Abstract

Temperature is an important parameter that needs accurate measurement. Theoretical descriptions of the fluorescence ratio method, fluorescence lifetime sensing, and interferometric methods for temperature measurement are given. Fluorescence lifetime sensing calibration plots have been developed for temperature measurement from 20°C to 600°C using Er3+-doped glass, and from 20°C to 90°C using Sm3+-doped CaF2. Lifetime sensing results of Pr3+-doped YAG and Ho3+-doped fluoride crystals for temperature measurement are also summarized. Mach–Zehnder interferometer measurements revealed that the passage of a 300 mW laser beam of 915 nm changed the temperature of the Yb3+-doped YAG crystal by 7.1°C. The interferometer technique is useful for measuring absolute temperature changes in laser cooling studies.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Baker, “Temperature sensing technologies,” AN673 (Microchip Technology, 1998) http://www.microchip.com .
  2. M. A. Soto, T. Nannipierri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. D. Pasquale, “Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low repetition-rate cyclic pulse coding,” Opt. Lett. 36, 2557–2559 (2011).
    [CrossRef]
  3. Y. Zhan, H. Wu, Q. Yang, S. Xiang, and H. He, “Fiber Bragg grating sensors for high temperature measurement,” Opt. Lasers Eng. 46, 349–354 (2008).
    [CrossRef]
  4. B. Imangholi, M. P. Hasselbeck, D. A. Bender, C. Wang, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
    [CrossRef]
  5. D. L. Chubb and D. S. Wolford, “Rare-earth optical temperature sensor,” NASA/TM-2000-209657 (NASA, 2000).
  6. S. W. Allison and G. T. Gillies, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum. 68, 2615–2650 (1997).
    [CrossRef]
  7. M. Lapp and D. L. Hartley, “Raman scattering studies of combustion,” Combust. Sci. Technol. 13, 199–210 (1976).
    [CrossRef]
  8. D. N. Messias, M. V. D. Vermelho, A. S. Gouveia-Neto, and J. S. Aitchison, “All optical integrated upconversion fluorescence based point temperature sensing system using Er3+ doped silica-on-silicon waveguides,” Rev. Sci. Instrum. 73, 476–479 (2002).
    [CrossRef]
  9. P. Hariharan, Optical Interferometry (Elsevier/Academic, 2003).
  10. D. Wilkie and S. A. Fisher, “Measurement of temperature by Mach–Zehnder interferometry,” Proc. Instn. Mech. Engrs. 178, 461–470 (1963).
    [CrossRef]
  11. E. Tomita and N. Kawahara, “Temperature measurement of water with a sensor by laser interferometry technique,” presented at the 14th International Symposium on the Application of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 7–10 July 2008.
  12. S. S. Sandhu and F. J. Weinberg, “A laser interferometer for combustion, aerodynamics and heat transfer studies,” J. Phys. E 5, 1018–1020 (1972).
    [CrossRef]
  13. T. Sun, Z. Y. Zhang, and K. T. V. Grattan, “Erbium/Ytterbium fluorescence based fiber optic temperature sensor system,” Rev. Sci. Instrum. 71, 4017–4022 (2000).
    [CrossRef]
  14. D. I. Forsyth, S. A. Wade, T. Sun, X. Chen, and K. T. V. Grattan, “Dual temperature and strain measurement with the combined fluorescence lifetime and Bragg wavelength shift approach in doped optical fiber,” Appl. Opt. 41, 6585–6592 (2002).
    [CrossRef]
  15. I. Kamma, P. Kommidi, and B. R. Reddy, “Design of a high temperature sensing system using luminescent lifetime measurement,” Rev. Sci. Instrum. 79, 096104 (2008).
    [CrossRef]
  16. C. W. Farley and B. R. Reddy, “Interferometric measurement of laser heating in praseodymium doped YAG crystal,” Appl. Opt. 50, 526–531 (2011).
    [CrossRef]
  17. G. H. Dieke, Spectra and Energy Levels of Rare-Earth Ions (Wiley, 1968).
  18. L. A. Riseberg and H. W. Moos, “Multiphonon orbit-lattice relaxation in LaBr3, LaCl3 and LaF3,” Phys. Rev. Lett. 19, 1423–1426 (1967).
    [CrossRef]
  19. M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 262–272 (1967).
    [CrossRef]
  20. S. A. Wade, S. F. Collins, and D. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94, 4743–4756 (2003).
    [CrossRef]
  21. C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
    [CrossRef]
  22. C. L. Shepard, B. D. Cannon, and M. A. Khaleel, “Determination of temperature in glass with a fluorescence method,” Int. J. Heat Mass Trans. 44, 4027–4034 (2001).
    [CrossRef]
  23. G. Paez and M. Strojnik, “Experimental results of ratio based erbium-doped-silica temperature sensor,” Opt. Eng. 42, 1805–1811 (2003).
    [CrossRef]
  24. I. Kamma and B. R. Bommareddi, “Fluorescence lifetime sensing of temperature with erbium doped lead germano tellurite glass,” in Appled Industrial Optics: Spectroscopy, Imaging and Metrology, OSA Technical Digest (CD) (Optical Society of America, 2010), paper AMA2.
  25. P. Kommidi and B. R. Reddy, “Fluorescence lifetime sensing of temperature,” Proc. SPIE 6377, 63770T (2006).
    [CrossRef]
  26. H. Loock and P. D. Wentzell, “Detection limits of chemical sensors: applications and misapplications,” Sens. Actuators B 173, 157–163 (2012).
    [CrossRef]
  27. I. Kamma, P. Kommidi, and B. R. Reddy, “High temperature measurement using luminescence of Pr3+-doped YAG and Ho3+ doped CaF2,” Phys. Stat. Sol. C 6, S187–S190 (2009).
    [CrossRef]
  28. M. Malinowski, M. F. Joubert, and B. Jacquier, “Dynamics of the IR-to-blue wavelength upconversion in Pr3+-doped yttrium aluminum garnet and LiYF4 crystals,” Phys. Rev. B 50, 12367–12374 (1994).
    [CrossRef]
  29. VLOC, YAG data sheet, www.vloc.com .
  30. T. Y. Fan and J. L. Daneu, “Thermal coefficients of the optical path length and refractive index in YAG,” Appl. Opt. 37, 1635–1637 (1998).
    [CrossRef]
  31. R. Wynne, J. L. Daneu, and T. Y. Fan, “Thermal coefficients of the expansion and refractive index in YAG,” Appl. Opt. 38, 3282–3284 (1999).
    [CrossRef]
  32. C. W. Farley and B. R. Reddy, “Mach–Zehnder interferometric measurement of laser heating/cooling in Yb3+:YAG,” Proc. SPIE 7951, 79510I (2011).
    [CrossRef]
  33. P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
    [CrossRef]
  34. R. Epstein and M. Saheik-bahae, Optical Refrigeration(Wiley-VCH, 2009).

