Meng, M. Thomson, S. Boppel, A. Lisauskas, B. Hils, V. Krozer, A. Keil, T. Loffler, R. Henneberger, A. Huhn, G. Spickermann, P. Bolivar, and H. Roskos, “THz active imaging system with real-time capabilities,” IEEE Trans. Terahertz Sci. Technol. 1, 183–200 (2011).
[CrossRef]

Gallot, G.

J.-B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett. 31, 265–267 (2006).
[CrossRef]

Ganichev, S. D.

S. N. Danilov, B. Wittmann, P. Olbrich, W. Eder, W. Prettl, L. E. Golub, E. V. Beregulin, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, V. A. Shalygin, N. Q. Vinh, A. F. G. van der Meer, B. Murdin, and S. D. Ganichev, “Fast detector of the ellipticity of infrared and terahertz radiation based on HgTe quantum well structures,” J. Appl. Phys. 105, 013106 (2009).
[CrossRef]

Z. D. Kvon, S. N. Danilov, N. N. Mikhailov, S. A. Dvoretsky, and S. D. Ganichev, “Cyclotron resonance photoconductivity of a two-dimensional electron gas in HgTe quantum wells,” Phys. E 40, 1885–1887 (2008).
[CrossRef]

P. Schneider, J. Kainz, S. D. Ganichev, V. V. Bel’kov, S. N. Danilov, M. M. Glazov, L. E. Golub, U. Roessler, W. Wegscheider, D. Weiss, D. Schuh, and W. Prettl, “Spin relaxation times of 2D holes from spin sensitive bleaching of inter-subband absorption,” J. Appl. Phys. 96, 420–433 (2004).
[CrossRef]

S. D. Ganichev and W. Prettl, Intense Terahertz Excitation of Semiconductors (Oxford University, 2006).

Gary, D.

J. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[CrossRef]

Glazov, M. M.

P. Schneider, J. Kainz, S. D. Ganichev, V. V. Bel’kov, S. N. Danilov, M. M. Glazov, L. E. Golub, U. Roessler, W. Wegscheider, D. Weiss, D. Schuh, and W. Prettl, “Spin relaxation times of 2D holes from spin sensitive bleaching of inter-subband absorption,” J. Appl. Phys. 96, 420–433 (2004).
[CrossRef]

Golub, L. E.

S. N. Danilov, B. Wittmann, P. Olbrich, W. Eder, W. Prettl, L. E. Golub, E. V. Beregulin, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, V. A. Shalygin, N. Q. Vinh, A. F. G. van der Meer, B. Murdin, and S. D. Ganichev, “Fast detector of the ellipticity of infrared and terahertz radiation based on HgTe quantum well structures,” J. Appl. Phys. 105, 013106 (2009).
[CrossRef]

P. Schneider, J. Kainz, S. D. Ganichev, V. V. Bel’kov, S. N. Danilov, M. M. Glazov, L. E. Golub, U. Roessler, W. Wegscheider, D. Weiss, D. Schuh, and W. Prettl, “Spin relaxation times of 2D holes from spin sensitive bleaching of inter-subband absorption,” J. Appl. Phys. 96, 420–433 (2004).
[CrossRef]

Grossman, E.

Z. Popovic, and E. Grossman, “THz metrology and instrumentation,” IEEE Trans. Terahertz Sci. Technol. 1, 133–144 (2011).
[CrossRef]

Grundfest, W.

Z. Taylor, R. Singh, D. Bennett, P. Tewari, N. Bajwa, M. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. Brown, and W. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[CrossRef]

Henneberger, R.

F. Friederich, W. von Spiegel, M. Bauer, F. Meng, M. Thomson, S. Boppel, A. Lisauskas, B. Hils, V. Krozer, A. Keil, T. Loffler, R. Henneberger, A. Huhn, G. Spickermann, P. Bolivar, and H. Roskos, “THz active imaging system with real-time capabilities,” IEEE Trans. Terahertz Sci. Technol. 1, 183–200 (2011).
[CrossRef]

Hils, B.

F. Friederich, W. von Spiegel, M. Bauer, F. Meng, M. Thomson, S. Boppel, A. Lisauskas, B. Hils, V. Krozer, A. Keil, T. Loffler, R. Henneberger, A. Huhn, G. Spickermann, P. Bolivar, and H. Roskos, “THz active imaging system with real-time capabilities,” IEEE Trans. Terahertz Sci. Technol. 1, 183–200 (2011).
[CrossRef]

Huang, F.

J. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[CrossRef]

Hubschman, J.-P.

Z. Taylor, R. Singh, D. Bennett, P. Tewari, N. Bajwa, M. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. Brown, and W. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[CrossRef]

Huhn, A.

