Abstract

For a coating machine with a planetary rotation system and counterrotating shadowing mask configuration, a shadowing mask was designed using a numerical optimization algorithm to control the thickness uniformity of optical coatings formed on conical substrate. Single-layer magnesium fluoride (MgF2) and antireflective (AR) coating at 193 nm were fabricated on a convex conical substrate holder (with diameter 225 mm, apex angle 140 deg, and height 41 mm) by thermal evaporation. Thickness distribution determined from the transmittance spectra of single-layer MgF2 thin films on BK7 slices showed that uniformities better than 99.3% were experimentally achieved with the designed counterrotating shadowing mask. From the reflectance spectra, uniform optical performance was also obtained for the 193 nm AR coating deposited on fused-silica substrates.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Monsoriu, W. D. Furlan, P. Andrés, and J. Lancis, “Fractal conical lenses,” Opt. Express 14, 9077–9082 (2006).
    [CrossRef]
  2. Z. Ding, H. Ren, Y. Zhao, J. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27, 243–245 (2002).
    [CrossRef]
  3. L. Sara, I. Umberto, and C. Robert, “Analysis of the combined impact of the laser spectrum, illuminator miscalibrations, and lens aberrations on the 90 nm technology node imaging with off axis illumination,” Proc. SPIE 6154, 615434 (2006).
  4. I. Huang, L. Lin, and C. L. Lin, “Novel illumination apertures for resolution-enhanced technology and through-pitch critical dimension control,” Proc. SPIE 5754, 1395–1404 (2005).
    [CrossRef]
  5. A. Bouwers, “Improvement of resolving power of optical systems by a new optical element,” Appl. Sci. Res. 3, 147–148(1954).
    [CrossRef]
  6. F. Villa and O. Pompa, “Emission pattern of a real vapor sources in high vacuum: an overview,” Appl. Opt. 38, 695–703(1999).
    [CrossRef]
  7. F. Villa, A. Martínez, and L. E. Regalado, “Correction masks for thickness uniformity in large-area thin films,” Appl. Opt. 39, 1602–1610 (2000).
    [CrossRef]
  8. J. B. Oliver and D. Talbot, “Optimization of deposition uniformity for large-aperture national ignition facility substrates in a planetary rotation system,” Appl. Opt. 45, 3097–3105 (2006).
    [CrossRef]
  9. P. Kelkar, B. Tirri, R. Wilklow, and D. Peterson, “Deposition and characterization of challenging DUV coatings,” Proc. SPIE 7067, 706708 (2008).
    [CrossRef]
  10. B. Sassolas, R. Flaminio, J. Franc, C. Michel, J. L. Montorio, N. Morgado, and L. Pinard, “Masking technique for coating thickness control on large and strongly curved aspherical optics,” Appl. Opt. 48, 3760–3765 (2009).
    [CrossRef]
  11. J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, and A. Kozlov, “Large-aperture plasma-assisted deposition of inertial confinement fusion laser coatings,” Appl. Opt. 50, C19–C26 (2011).
    [CrossRef]
  12. M. Gross, S. Dligatch, and A. Chtanov, “Optimization of coating uniformity in an ion beam sputtering system using a modified planetary rotation method,” Appl. Opt. 50, C316–C320 (2011).
    [CrossRef]
  13. F. L. Wang, R. Crocker, and R. Faber, “Large-area uniformity in evaporation coating through a new form of substrate motion,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2010), pp. 1–3.
  14. G. I. Abzalova, R. S. Sabirov, and A. V. MikhaÏlov, “Depositing uniform-thickness coatings on large surfaces by means of electron-beam evaporation in vacuum,” J. Opt. Technol. 72, 799–801 (2005).
    [CrossRef]
  15. C. Zaczek, S. Müllender, H. Enkisch, and F. Bijkerk, “Coatings for next generation lithography,” Proc. SPIE 7101, 71010X (2008).
    [CrossRef]
  16. Y. J. Jen and C. F. Lin, “Anisotropic optical thin films finely sculptured by substrate sweep technology,” Opt. Express 16, 5372–5377 (2008).
    [CrossRef]
  17. C. C. Jaing, M. C. Liu, C. C. Lee, W. H. Cho, W. T. Shen, C. J. Tang, and B. H. Liao, “Residual stress in obliquely deposited MgF2 thin films,” Appl. Opt. 47, C266–C270(2008).
    [CrossRef]
  18. FilmWizard, optical coating software.
  19. J. Wang, R. Maier, P. G. Dewa, H. Schreiber, R. A. Bellman, and D. D. Elli, “Nanoporous structure of a GdF3 thin film evaluated by variable angle spectroscopic ellipsometry,” Appl. Opt. 46, 3221–3226 (2007).
    [CrossRef]
  20. B. C. Li, D. W. Lin, Y. L. Han, C. Guo, Y. D. Zhang, and H. X. Liu, “Anti-reflective fluoride coatings for widely tunable deep-ultraviolet diode-pumped solid-state laser applications,” Chin. Phys. Lett. 27, 044201 (2010).
    [CrossRef]
  21. B. Suman and P. Kumar, “A survey of simulated annealing as a tool for single and multiobjective optimization,” J. Oper. Res. Soc. Am. 57, 1143–1160 (2006).
    [CrossRef]