2012 (1)

H. Loock and P. D. Wentzell, “Detection limits of chemical sensors: applications and misapplications,” Sens. Actuators B 173, 157–163 (2012).
[CrossRef]

2011 (3)

C. W. Farley and B. R. Reddy, “Mach–Zehnder interferometric measurement of laser heating/cooling in Yb3+:YAG,” Proc. SPIE 7951, 79510I (2011).
[CrossRef]

M. A. Soto, T. Nannipierri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. D. Pasquale, “Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low repetition-rate cyclic pulse coding,” Opt. Lett. 36, 2557–2559 (2011).
[CrossRef]

C. W. Farley and B. R. Reddy, “Interferometric measurement of laser heating in praseodymium doped YAG crystal,” Appl. Opt. 50, 526–531 (2011).
[CrossRef]

2009 (2)

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

I. Kamma, P. Kommidi, and B. R. Reddy, “High temperature measurement using luminescence of Pr3+-doped YAG and Ho3+ doped CaF2,” Phys. Stat. Sol. C 6, S187–S190 (2009).
[CrossRef]

2008 (2)

I. Kamma, P. Kommidi, and B. R. Reddy, “Design of a high temperature sensing system using luminescent lifetime measurement,” Rev. Sci. Instrum. 79, 096104 (2008).
[CrossRef]

Y. Zhan, H. Wu, Q. Yang, S. Xiang, and H. He, “Fiber Bragg grating sensors for high temperature measurement,” Opt. Lasers Eng. 46, 349–354 (2008).
[CrossRef]

2006 (2)

B. Imangholi, M. P. Hasselbeck, D. A. Bender, C. Wang, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
[CrossRef]

P. Kommidi and B. R. Reddy, “Fluorescence lifetime sensing of temperature,” Proc. SPIE 6377, 63770T (2006).
[CrossRef]

2003 (2)

S. A. Wade, S. F. Collins, and D. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94, 4743–4756 (2003).
[CrossRef]

G. Paez and M. Strojnik, “Experimental results of ratio based erbium-doped-silica temperature sensor,” Opt. Eng. 42, 1805–1811 (2003).
[CrossRef]

2002 (2)

D. I. Forsyth, S. A. Wade, T. Sun, X. Chen, and K. T. V. Grattan, “Dual temperature and strain measurement with the combined fluorescence lifetime and Bragg wavelength shift approach in doped optical fiber,” Appl. Opt. 41, 6585–6592 (2002).
[CrossRef]

D. N. Messias, M. V. D. Vermelho, A. S. Gouveia-Neto, and J. S. Aitchison, “All optical integrated upconversion fluorescence based point temperature sensing system using Er3+ doped silica-on-silicon waveguides,” Rev. Sci. Instrum. 73, 476–479 (2002).
[CrossRef]