F. Friederich, W. von Spiegel, M. Bauer, F. Meng, M. Thomson, S. Boppel, A. Lisauskas, B. Hils, V. Krozer, A. Keil, T. Loffler, R. Henneberger, A. Huhn, G. Spickermann, P. Bolivar, and H. Roskos, “THz active imaging system with real-time capabilities,” IEEE Trans. Terahertz Sci. Technol. 1, 183–200 (2011).
[CrossRef]

Humphreys, K.

K. Humphreys, J. Loughran, W. Lanigan, T. Ward, J. Murphy, and C. O’Sullivan, “Medical applications of terahertz imaging: a review of current technology and potential applications in biomedical engineering,” in Proceedings of IEEE 26th Annual International Conference of the Engineering in Medicine and Biology Society (IEEE, 2004), pp. 1302–1305.

Jin, G.

G. Kang, Q. Tan, X. Wang, and G. Jin, “Achromatic phase retarder applied to MWIR & LWIR dual-band,” Opt. Express 18, 1695–1703 (2010).
[CrossRef]

Jones, R.

R. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. 31, 488–503 (1941).
[CrossRef]

Kainz, J.

P. Schneider, J. Kainz, S. D. Ganichev, V. V. Bel’kov, S. N. Danilov, M. M. Glazov, L. E. Golub, U. Roessler, W. Wegscheider, D. Weiss, D. Schuh, and W. Prettl, “Spin relaxation times of 2D holes from spin sensitive bleaching of inter-subband absorption,” J. Appl. Phys. 96, 420–433 (2004).
[CrossRef]

Kang, G.

G. Kang, Q. Tan, X. Wang, and G. Jin, “Achromatic phase retarder applied to MWIR & LWIR dual-band,” Opt. Express 18, 1695–1703 (2010).
[CrossRef]

Keil, A.

F. Friederich, W. von Spiegel, M. Bauer, F. Meng, M. Thomson, S. Boppel, A. Lisauskas, B. Hils, V. Krozer, A. Keil, T. Loffler, R. Henneberger, A. Huhn, G. Spickermann, P. Bolivar, and H. Roskos, “THz active imaging system with real-time capabilities,” IEEE Trans. Terahertz Sci. Technol. 1, 183–200 (2011).
[CrossRef]

Krozer, V.

F. Friederich, W. von Spiegel, M. Bauer, F. Meng, M. Thomson, S. Boppel, A. Lisauskas, B. Hils, V. Krozer, A. Keil, T. Loffler, R. Henneberger, A. Huhn, G. Spickermann, P. Bolivar, and H. Roskos, “THz active imaging system with real-time capabilities,” IEEE Trans. Terahertz Sci. Technol. 1, 183–200 (2011).
[CrossRef]

Kuchinsky, V.

A. Zhiglinsky and V. Kuchinsky, Real Fabry–Perot Interferometer (Mashinostroyeniete, 1983).

Kvon, Z. D.

S. N. Danilov, B. Wittmann, P. Olbrich, W. Eder, W. Prettl, L. E. Golub, E. V. Beregulin, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, V. A. Shalygin, N. Q. Vinh, A. F. G. van der Meer, B. Murdin, and S. D. Ganichev, “Fast detector of the ellipticity of infrared and terahertz radiation based on HgTe quantum well structures,” J. Appl. Phys. 105, 013106 (2009).
[CrossRef]

Z. D. Kvon, S. N. Danilov, N. N. Mikhailov, S. A. Dvoretsky, and S. D. Ganichev, “Cyclotron resonance photoconductivity of a two-dimensional electron gas in HgTe quantum wells,” Phys. E 40, 1885–1887 (2008).
[CrossRef]

Lanigan, W.

K. Humphreys, J. Loughran, W. Lanigan, T. Ward, J. Murphy, and C. O’Sullivan, “Medical applications of terahertz imaging: a review of current technology and potential applications in biomedical engineering,” in Proceedings of IEEE 26th Annual International Conference of the Engineering in Medicine and Biology Society (IEEE, 2004), pp. 1302–1305.

Lee, H.

Z. Taylor, R. Singh, D. Bennett, P. Tewari, N. Bajwa, M. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. Brown, and W. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[CrossRef]

Lisauskas, A.

F. Friederich, W. von Spiegel, M. Bauer, F. Meng, M. Thomson, S. Boppel, A. Lisauskas, B. Hils, V. Krozer, A. Keil, T. Loffler, R. Henneberger, A. Huhn, G. Spickermann, P. Bolivar, and H. Roskos, “THz active imaging system with real-time capabilities,” IEEE Trans. Terahertz Sci. Technol. 1, 183–200 (2011).
[CrossRef]

Loffler, T.