2011 (2)

J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, and A. Kozlov, “Large-aperture plasma-assisted deposition of inertial confinement fusion laser coatings,” Appl. Opt. 50, C19–C26 (2011).
[CrossRef]

M. Gross, S. Dligatch, and A. Chtanov, “Optimization of coating uniformity in an ion beam sputtering system using a modified planetary rotation method,” Appl. Opt. 50, C316–C320 (2011).
[CrossRef]

2010 (1)

B. C. Li, D. W. Lin, Y. L. Han, C. Guo, Y. D. Zhang, and H. X. Liu, “Anti-reflective fluoride coatings for widely tunable deep-ultraviolet diode-pumped solid-state laser applications,” Chin. Phys. Lett. 27, 044201 (2010).
[CrossRef]

2009 (1)

B. Sassolas, R. Flaminio, J. Franc, C. Michel, J. L. Montorio, N. Morgado, and L. Pinard, “Masking technique for coating thickness control on large and strongly curved aspherical optics,” Appl. Opt. 48, 3760–3765 (2009).
[CrossRef]

2008 (4)

C. Zaczek, S. Müllender, H. Enkisch, and F. Bijkerk, “Coatings for next generation lithography,” Proc. SPIE 7101, 71010X (2008).
[CrossRef]

Y. J. Jen and C. F. Lin, “Anisotropic optical thin films finely sculptured by substrate sweep technology,” Opt. Express 16, 5372–5377 (2008).
[CrossRef]

C. C. Jaing, M. C. Liu, C. C. Lee, W. H. Cho, W. T. Shen, C. J. Tang, and B. H. Liao, “Residual stress in obliquely deposited MgF2 thin films,” Appl. Opt. 47, C266–C270(2008).
[CrossRef]

P. Kelkar, B. Tirri, R. Wilklow, and D. Peterson, “Deposition and characterization of challenging DUV coatings,” Proc. SPIE 7067, 706708 (2008).
[CrossRef]

2007 (1)

J. Wang, R. Maier, P. G. Dewa, H. Schreiber, R. A. Bellman, and D. D. Elli, “Nanoporous structure of a GdF3 thin film evaluated by variable angle spectroscopic ellipsometry,” Appl. Opt. 46, 3221–3226 (2007).
[CrossRef]

2006 (4)

B. Suman and P. Kumar, “A survey of simulated annealing as a tool for single and multiobjective optimization,” J. Oper. Res. Soc. Am. 57, 1143–1160 (2006).
[CrossRef]

J. B. Oliver and D. Talbot, “Optimization of deposition uniformity for large-aperture national ignition facility substrates in a planetary rotation system,” Appl. Opt. 45, 3097–3105 (2006).
[CrossRef]

J. A. Monsoriu, W. D. Furlan, P. Andrés, and J. Lancis, “Fractal conical lenses,” Opt. Express 14, 9077–9082 (2006).
[CrossRef]

L. Sara, I. Umberto, and C. Robert, “Analysis of the combined impact of the laser spectrum, illuminator miscalibrations, and lens aberrations on the 90 nm technology node imaging with off axis illumination,” Proc. SPIE 6154, 615434 (2006).