2001 (1)

C. L. Shepard, B. D. Cannon, and M. A. Khaleel, “Determination of temperature in glass with a fluorescence method,” Int. J. Heat Mass Trans. 44, 4027–4034 (2001).
[CrossRef]

2000 (1)

T. Sun, Z. Y. Zhang, and K. T. V. Grattan, “Erbium/Ytterbium fluorescence based fiber optic temperature sensor system,” Rev. Sci. Instrum. 71, 4017–4022 (2000).
[CrossRef]

1999 (1)

R. Wynne, J. L. Daneu, and T. Y. Fan, “Thermal coefficients of the expansion and refractive index in YAG,” Appl. Opt. 38, 3282–3284 (1999).
[CrossRef]

1998 (1)

T. Y. Fan and J. L. Daneu, “Thermal coefficients of the optical path length and refractive index in YAG,” Appl. Opt. 37, 1635–1637 (1998).
[CrossRef]

1997 (1)

S. W. Allison and G. T. Gillies, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum. 68, 2615–2650 (1997).
[CrossRef]

1994 (1)

M. Malinowski, M. F. Joubert, and B. Jacquier, “Dynamics of the IR-to-blue wavelength upconversion in Pr3+-doped yttrium aluminum garnet and LiYF4 crystals,” Phys. Rev. B 50, 12367–12374 (1994).
[CrossRef]

1977 (1)

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
[CrossRef]

1976 (1)

M. Lapp and D. L. Hartley, “Raman scattering studies of combustion,” Combust. Sci. Technol. 13, 199–210 (1976).
[CrossRef]

1972 (1)

S. S. Sandhu and F. J. Weinberg, “A laser interferometer for combustion, aerodynamics and heat transfer studies,” J. Phys. E 5, 1018–1020 (1972).
[CrossRef]

1967 (2)

L. A. Riseberg and H. W. Moos, “Multiphonon orbit-lattice relaxation in LaBr3, LaCl3 and LaF3,” Phys. Rev. Lett. 19, 1423–1426 (1967).
[CrossRef]

M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 262–272 (1967).
[CrossRef]

1963 (1)

D. Wilkie and S. A. Fisher, “Measurement of temperature by Mach–Zehnder interferometry,” Proc. Instn. Mech. Engrs. 178, 461–470 (1963).
[CrossRef]

Aitchison, J. S.

D. N. Messias, M. V. D. Vermelho, A. S. Gouveia-Neto, and J. S. Aitchison, “All optical integrated upconversion fluorescence based point temperature sensing system using Er3+ doped silica-on-silicon waveguides,” Rev. Sci. Instrum. 73, 476–479 (2002).
[CrossRef]

Allison, S. W.

S. W. Allison and G. T. Gillies, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum. 68, 2615–2650 (1997).
[CrossRef]

Baker, B.

B. Baker, “Temperature sensing technologies,” AN673 (Microchip Technology, 1998) http://www.microchip.com .

Baronti, F.

M. A. Soto, T. Nannipierri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. D. Pasquale, “Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low repetition-rate cyclic pulse coding,” Opt. Lett. 36, 2557–2559 (2011).
[CrossRef]

Baxter, D. W.

S. A. Wade, S. F. Collins, and D. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94, 4743–4756 (2003).
[CrossRef]

Bender, D. A.

B. Imangholi, M. P. Hasselbeck, D. A. Bender, C. Wang, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
[CrossRef]

Bolognini, G.

M. A. Soto, T. Nannipierri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. D. Pasquale, “Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low repetition-rate cyclic pulse coding,” Opt. Lett. 36, 2557–2559 (2011).
[CrossRef]

Bommareddi, B. R.

I. Kamma and B. R. Bommareddi, “Fluorescence lifetime sensing of temperature with erbium doped lead germano tellurite glass,” in Appled Industrial Optics: Spectroscopy, Imaging and Metrology, OSA Technical Digest (CD) (Optical Society of America, 2010), paper AMA2.

Cannon, B. D.

C. L. Shepard, B. D. Cannon, and M. A. Khaleel, “Determination of temperature in glass with a fluorescence method,” Int. J. Heat Mass Trans. 44, 4027–4034 (2001).
[CrossRef]

Chen, Q.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

Chen, X.

D. I. Forsyth, S. A. Wade, T. Sun, X. Chen, and K. T. V. Grattan, “Dual temperature and strain measurement with the combined fluorescence lifetime and Bragg wavelength shift approach in doped optical fiber,” Appl. Opt. 41, 6585–6592 (2002).
[CrossRef]

Chubb, D. L.

D. L. Chubb and D. S. Wolford, “Rare-earth optical temperature sensor,” NASA/TM-2000-209657 (NASA, 2000).

Collins, S. F.

S. A. Wade, S. F. Collins, and D. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94, 4743–4756 (2003).
[CrossRef]

Daneu, J. L.