F. Friederich, W. von Spiegel, M. Bauer, F. Meng, M. Thomson, S. Boppel, A. Lisauskas, B. Hils, V. Krozer, A. Keil, T. Loffler, R. Henneberger, A. Huhn, G. Spickermann, P. Bolivar, and H. Roskos, “THz active imaging system with real-time capabilities,” IEEE Trans. Terahertz Sci. Technol. 1, 183–200 (2011).
[CrossRef]

Loughran, J.

K. Humphreys, J. Loughran, W. Lanigan, T. Ward, J. Murphy, and C. O’Sullivan, “Medical applications of terahertz imaging: a review of current technology and potential applications in biomedical engineering,” in Proceedings of IEEE 26th Annual International Conference of the Engineering in Medicine and Biology Society (IEEE, 2004), pp. 1302–1305.

Ma, J.

J. Ma, J.-S. Wang, C. Denker, and H.-M. Wang, “Optical design of multilayer achromatic waveplate by simulated annealing algorithm,” Chin. J. Astrophys. 8, 349–361 (2008).
[CrossRef]

Malakhov, A.

A. Malakhov, Cumulant Analysis of Random Non-Gaussian Processes and their Transformations (Sovetskoye Radio, 1978, in Russian).

Masson, J.-B.

J.-B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett. 31, 265–267 (2006).
[CrossRef]

Meng, F.

F. Friederich, W. von Spiegel, M. Bauer, F. Meng, M. Thomson, S. Boppel, A. Lisauskas, B. Hils, V. Krozer, A. Keil, T. Loffler, R. Henneberger, A. Huhn, G. Spickermann, P. Bolivar, and H. Roskos, “THz active imaging system with real-time capabilities,” IEEE Trans. Terahertz Sci. Technol. 1, 183–200 (2011).
[CrossRef]

Mikhailov, N. N.

S. N. Danilov, B. Wittmann, P. Olbrich, W. Eder, W. Prettl, L. E. Golub, E. V. Beregulin, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, V. A. Shalygin, N. Q. Vinh, A. F. G. van der Meer, B. Murdin, and S. D. Ganichev, “Fast detector of the ellipticity of infrared and terahertz radiation based on HgTe quantum well structures,” J. Appl. Phys. 105, 013106 (2009).
[CrossRef]

Z. D. Kvon, S. N. Danilov, N. N. Mikhailov, S. A. Dvoretsky, and S. D. Ganichev, “Cyclotron resonance photoconductivity of a two-dimensional electron gas in HgTe quantum wells,” Phys. E 40, 1885–1887 (2008).
[CrossRef]

Murdin, B.

S. N. Danilov, B. Wittmann, P. Olbrich, W. Eder, W. Prettl, L. E. Golub, E. V. Beregulin, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, V. A. Shalygin, N. Q. Vinh, A. F. G. van der Meer, B. Murdin, and S. D. Ganichev, “Fast detector of the ellipticity of infrared and terahertz radiation based on HgTe quantum well structures,” J. Appl. Phys. 105, 013106 (2009).
[CrossRef]

Murphy, J.

K. Humphreys, J. Loughran, W. Lanigan, T. Ward, J. Murphy, and C. O’Sullivan, “Medical applications of terahertz imaging: a review of current technology and potential applications in biomedical engineering,” in Proceedings of IEEE 26th Annual International Conference of the Engineering in Medicine and Biology Society (IEEE, 2004), pp. 1302–1305.

O’Sullivan, C.

K. Humphreys, J. Loughran, W. Lanigan, T. Ward, J. Murphy, and C. O’Sullivan, “Medical applications of terahertz imaging: a review of current technology and potential applications in biomedical engineering,” in Proceedings of IEEE 26th Annual International Conference of the Engineering in Medicine and Biology Society (IEEE, 2004), pp. 1302–1305.

Oepts, D.

D. Oepts, A. F. G. van der Meer, and P. W. van Amersfoort, “The free-electron-laser user facility FELIX,” Infrared Phys. Technol. 36, 297–308 (1995).
[CrossRef]

Olbrich, P.

S. N. Danilov, B. Wittmann, P. Olbrich, W. Eder, W. Prettl, L. E. Golub, E. V. Beregulin, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, V. A. Shalygin, N. Q. Vinh, A. F. G. van der Meer, B. Murdin, and S. D. Ganichev, “Fast detector of the ellipticity of infrared and terahertz radiation based on HgTe quantum well structures,” J. Appl. Phys. 105, 013106 (2009).
[CrossRef]

Oliveira, F.

J. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[CrossRef]

Pancharatnam, S.

S. Pancharatnam, “Achromatic combination of birefringent plates,” Proc. Ind. Ac. Sci. XLI, 130–144 (1955).

Pisano, G.

G. Savini, G. Pisano, and P. Ade, “Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: modeling and simulation,” Appl. Opt. 45, 8907–8915 (2006).
[CrossRef]

Popovic, Z.