2005 (2)

I. Huang, L. Lin, and C. L. Lin, “Novel illumination apertures for resolution-enhanced technology and through-pitch critical dimension control,” Proc. SPIE 5754, 1395–1404 (2005).
[CrossRef]

G. I. Abzalova, R. S. Sabirov, and A. V. MikhaÏlov, “Depositing uniform-thickness coatings on large surfaces by means of electron-beam evaporation in vacuum,” J. Opt. Technol. 72, 799–801 (2005).
[CrossRef]

2002 (1)

Z. Ding, H. Ren, Y. Zhao, J. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27, 243–245 (2002).
[CrossRef]

2000 (1)

F. Villa, A. Martínez, and L. E. Regalado, “Correction masks for thickness uniformity in large-area thin films,” Appl. Opt. 39, 1602–1610 (2000).
[CrossRef]

1999 (1)

F. Villa and O. Pompa, “Emission pattern of a real vapor sources in high vacuum: an overview,” Appl. Opt. 38, 695–703(1999).
[CrossRef]

1954 (1)

A. Bouwers, “Improvement of resolving power of optical systems by a new optical element,” Appl. Sci. Res. 3, 147–148(1954).
[CrossRef]

Abzalova, G. I.

G. I. Abzalova, R. S. Sabirov, and A. V. MikhaÏlov, “Depositing uniform-thickness coatings on large surfaces by means of electron-beam evaporation in vacuum,” J. Opt. Technol. 72, 799–801 (2005).
[CrossRef]

Andrés, P.

J. A. Monsoriu, W. D. Furlan, P. Andrés, and J. Lancis, “Fractal conical lenses,” Opt. Express 14, 9077–9082 (2006).
[CrossRef]

Bellman, R. A.

J. Wang, R. Maier, P. G. Dewa, H. Schreiber, R. A. Bellman, and D. D. Elli, “Nanoporous structure of a GdF3 thin film evaluated by variable angle spectroscopic ellipsometry,” Appl. Opt. 46, 3221–3226 (2007).
[CrossRef]

Bijkerk, F.

C. Zaczek, S. Müllender, H. Enkisch, and F. Bijkerk, “Coatings for next generation lithography,” Proc. SPIE 7101, 71010X (2008).
[CrossRef]

Bouwers, A.

A. Bouwers, “Improvement of resolving power of optical systems by a new optical element,” Appl. Sci. Res. 3, 147–148(1954).
[CrossRef]

Chen, Z.

Z. Ding, H. Ren, Y. Zhao, J. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27, 243–245 (2002).
[CrossRef]

Cho, W. H.

C. C. Jaing, M. C. Liu, C. C. Lee, W. H. Cho, W. T. Shen, C. J. Tang, and B. H. Liao, “Residual stress in obliquely deposited MgF2 thin films,” Appl. Opt. 47, C266–C270(2008).
[CrossRef]

Chtanov, A.

M. Gross, S. Dligatch, and A. Chtanov, “Optimization of coating uniformity in an ion beam sputtering system using a modified planetary rotation method,” Appl. Opt. 50, C316–C320 (2011).
[CrossRef]

Crocker, R.

F. L. Wang, R. Crocker, and R. Faber, “Large-area uniformity in evaporation coating through a new form of substrate motion,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2010), pp. 1–3.

Dewa, P. G.

J. Wang, R. Maier, P. G. Dewa, H. Schreiber, R. A. Bellman, and D. D. Elli, “Nanoporous structure of a GdF3 thin film evaluated by variable angle spectroscopic ellipsometry,” Appl. Opt. 46, 3221–3226 (2007).
[CrossRef]

Ding, Z.

Z. Ding, H. Ren, Y. Zhao, J. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27, 243–245 (2002).
[CrossRef]

Dligatch, S.