R. Wynne, J. L. Daneu, and T. Y. Fan, “Thermal coefficients of the expansion and refractive index in YAG,” Appl. Opt. 38, 3282–3284 (1999).
[CrossRef]

T. Y. Fan and J. L. Daneu, “Thermal coefficients of the optical path length and refractive index in YAG,” Appl. Opt. 37, 1635–1637 (1998).
[CrossRef]

Dieke, G. H.

G. H. Dieke, Spectra and Energy Levels of Rare-Earth Ions (Wiley, 1968).

Epstein, R.

R. Epstein and M. Saheik-bahae, Optical Refrigeration(Wiley-VCH, 2009).

Epstein, R. I.

B. Imangholi, M. P. Hasselbeck, D. A. Bender, C. Wang, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
[CrossRef]

Fan, T. Y.

R. Wynne, J. L. Daneu, and T. Y. Fan, “Thermal coefficients of the expansion and refractive index in YAG,” Appl. Opt. 38, 3282–3284 (1999).
[CrossRef]

T. Y. Fan and J. L. Daneu, “Thermal coefficients of the optical path length and refractive index in YAG,” Appl. Opt. 37, 1635–1637 (1998).
[CrossRef]

Farley, C. W.

C. W. Farley and B. R. Reddy, “Mach–Zehnder interferometric measurement of laser heating/cooling in Yb3+:YAG,” Proc. SPIE 7951, 79510I (2011).
[CrossRef]

C. W. Farley and B. R. Reddy, “Interferometric measurement of laser heating in praseodymium doped YAG crystal,” Appl. Opt. 50, 526–531 (2011).
[CrossRef]

Fisher, S. A.

D. Wilkie and S. A. Fisher, “Measurement of temperature by Mach–Zehnder interferometry,” Proc. Instn. Mech. Engrs. 178, 461–470 (1963).
[CrossRef]

Forsyth, D. I.

D. I. Forsyth, S. A. Wade, T. Sun, X. Chen, and K. T. V. Grattan, “Dual temperature and strain measurement with the combined fluorescence lifetime and Bragg wavelength shift approach in doped optical fiber,” Appl. Opt. 41, 6585–6592 (2002).
[CrossRef]

Gillies, G. T.

S. W. Allison and G. T. Gillies, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum. 68, 2615–2650 (1997).
[CrossRef]

Gouveia-Neto, A. S.

D. N. Messias, M. V. D. Vermelho, A. S. Gouveia-Neto, and J. S. Aitchison, “All optical integrated upconversion fluorescence based point temperature sensing system using Er3+ doped silica-on-silicon waveguides,” Rev. Sci. Instrum. 73, 476–479 (2002).
[CrossRef]

Grattan, K. T. V.

D. I. Forsyth, S. A. Wade, T. Sun, X. Chen, and K. T. V. Grattan, “Dual temperature and strain measurement with the combined fluorescence lifetime and Bragg wavelength shift approach in doped optical fiber,” Appl. Opt. 41, 6585–6592 (2002).
[CrossRef]

T. Sun, Z. Y. Zhang, and K. T. V. Grattan, “Erbium/Ytterbium fluorescence based fiber optic temperature sensor system,” Rev. Sci. Instrum. 71, 4017–4022 (2000).
[CrossRef]

Hariharan, P.

P. Hariharan, Optical Interferometry (Elsevier/Academic, 2003).

Hartley, D. L.

M. Lapp and D. L. Hartley, “Raman scattering studies of combustion,” Combust. Sci. Technol. 13, 199–210 (1976).
[CrossRef]

Hasselbeck, M. P.

B. Imangholi, M. P. Hasselbeck, D. A. Bender, C. Wang, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
[CrossRef]

He, H.

Y. Zhan, H. Wu, Q. Yang, S. Xiang, and H. He, “Fiber Bragg grating sensors for high temperature measurement,” Opt. Lasers Eng. 46, 349–354 (2008).
[CrossRef]

Imangholi, B.

B. Imangholi, M. P. Hasselbeck, D. A. Bender, C. Wang, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
[CrossRef]

Jacquier, B.

M. Malinowski, M. F. Joubert, and B. Jacquier, “Dynamics of the IR-to-blue wavelength upconversion in Pr3+-doped yttrium aluminum garnet and LiYF4 crystals,” Phys. Rev. B 50, 12367–12374 (1994).
[CrossRef]

Joubert, M. F.

M. Malinowski, M. F. Joubert, and B. Jacquier, “Dynamics of the IR-to-blue wavelength upconversion in Pr3+-doped yttrium aluminum garnet and LiYF4 crystals,” Phys. Rev. B 50, 12367–12374 (1994).
[CrossRef]

Kamma, I.