Z. Popovic, and E. Grossman, “THz metrology and instrumentation,” IEEE Trans. Terahertz Sci. Technol. 1, 133–144 (2011).
[CrossRef]

Press, W.

W. Press, W. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C. The Art of Scientific Computing(Cambridge University, 1997).

Prettl, W.

S. N. Danilov, B. Wittmann, P. Olbrich, W. Eder, W. Prettl, L. E. Golub, E. V. Beregulin, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, V. A. Shalygin, N. Q. Vinh, A. F. G. van der Meer, B. Murdin, and S. D. Ganichev, “Fast detector of the ellipticity of infrared and terahertz radiation based on HgTe quantum well structures,” J. Appl. Phys. 105, 013106 (2009).
[CrossRef]

P. Schneider, J. Kainz, S. D. Ganichev, V. V. Bel’kov, S. N. Danilov, M. M. Glazov, L. E. Golub, U. Roessler, W. Wegscheider, D. Weiss, D. Schuh, and W. Prettl, “Spin relaxation times of 2D holes from spin sensitive bleaching of inter-subband absorption,” J. Appl. Phys. 96, 420–433 (2004).
[CrossRef]

S. D. Ganichev and W. Prettl, Intense Terahertz Excitation of Semiconductors (Oxford University, 2006).

Roessler, U.

P. Schneider, J. Kainz, S. D. Ganichev, V. V. Bel’kov, S. N. Danilov, M. M. Glazov, L. E. Golub, U. Roessler, W. Wegscheider, D. Weiss, D. Schuh, and W. Prettl, “Spin relaxation times of 2D holes from spin sensitive bleaching of inter-subband absorption,” J. Appl. Phys. 96, 420–433 (2004).
[CrossRef]

Rogalski, A.

F. Sizov and A. Rogalski, “THz detectors,” Prog. Quantum Electron. 34, 278–347 (2010).
[CrossRef]

Roggenbuck, A.

D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw terahertz spectrometer pumped at 1.5 μm wavelength,” Int. J. Infrared Millim. Waves 32, 225–232 (2011).
[CrossRef]

Roskos, H.

F. Friederich, W. von Spiegel, M. Bauer, F. Meng, M. Thomson, S. Boppel, A. Lisauskas, B. Hils, V. Krozer, A. Keil, T. Loffler, R. Henneberger, A. Huhn, G. Spickermann, P. Bolivar, and H. Roskos, “THz active imaging system with real-time capabilities,” IEEE Trans. Terahertz Sci. Technol. 1, 183–200 (2011).
[CrossRef]

Sartorius, B.

D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw terahertz spectrometer pumped at 1.5 μm wavelength,” Int. J. Infrared Millim. Waves 32, 225–232 (2011).
[CrossRef]

Savini, G.

G. Savini, G. Pisano, and P. Ade, “Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: modeling and simulation,” Appl. Opt. 45, 8907–8915 (2006).
[CrossRef]

Schedrin, B.

R. Deyanov and B. Schedrin, “Algorithm of subsequent descent on local minima system,” Appl. Math. Inf. 30, 46–54(2008).

Schindler, S.

D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw terahertz spectrometer pumped at 1.5 μm wavelength,” Int. J. Infrared Millim. Waves 32, 225–232 (2011).
[CrossRef]

Schlak, M.

D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw terahertz spectrometer pumped at 1.5 μm wavelength,” Int. J. Infrared Millim. Waves 32, 225–232 (2011).
[CrossRef]

Schneider, P.

P. Schneider, J. Kainz, S. D. Ganichev, V. V. Bel’kov, S. N. Danilov, M. M. Glazov, L. E. Golub, U. Roessler, W. Wegscheider, D. Weiss, D. Schuh, and W. Prettl, “Spin relaxation times of 2D holes from spin sensitive bleaching of inter-subband absorption,” J. Appl. Phys. 96, 420–433 (2004).
[CrossRef]

Schuh, D.

P. Schneider, J. Kainz, S. D. Ganichev, V. V. Bel’kov, S. N. Danilov, M. M. Glazov, L. E. Golub, U. Roessler, W. Wegscheider, D. Weiss, D. Schuh, and W. Prettl, “Spin relaxation times of 2D holes from spin sensitive bleaching of inter-subband absorption,” J. Appl. Phys. 96, 420–433 (2004).
[CrossRef]

Schulkin, B.

J. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[CrossRef]

Shalygin, V. A.

S. N. Danilov, B. Wittmann, P. Olbrich, W. Eder, W. Prettl, L. E. Golub, E. V. Beregulin, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, V. A. Shalygin, N. Q. Vinh, A. F. G. van der Meer, B. Murdin, and S. D. Ganichev, “Fast detector of the ellipticity of infrared and terahertz radiation based on HgTe quantum well structures,” J. Appl. Phys. 105, 013106 (2009).
[CrossRef]

Singh, R.

Z. Taylor, R. Singh, D. Bennett, P. Tewari, N. Bajwa, M. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. Brown, and W. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[CrossRef]

Sizov, F.

F. Sizov and A. Rogalski, “THz detectors,” Prog. Quantum Electron. 34, 278–347 (2010).
[CrossRef]

Spickermann, G.

F. Friederich, W. von Spiegel, M. Bauer, F. Meng, M. Thomson, S. Boppel, A. Lisauskas, B. Hils, V. Krozer, A. Keil, T. Loffler, R. Henneberger, A. Huhn, G. Spickermann, P. Bolivar, and H. Roskos, “THz active imaging system with real-time capabilities,” IEEE Trans. Terahertz Sci. Technol. 1, 183–200 (2011).
[CrossRef]

Stanze, D.

D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw terahertz spectrometer pumped at 1.5 μm wavelength,” Int. J. Infrared Millim. Waves 32, 225–232 (2011).
[CrossRef]

Stojadinovic, A.

Z. Taylor, R. Singh, D. Bennett, P. Tewari, N. Bajwa, M. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. Brown, and W. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[CrossRef]

Tan, Q.

G. Kang, Q. Tan, X. Wang, and G. Jin, “Achromatic phase retarder applied to MWIR & LWIR dual-band,” Opt. Express 18, 1695–1703 (2010).
[CrossRef]

Taylor, Z.

Z. Taylor, R. Singh, D. Bennett, P. Tewari, N. Bajwa, M. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. Brown, and W. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[CrossRef]

Teukolsky, W.

W. Press, W. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C. The Art of Scientific Computing(Cambridge University, 1997).

Tewari, P.

Z. Taylor, R. Singh, D. Bennett, P. Tewari, N. Bajwa, M. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. Brown, and W. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[CrossRef]

Thomson, M.

F. Friederich, W. von Spiegel, M. Bauer, F. Meng, M. Thomson, S. Boppel, A. Lisauskas, B. Hils, V. Krozer, A. Keil, T. Loffler, R. Henneberger, A. Huhn, G. Spickermann, P. Bolivar, and H. Roskos, “THz active imaging system with real-time capabilities,” IEEE Trans. Terahertz Sci. Technol. 1, 183–200 (2011).
[CrossRef]

Tichonov, A.

A. Tichonov, Methods of Incorrect Problems Solving (Nauka, 1979).

Tikhonov, A.

A. Tikhonov and V. Arsenin, Solution Methods for Ill-Conditioned Problems (Nauka, 1986, in Russian).

Ueno, Y.

K. Ajito and Y. Ueno, “THz chemical imaging for biological applications,” IEEE Trans. Terahertz Sci. Technol. 1, 293–300 (2011).
[CrossRef]

van Amersfoort, P. W.

D. Oepts, A. F. G. van der Meer, and P. W. van Amersfoort, “The free-electron-laser user facility FELIX,” Infrared Phys. Technol. 36, 297–308 (1995).
[CrossRef]

van der Meer, A. F. G.

S. N. Danilov, B. Wittmann, P. Olbrich, W. Eder, W. Prettl, L. E. Golub, E. V. Beregulin, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, V. A. Shalygin, N. Q. Vinh, A. F. G. van der Meer, B. Murdin, and S. D. Ganichev, “Fast detector of the ellipticity of infrared and terahertz radiation based on HgTe quantum well structures,” J. Appl. Phys. 105, 013106 (2009).
[CrossRef]

D. Oepts, A. F. G. van der Meer, and P. W. van Amersfoort, “The free-electron-laser user facility FELIX,” Infrared Phys. Technol. 36, 297–308 (1995).
[CrossRef]

Vetterling, W.

W. Press, W. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C. The Art of Scientific Computing(Cambridge University, 1997).

Vinh, N. Q.

S. N. Danilov, B. Wittmann, P. Olbrich, W. Eder, W. Prettl, L. E. Golub, E. V. Beregulin, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, V. A. Shalygin, N. Q. Vinh, A. F. G. van der Meer, B. Murdin, and S. D. Ganichev, “Fast detector of the ellipticity of infrared and terahertz radiation based on HgTe quantum well structures,” J. Appl. Phys. 105, 013106 (2009).
[CrossRef]

von Spiegel, W.

F. Friederich, W. von Spiegel, M. Bauer, F. Meng, M. Thomson, S. Boppel, A. Lisauskas, B. Hils, V. Krozer, A. Keil, T. Loffler, R. Henneberger, A. Huhn, G. Spickermann, P. Bolivar, and H. Roskos, “THz active imaging system with real-time capabilities,” IEEE Trans. Terahertz Sci. Technol. 1, 183–200 (2011).
[CrossRef]

Wang, H.-M.