I. Kamma, P. Kommidi, and B. R. Reddy, “High temperature measurement using luminescence of Pr3+-doped YAG and Ho3+ doped CaF2,” Phys. Stat. Sol. C 6, S187–S190 (2009).
[CrossRef]

I. Kamma, P. Kommidi, and B. R. Reddy, “Design of a high temperature sensing system using luminescent lifetime measurement,” Rev. Sci. Instrum. 79, 096104 (2008).
[CrossRef]

I. Kamma and B. R. Bommareddi, “Fluorescence lifetime sensing of temperature with erbium doped lead germano tellurite glass,” in Appled Industrial Optics: Spectroscopy, Imaging and Metrology, OSA Technical Digest (CD) (Optical Society of America, 2010), paper AMA2.

Kawahara, N.

E. Tomita and N. Kawahara, “Temperature measurement of water with a sensor by laser interferometry technique,” presented at the 14th International Symposium on the Application of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 7–10 July 2008.

Khaleel, M. A.

C. L. Shepard, B. D. Cannon, and M. A. Khaleel, “Determination of temperature in glass with a fluorescence method,” Int. J. Heat Mass Trans. 44, 4027–4034 (2001).
[CrossRef]

Kommidi, P.

I. Kamma, P. Kommidi, and B. R. Reddy, “High temperature measurement using luminescence of Pr3+-doped YAG and Ho3+ doped CaF2,” Phys. Stat. Sol. C 6, S187–S190 (2009).
[CrossRef]

I. Kamma, P. Kommidi, and B. R. Reddy, “Design of a high temperature sensing system using luminescent lifetime measurement,” Rev. Sci. Instrum. 79, 096104 (2008).
[CrossRef]

P. Kommidi and B. R. Reddy, “Fluorescence lifetime sensing of temperature,” Proc. SPIE 6377, 63770T (2006).
[CrossRef]

Kurtz, S.

B. Imangholi, M. P. Hasselbeck, D. A. Bender, C. Wang, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
[CrossRef]

Lapp, M.

M. Lapp and D. L. Hartley, “Raman scattering studies of combustion,” Combust. Sci. Technol. 13, 199–210 (1976).
[CrossRef]

Layne, C. B.

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
[CrossRef]

Lazzeri, A.

M. A. Soto, T. Nannipierri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. D. Pasquale, “Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low repetition-rate cyclic pulse coding,” Opt. Lett. 36, 2557–2559 (2011).
[CrossRef]

Loock, H.

H. Loock and P. D. Wentzell, “Detection limits of chemical sensors: applications and misapplications,” Sens. Actuators B 173, 157–163 (2012).
[CrossRef]

Lowdermilk, W. H.

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
[CrossRef]

Lu, P.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

Malinowski, M.

M. Malinowski, M. F. Joubert, and B. Jacquier, “Dynamics of the IR-to-blue wavelength upconversion in Pr3+-doped yttrium aluminum garnet and LiYF4 crystals,” Phys. Rev. B 50, 12367–12374 (1994).
[CrossRef]

Men, L.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

Messias, D. N.

D. N. Messias, M. V. D. Vermelho, A. S. Gouveia-Neto, and J. S. Aitchison, “All optical integrated upconversion fluorescence based point temperature sensing system using Er3+ doped silica-on-silicon waveguides,” Rev. Sci. Instrum. 73, 476–479 (2002).
[CrossRef]

Moos, H. W.

L. A. Riseberg and H. W. Moos, “Multiphonon orbit-lattice relaxation in LaBr3, LaCl3 and LaF3,” Phys. Rev. Lett. 19, 1423–1426 (1967).
[CrossRef]

Nannipierri, T.

M. A. Soto, T. Nannipierri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. D. Pasquale, “Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low repetition-rate cyclic pulse coding,” Opt. Lett. 36, 2557–2559 (2011).
[CrossRef]

Paez, G.

G. Paez and M. Strojnik, “Experimental results of ratio based erbium-doped-silica temperature sensor,” Opt. Eng. 42, 1805–1811 (2003).
[CrossRef]

Pasquale, F. D.

M. A. Soto, T. Nannipierri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. D. Pasquale, “Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low repetition-rate cyclic pulse coding,” Opt. Lett. 36, 2557–2559 (2011).
[CrossRef]

Reddy, B. R.

C. W. Farley and B. R. Reddy, “Interferometric measurement of laser heating in praseodymium doped YAG crystal,” Appl. Opt. 50, 526–531 (2011).
[CrossRef]

C. W. Farley and B. R. Reddy, “Mach–Zehnder interferometric measurement of laser heating/cooling in Yb3+:YAG,” Proc. SPIE 7951, 79510I (2011).
[CrossRef]

I. Kamma, P. Kommidi, and B. R. Reddy, “High temperature measurement using luminescence of Pr3+-doped YAG and Ho3+ doped CaF2,” Phys. Stat. Sol. C 6, S187–S190 (2009).
[CrossRef]

I. Kamma, P. Kommidi, and B. R. Reddy, “Design of a high temperature sensing system using luminescent lifetime measurement,” Rev. Sci. Instrum. 79, 096104 (2008).
[CrossRef]

P. Kommidi and B. R. Reddy, “Fluorescence lifetime sensing of temperature,” Proc. SPIE 6377, 63770T (2006).
[CrossRef]

Riseberg, L. A.