J. Ma, J.-S. Wang, C. Denker, and H.-M. Wang, “Optical design of multilayer achromatic waveplate by simulated annealing algorithm,” Chin. J. Astrophys. 8, 349–361 (2008).
[CrossRef]

Wang, J.-S.

J. Ma, J.-S. Wang, C. Denker, and H.-M. Wang, “Optical design of multilayer achromatic waveplate by simulated annealing algorithm,” Chin. J. Astrophys. 8, 349–361 (2008).
[CrossRef]

Wang, X.

G. Kang, Q. Tan, X. Wang, and G. Jin, “Achromatic phase retarder applied to MWIR & LWIR dual-band,” Opt. Express 18, 1695–1703 (2010).
[CrossRef]

Ward, T.

K. Humphreys, J. Loughran, W. Lanigan, T. Ward, J. Murphy, and C. O’Sullivan, “Medical applications of terahertz imaging: a review of current technology and potential applications in biomedical engineering,” in Proceedings of IEEE 26th Annual International Conference of the Engineering in Medicine and Biology Society (IEEE, 2004), pp. 1302–1305.

Wegscheider, W.

P. Schneider, J. Kainz, S. D. Ganichev, V. V. Bel’kov, S. N. Danilov, M. M. Glazov, L. E. Golub, U. Roessler, W. Wegscheider, D. Weiss, D. Schuh, and W. Prettl, “Spin relaxation times of 2D holes from spin sensitive bleaching of inter-subband absorption,” J. Appl. Phys. 96, 420–433 (2004).
[CrossRef]

Weiss, D.

P. Schneider, J. Kainz, S. D. Ganichev, V. V. Bel’kov, S. N. Danilov, M. M. Glazov, L. E. Golub, U. Roessler, W. Wegscheider, D. Weiss, D. Schuh, and W. Prettl, “Spin relaxation times of 2D holes from spin sensitive bleaching of inter-subband absorption,” J. Appl. Phys. 96, 420–433 (2004).
[CrossRef]

Wittmann, B.

S. N. Danilov, B. Wittmann, P. Olbrich, W. Eder, W. Prettl, L. E. Golub, E. V. Beregulin, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, V. A. Shalygin, N. Q. Vinh, A. F. G. van der Meer, B. Murdin, and S. D. Ganichev, “Fast detector of the ellipticity of infrared and terahertz radiation based on HgTe quantum well structures,” J. Appl. Phys. 105, 013106 (2009).
[CrossRef]

Wyncke, B.

F. Brehat and B. Wyncke, “Measurement of the optical constants of crystal quartz at 10 K and 300 K in the far infrared spectral range: 10–600  cm−1,” Int. J. Infrared Millim. Waves 18, 1663–1679 (1997).
[CrossRef]

Xu, J.

X.-C. Zhang and J. Xu, Introduction to THz Wave Photonics (Springer, 2010).

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystals (Mir, 1987).

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals (Mir, 1987).

Zhang, X.-C.

X.-C. Zhang and J. Xu, Introduction to THz Wave Photonics (Springer, 2010).

Zhdanov, A. I.

A. I. Zhdanov, “The method of augmented regularized normal equations,” Comput. Math. Math. Phys. 52, 194–197(2012).
[CrossRef]

Zhiglinsky, A.

A. Zhiglinsky and V. Kuchinsky, Real Fabry–Perot Interferometer (Mashinostroyeniete, 1983).

Zimdars, D.

J. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[CrossRef]

Appl. Math. Inf. (1)

R. Deyanov and B. Schedrin, “Algorithm of subsequent descent on local minima system,” Appl. Math. Inf. 30, 46–54(2008).

Appl. Opt. (1)

G. Savini, G. Pisano, and P. Ade, “Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: modeling and simulation,” Appl. Opt. 45, 8907–8915 (2006).
[CrossRef]

Chin. J. Astrophys. (1)

J. Ma, J.-S. Wang, C. Denker, and H.-M. Wang, “Optical design of multilayer achromatic waveplate by simulated annealing algorithm,” Chin. J. Astrophys. 8, 349–361 (2008).
[CrossRef]

Comput. Math. Math. Phys. (1)

A. I. Zhdanov, “The method of augmented regularized normal equations,” Comput. Math. Math. Phys. 52, 194–197(2012).
[CrossRef]

IEEE Trans. Terahertz Sci. Technol. (4)

F. Friederich, W. von Spiegel, M. Bauer, F. Meng, M. Thomson, S. Boppel, A. Lisauskas, B. Hils, V. Krozer, A. Keil, T. Loffler, R. Henneberger, A. Huhn, G. Spickermann, P. Bolivar, and H. Roskos, “THz active imaging system with real-time capabilities,” IEEE Trans. Terahertz Sci. Technol. 1, 183–200 (2011).
[CrossRef]

K. Ajito and Y. Ueno, “THz chemical imaging for biological applications,” IEEE Trans. Terahertz Sci. Technol. 1, 293–300 (2011).
[CrossRef]

Z. Taylor, R. Singh, D. Bennett, P. Tewari, N. Bajwa, M. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. Brown, and W. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[CrossRef]

Z. Popovic, and E. Grossman, “THz metrology and instrumentation,” IEEE Trans. Terahertz Sci. Technol. 1, 133–144 (2011).
[CrossRef]

Infrared Phys. Technol. (1)

D. Oepts, A. F. G. van der Meer, and P. W. van Amersfoort, “The free-electron-laser user facility FELIX,” Infrared Phys. Technol. 36, 297–308 (1995).
[CrossRef]

Int. J. Infrared Millim. Waves (2)

D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw terahertz spectrometer pumped at 1.5 μm wavelength,” Int. J. Infrared Millim. Waves 32, 225–232 (2011).
[CrossRef]

F. Brehat and B. Wyncke, “Measurement of the optical constants of crystal quartz at 10 K and 300 K in the far infrared spectral range: 10–600  cm−1,” Int. J. Infrared Millim. Waves 18, 1663–1679 (1997).
[CrossRef]

J. Appl. Phys. (2)

S. N. Danilov, B. Wittmann, P. Olbrich, W. Eder, W. Prettl, L. E. Golub, E. V. Beregulin, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, V. A. Shalygin, N. Q. Vinh, A. F. G. van der Meer, B. Murdin, and S. D. Ganichev, “Fast detector of the ellipticity of infrared and terahertz radiation based on HgTe quantum well structures,” J. Appl. Phys. 105, 013106 (2009).
[CrossRef]

P. Schneider, J. Kainz, S. D. Ganichev, V. V. Bel’kov, S. N. Danilov, M. M. Glazov, L. E. Golub, U. Roessler, W. Wegscheider, D. Weiss, D. Schuh, and W. Prettl, “Spin relaxation times of 2D holes from spin sensitive bleaching of inter-subband absorption,” J. Appl. Phys. 96, 420–433 (2004).
[CrossRef]

J. Opt. Soc. Am. (1)

R. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. 31, 488–503 (1941).
[CrossRef]

Opt. Express (1)

G. Kang, Q. Tan, X. Wang, and G. Jin, “Achromatic phase retarder applied to MWIR & LWIR dual-band,” Opt. Express 18, 1695–1703 (2010).
[CrossRef]

Opt. Lett. (1)

J.-B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett. 31, 265–267 (2006).
[CrossRef]

Phys. E (1)

Z. D. Kvon, S. N. Danilov, N. N. Mikhailov, S. A. Dvoretsky, and S. D. Ganichev, “Cyclotron resonance photoconductivity of a two-dimensional electron gas in HgTe quantum wells,” Phys. E 40, 1885–1887 (2008).
[CrossRef]

Proc. Ind. Ac. Sci. (1)

S. Pancharatnam, “Achromatic combination of birefringent plates,” Proc. Ind. Ac. Sci. XLI, 130–144 (1955).

Prog. Quantum Electron. (1)

F. Sizov and A. Rogalski, “THz detectors,” Prog. Quantum Electron. 34, 278–347 (2010).
[CrossRef]

Semicond. Sci. Technol. (1)

J. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[CrossRef]

Other (11)

A. Yariv and P. Yeh, Optical Waves in Crystals (Mir, 1987).

K. Humphreys, J. Loughran, W. Lanigan, T. Ward, J. Murphy, and C. O’Sullivan, “Medical applications of terahertz imaging: a review of current technology and potential applications in biomedical engineering,” in Proceedings of IEEE 26th Annual International Conference of the Engineering in Medicine and Biology Society (IEEE, 2004), pp. 1302–1305.

X.-C. Zhang and J. Xu, Introduction to THz Wave Photonics (Springer, 2010).

S. D. Ganichev and W. Prettl, Intense Terahertz Excitation of Semiconductors (Oxford University, 2006).

W. Press, W. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C. The Art of Scientific Computing(Cambridge University, 1997).

M. Darsht, “The effect of an environment and external impacts on the polarized light propagation,” Ph.D. thesis (Chelyabinsk State Technical University, 1996, in Russian).

A. Tichonov, Methods of Incorrect Problems Solving (Nauka, 1979).

A. Zhiglinsky and V. Kuchinsky, Real Fabry–Perot Interferometer (Mashinostroyeniete, 1983).

http://plasma.karelia.ru/~ekostq/PUBLIC/fs/index_2.html .

A. Malakhov, Cumulant Analysis of Random Non-Gaussian Processes and their Transformations (Sovetskoye Radio, 1978, in Russian).