L. A. Riseberg and H. W. Moos, “Multiphonon orbit-lattice relaxation in LaBr3, LaCl3 and LaF3,” Phys. Rev. Lett. 19, 1423–1426 (1967).
[CrossRef]

Roncella, R.

M. A. Soto, T. Nannipierri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. D. Pasquale, “Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low repetition-rate cyclic pulse coding,” Opt. Lett. 36, 2557–2559 (2011).
[CrossRef]

Saheik-bahae, M.

R. Epstein and M. Saheik-bahae, Optical Refrigeration(Wiley-VCH, 2009).

Sandhu, S. S.

S. S. Sandhu and F. J. Weinberg, “A laser interferometer for combustion, aerodynamics and heat transfer studies,” J. Phys. E 5, 1018–1020 (1972).
[CrossRef]

Sheik-Bahae, M.

B. Imangholi, M. P. Hasselbeck, D. A. Bender, C. Wang, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
[CrossRef]

Shepard, C. L.

C. L. Shepard, B. D. Cannon, and M. A. Khaleel, “Determination of temperature in glass with a fluorescence method,” Int. J. Heat Mass Trans. 44, 4027–4034 (2001).
[CrossRef]

Signorini, A.

M. A. Soto, T. Nannipierri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. D. Pasquale, “Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low repetition-rate cyclic pulse coding,” Opt. Lett. 36, 2557–2559 (2011).
[CrossRef]

Sooley, K.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

Soto, M. A.

M. A. Soto, T. Nannipierri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. D. Pasquale, “Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low repetition-rate cyclic pulse coding,” Opt. Lett. 36, 2557–2559 (2011).
[CrossRef]

Strojnik, M.

G. Paez and M. Strojnik, “Experimental results of ratio based erbium-doped-silica temperature sensor,” Opt. Eng. 42, 1805–1811 (2003).
[CrossRef]

Sun, T.

D. I. Forsyth, S. A. Wade, T. Sun, X. Chen, and K. T. V. Grattan, “Dual temperature and strain measurement with the combined fluorescence lifetime and Bragg wavelength shift approach in doped optical fiber,” Appl. Opt. 41, 6585–6592 (2002).
[CrossRef]

T. Sun, Z. Y. Zhang, and K. T. V. Grattan, “Erbium/Ytterbium fluorescence based fiber optic temperature sensor system,” Rev. Sci. Instrum. 71, 4017–4022 (2000).
[CrossRef]

Tomita, E.

E. Tomita and N. Kawahara, “Temperature measurement of water with a sensor by laser interferometry technique,” presented at the 14th International Symposium on the Application of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 7–10 July 2008.

Vermelho, M. V. D.

D. N. Messias, M. V. D. Vermelho, A. S. Gouveia-Neto, and J. S. Aitchison, “All optical integrated upconversion fluorescence based point temperature sensing system using Er3+ doped silica-on-silicon waveguides,” Rev. Sci. Instrum. 73, 476–479 (2002).
[CrossRef]

Wade, S. A.

S. A. Wade, S. F. Collins, and D. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94, 4743–4756 (2003).
[CrossRef]

D. I. Forsyth, S. A. Wade, T. Sun, X. Chen, and K. T. V. Grattan, “Dual temperature and strain measurement with the combined fluorescence lifetime and Bragg wavelength shift approach in doped optical fiber,” Appl. Opt. 41, 6585–6592 (2002).
[CrossRef]

Wang, C.

B. Imangholi, M. P. Hasselbeck, D. A. Bender, C. Wang, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
[CrossRef]

Weber, M. J.

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
[CrossRef]

M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 262–272 (1967).
[CrossRef]

Weinberg, F. J.

S. S. Sandhu and F. J. Weinberg, “A laser interferometer for combustion, aerodynamics and heat transfer studies,” J. Phys. E 5, 1018–1020 (1972).
[CrossRef]

Wentzell, P. D.

H. Loock and P. D. Wentzell, “Detection limits of chemical sensors: applications and misapplications,” Sens. Actuators B 173, 157–163 (2012).
[CrossRef]

Wilkie, D.

D. Wilkie and S. A. Fisher, “Measurement of temperature by Mach–Zehnder interferometry,” Proc. Instn. Mech. Engrs. 178, 461–470 (1963).
[CrossRef]

Wolford, D. S.

D. L. Chubb and D. S. Wolford, “Rare-earth optical temperature sensor,” NASA/TM-2000-209657 (NASA, 2000).

Wu, H.

Y. Zhan, H. Wu, Q. Yang, S. Xiang, and H. He, “Fiber Bragg grating sensors for high temperature measurement,” Opt. Lasers Eng. 46, 349–354 (2008).
[CrossRef]

Wynne, R.

R. Wynne, J. L. Daneu, and T. Y. Fan, “Thermal coefficients of the expansion and refractive index in YAG,” Appl. Opt. 38, 3282–3284 (1999).
[CrossRef]

Xiang, S.

Y. Zhan, H. Wu, Q. Yang, S. Xiang, and H. He, “Fiber Bragg grating sensors for high temperature measurement,” Opt. Lasers Eng. 46, 349–354 (2008).
[CrossRef]

Yang, Q.

Y. Zhan, H. Wu, Q. Yang, S. Xiang, and H. He, “Fiber Bragg grating sensors for high temperature measurement,” Opt. Lasers Eng. 46, 349–354 (2008).
[CrossRef]

Zhan, Y.

Y. Zhan, H. Wu, Q. Yang, S. Xiang, and H. He, “Fiber Bragg grating sensors for high temperature measurement,” Opt. Lasers Eng. 46, 349–354 (2008).
[CrossRef]

Zhang, Z. Y.

T. Sun, Z. Y. Zhang, and K. T. V. Grattan, “Erbium/Ytterbium fluorescence based fiber optic temperature sensor system,” Rev. Sci. Instrum. 71, 4017–4022 (2000).
[CrossRef]

Appl. Opt. (4)

D. I. Forsyth, S. A. Wade, T. Sun, X. Chen, and K. T. V. Grattan, “Dual temperature and strain measurement with the combined fluorescence lifetime and Bragg wavelength shift approach in doped optical fiber,” Appl. Opt. 41, 6585–6592 (2002).
[CrossRef]

C. W. Farley and B. R. Reddy, “Interferometric measurement of laser heating in praseodymium doped YAG crystal,” Appl. Opt. 50, 526–531 (2011).
[CrossRef]

T. Y. Fan and J. L. Daneu, “Thermal coefficients of the optical path length and refractive index in YAG,” Appl. Opt. 37, 1635–1637 (1998).
[CrossRef]

R. Wynne, J. L. Daneu, and T. Y. Fan, “Thermal coefficients of the expansion and refractive index in YAG,” Appl. Opt. 38, 3282–3284 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

Combust. Sci. Technol. (1)

M. Lapp and D. L. Hartley, “Raman scattering studies of combustion,” Combust. Sci. Technol. 13, 199–210 (1976).
[CrossRef]

Int. J. Heat Mass Trans. (1)

C. L. Shepard, B. D. Cannon, and M. A. Khaleel, “Determination of temperature in glass with a fluorescence method,” Int. J. Heat Mass Trans. 44, 4027–4034 (2001).
[CrossRef]

J. Appl. Phys. (1)

S. A. Wade, S. F. Collins, and D. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94, 4743–4756 (2003).
[CrossRef]

J. Phys. E (1)

S. S. Sandhu and F. J. Weinberg, “A laser interferometer for combustion, aerodynamics and heat transfer studies,” J. Phys. E 5, 1018–1020 (1972).
[CrossRef]

Opt. Eng. (1)

G. Paez and M. Strojnik, “Experimental results of ratio based erbium-doped-silica temperature sensor,” Opt. Eng. 42, 1805–1811 (2003).
[CrossRef]

Opt. Lasers Eng. (1)

Y. Zhan, H. Wu, Q. Yang, S. Xiang, and H. He, “Fiber Bragg grating sensors for high temperature measurement,” Opt. Lasers Eng. 46, 349–354 (2008).
[CrossRef]

Opt. Lett. (1)

M. A. Soto, T. Nannipierri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. D. Pasquale, “Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low repetition-rate cyclic pulse coding,” Opt. Lett. 36, 2557–2559 (2011).
[CrossRef]

Phys. Rev. (1)

M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 262–272 (1967).
[CrossRef]

Phys. Rev. B (2)

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
[CrossRef]

M. Malinowski, M. F. Joubert, and B. Jacquier, “Dynamics of the IR-to-blue wavelength upconversion in Pr3+-doped yttrium aluminum garnet and LiYF4 crystals,” Phys. Rev. B 50, 12367–12374 (1994).
[CrossRef]

Phys. Rev. Lett. (1)

L. A. Riseberg and H. W. Moos, “Multiphonon orbit-lattice relaxation in LaBr3, LaCl3 and LaF3,” Phys. Rev. Lett. 19, 1423–1426 (1967).
[CrossRef]

Phys. Stat. Sol. C (1)

I. Kamma, P. Kommidi, and B. R. Reddy, “High temperature measurement using luminescence of Pr3+-doped YAG and Ho3+ doped CaF2,” Phys. Stat. Sol. C 6, S187–S190 (2009).
[CrossRef]