A. Tikhonov and V. Arsenin, Solution Methods for Ill-Conditioned Problems (Nauka, 1986, in Russian).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Transmission spectrum of crystalline quartz, thickness 0.4 mm, x-oriented.

Fig. 2.
Fig. 2.

Schematic diagram of a set of plane-parallel birefringent media with in-plane birefringence axes.

Fig. 3.
Fig. 3.

Linearly polarized to total intensity ratio as a function of wavelength for the light converted to circular polarization using a BBPC designed for the 60–300 μm range.

Fig. 4.
Fig. 4.

Phase versus wavelength for BBPC designed for 60–300 μm range.

Fig. 5.
Fig. 5.

(a) EOA angle φ versus the wavelength in the cases of 2×2 (bold curve, no account for interference), and 4×4 (fine curve, with interference) Jones matrix. The calculation assumes BBPC (ωconst) designed for the 60–300 μm range. (b) “Effective rotator” rotation angle versus wavelength ω(λ) for the same BBPC. (c) Retardation versus wavelength δ(λ) for the same BBPC. (d) Sample of a dependence ω(λ) for an AWP designed for the same spectral range.

Fig. 6.
Fig. 6.

Dependence of linearly polarized light transmission for λ/4 BBPC on wavelength (a), same for different angles of analyzer [rotated linear polarizer, ordinate axis in (b)]. Each sequence in (b) corresponds to its own wavelength [upper right side of (b)] taken from (a). The curves in (a) are very similar. The small misfit of the curves is related to the relatively low SNR of the spectrometer.

Fig. 7.
Fig. 7.

Laser radiation intensity versus analyzer rotation angle without AWP (circles) and with quarter-wave AWP (rhombi). Solid curves represent theoretical analyzer (eight-shape) and AWP (O-shape) characteristics. Triangles represent signal diagram for standard quarter-wave plate with rated wavelength 148 μm.

Fig. 8.
Fig. 8.

Spectral dependence of intensity of radiation generated by free-electron laser and passing though quarter-wave AWP at various analyzer angles.

Fig. 9.
Fig. 9.

(a) Wavelength dependence of the middle plate rotation angle (α) and the assembly’s EOA angle (β) calculated for CWP operating in the range of 60–300 μm. (b) Comparison of retardations of the said CWP and monochromatic WP rated for 118 μm.

Fig. 10.
Fig. 10.

(a) Sample Fredholm kernel (horizontal and vertical axes correspond to λ and γ) and (b) sample response, i.e., F(γ) for known Gaussian I(λ).

Fig. 11.
Fig. 11.

(a) Original and reconstructed I(λ) represented by several overlapping peaks. Without right-side disturbance the function is reconstructed with adequate precision. (b) Solution obtained using Tikhonov regularization method at 1% disturbance of the right-side vector, and undisturbed solution.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

=[coskedjnesinked00j1nesinkedcosked0000cosk0djnosinkod00j1nosinkodcosk0d],
M^=i=1N(F^iQ^iF^i1),
F^=(cosφ0sinφ00cosφ0sinφsinφ0cosφ00sinφ0cosφ)
P^=(M11+M12+M21+M222M13+M14+M23+M242M31+M32+M41+M422M33+M34+M43+M442).
J^=i=1NJ^i,J^i=(cosδi2+jcos(2φi)sin(δi2)jsin(2φi)sin(δi2)jsin(2φi)sin(δi2)cosδi2jcos(2φi)sin(δi2)),
I=|E·2E¯2E1·E¯1|E2·E¯2+E1·E¯1,
E1=P111cos(η)+P211sin(η),E2=P211cos(η)P111sin(η),η=0.5arctan(P111P¯211+P211P¯111P111P¯111P211P¯211).
θ=0.5|arctg(Im(P121ejν)Re(P111ejν)+Re(P121ejν)Im(P111ejν)Im(P111ejν)Re(P111ejν)Re(P121ejν)Im(P121ejν))|,
ω=arctg(Re(P121ejν)Re(P111ejν)).
δ=arg(P221)arg(P111).
δ=2arctg(((Im(P111ejν))2+(Im(P121ejν))2(Re(P111ejν))2+(Re(P121ejν))2)0.5).
α=0.5arccos(cos(δ)cos(δ2)cos(δ02)sin(δ)sin(δ2)),
0=[cos2πhλ0jsin2πhλ000jsin2πhλ0cos2πhλ00000cos2πhλ0jsin2πhλ000jsin2πhλ0cos2πhλ0],
λ1λ2K(λ,γ)I(λ)dλ=F(γ).
A(x)=AG(x)+k=3(1)kβkk!AG(k)(x),
F=(YiexperimYitheor)2min.
Φα(A,b˜,x)=Axb˜22+α2Lx22,
L=(110000110000011).
α2=δ×σmax2(A)b˜2+δ,

Metrics