Proc. Instn. Mech. Engrs. (1)

D. Wilkie and S. A. Fisher, “Measurement of temperature by Mach–Zehnder interferometry,” Proc. Instn. Mech. Engrs. 178, 461–470 (1963).
[CrossRef]

Proc. SPIE (3)

B. Imangholi, M. P. Hasselbeck, D. A. Bender, C. Wang, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
[CrossRef]

P. Kommidi and B. R. Reddy, “Fluorescence lifetime sensing of temperature,” Proc. SPIE 6377, 63770T (2006).
[CrossRef]

C. W. Farley and B. R. Reddy, “Mach–Zehnder interferometric measurement of laser heating/cooling in Yb3+:YAG,” Proc. SPIE 7951, 79510I (2011).
[CrossRef]

Rev. Sci. Instrum. (4)

D. N. Messias, M. V. D. Vermelho, A. S. Gouveia-Neto, and J. S. Aitchison, “All optical integrated upconversion fluorescence based point temperature sensing system using Er3+ doped silica-on-silicon waveguides,” Rev. Sci. Instrum. 73, 476–479 (2002).
[CrossRef]

S. W. Allison and G. T. Gillies, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum. 68, 2615–2650 (1997).
[CrossRef]

T. Sun, Z. Y. Zhang, and K. T. V. Grattan, “Erbium/Ytterbium fluorescence based fiber optic temperature sensor system,” Rev. Sci. Instrum. 71, 4017–4022 (2000).
[CrossRef]

I. Kamma, P. Kommidi, and B. R. Reddy, “Design of a high temperature sensing system using luminescent lifetime measurement,” Rev. Sci. Instrum. 79, 096104 (2008).
[CrossRef]

Sens. Actuators B (1)

H. Loock and P. D. Wentzell, “Detection limits of chemical sensors: applications and misapplications,” Sens. Actuators B 173, 157–163 (2012).
[CrossRef]

Other (8)

I. Kamma and B. R. Bommareddi, “Fluorescence lifetime sensing of temperature with erbium doped lead germano tellurite glass,” in Appled Industrial Optics: Spectroscopy, Imaging and Metrology, OSA Technical Digest (CD) (Optical Society of America, 2010), paper AMA2.

VLOC, YAG data sheet, www.vloc.com .

R. Epstein and M. Saheik-bahae, Optical Refrigeration(Wiley-VCH, 2009).

G. H. Dieke, Spectra and Energy Levels of Rare-Earth Ions (Wiley, 1968).

P. Hariharan, Optical Interferometry (Elsevier/Academic, 2003).

E. Tomita and N. Kawahara, “Temperature measurement of water with a sensor by laser interferometry technique,” presented at the 14th International Symposium on the Application of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 7–10 July 2008.

D. L. Chubb and D. S. Wolford, “Rare-earth optical temperature sensor,” NASA/TM-2000-209657 (NASA, 2000).

B. Baker, “Temperature sensing technologies,” AN673 (Microchip Technology, 1998) http://www.microchip.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Partial energy level diagrams of (a) Nd3+ and (b) Er3+ in a solid media. Upward arrows indicate laser excitation, downward arrows indicate fluorescence transitions, and wavy arrows represent multiphonon relaxation.

Fig. 2.
Fig. 2.

(a) Photograph of the experimental setup; inset shows the sample chamber. (b) Block diagram of the experimental setup.

Fig. 3.
Fig. 3.

Fluorescence spectrum of Er3+-doped glass at different temperatures.

Fig. 4.
Fig. 4.

Variation of F3/24 lifetime versus temperature observed in LaF3:Nd3+.

Fig. 5.
Fig. 5.

(a) Plot of S3/24 lifetime versus temperature, (b) logarithmic lifetime versus inverse temperature observed in Er3+-doped glass. Diamonds represent the experimental data, and solid line is a linear fitting.

Fig. 6.
Fig. 6.

Variation of Sm3+ lifetime as a function of temperature. Filled square represent the experimental data, and solid line is a linear fitting.

Fig. 7.
Fig. 7.

Optical configuration of Mach–Zehnder interferometer. BS, beam splitter.

Fig. 8.
Fig. 8.

Variation of the detector output during heating (Ti:sapphire laser on) and cooling (Ti:sapphire laser off).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

N2N1=g2g1eΔE21kT,
R=I20I10=N2ν20A20N1ν10A10=A20g2ν20A10g1ν10eΔE21kT=(constant)eΔE21kT.
ln(R)=aΔE21kT=abT.
τ1(i)=ijωr+ijωnr(T),
lnτ=lnτ0+(constant)1T.
OPD=L(η1).
Δ(OPD)=LdηdTΔT+ηdLdTΔTdLdTΔT.
ΔT=λNLη(γαη),
α=1LdLdT,
γ=1ηdηdT+α.

Metrics