M. Gross, S. Dligatch, and A. Chtanov, “Optimization of coating uniformity in an ion beam sputtering system using a modified planetary rotation method,” Appl. Opt. 50, C316–C320 (2011).
[CrossRef]

Elli, D. D.

J. Wang, R. Maier, P. G. Dewa, H. Schreiber, R. A. Bellman, and D. D. Elli, “Nanoporous structure of a GdF3 thin film evaluated by variable angle spectroscopic ellipsometry,” Appl. Opt. 46, 3221–3226 (2007).
[CrossRef]

Enkisch, H.

C. Zaczek, S. Müllender, H. Enkisch, and F. Bijkerk, “Coatings for next generation lithography,” Proc. SPIE 7101, 71010X (2008).
[CrossRef]

Faber, R.

F. L. Wang, R. Crocker, and R. Faber, “Large-area uniformity in evaporation coating through a new form of substrate motion,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2010), pp. 1–3.

Flaminio, R.

B. Sassolas, R. Flaminio, J. Franc, C. Michel, J. L. Montorio, N. Morgado, and L. Pinard, “Masking technique for coating thickness control on large and strongly curved aspherical optics,” Appl. Opt. 48, 3760–3765 (2009).
[CrossRef]

Franc, J.

B. Sassolas, R. Flaminio, J. Franc, C. Michel, J. L. Montorio, N. Morgado, and L. Pinard, “Masking technique for coating thickness control on large and strongly curved aspherical optics,” Appl. Opt. 48, 3760–3765 (2009).
[CrossRef]

Furlan, W. D.

J. A. Monsoriu, W. D. Furlan, P. Andrés, and J. Lancis, “Fractal conical lenses,” Opt. Express 14, 9077–9082 (2006).
[CrossRef]

Gross, M.

M. Gross, S. Dligatch, and A. Chtanov, “Optimization of coating uniformity in an ion beam sputtering system using a modified planetary rotation method,” Appl. Opt. 50, C316–C320 (2011).
[CrossRef]

Guo, C.

B. C. Li, D. W. Lin, Y. L. Han, C. Guo, Y. D. Zhang, and H. X. Liu, “Anti-reflective fluoride coatings for widely tunable deep-ultraviolet diode-pumped solid-state laser applications,” Chin. Phys. Lett. 27, 044201 (2010).
[CrossRef]

Han, Y. L.

B. C. Li, D. W. Lin, Y. L. Han, C. Guo, Y. D. Zhang, and H. X. Liu, “Anti-reflective fluoride coatings for widely tunable deep-ultraviolet diode-pumped solid-state laser applications,” Chin. Phys. Lett. 27, 044201 (2010).
[CrossRef]

Huang, I.

I. Huang, L. Lin, and C. L. Lin, “Novel illumination apertures for resolution-enhanced technology and through-pitch critical dimension control,” Proc. SPIE 5754, 1395–1404 (2005).
[CrossRef]

Jaing, C. C.

C. C. Jaing, M. C. Liu, C. C. Lee, W. H. Cho, W. T. Shen, C. J. Tang, and B. H. Liao, “Residual stress in obliquely deposited MgF2 thin films,” Appl. Opt. 47, C266–C270(2008).
[CrossRef]

Jen, Y. J.

Y. J. Jen and C. F. Lin, “Anisotropic optical thin films finely sculptured by substrate sweep technology,” Opt. Express 16, 5372–5377 (2008).
[CrossRef]

Kelkar, P.

P. Kelkar, B. Tirri, R. Wilklow, and D. Peterson, “Deposition and characterization of challenging DUV coatings,” Proc. SPIE 7067, 706708 (2008).
[CrossRef]

Kozlov, A.

J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, and A. Kozlov, “Large-aperture plasma-assisted deposition of inertial confinement fusion laser coatings,” Appl. Opt. 50, C19–C26 (2011).
[CrossRef]

Kumar, P.

B. Suman and P. Kumar, “A survey of simulated annealing as a tool for single and multiobjective optimization,” J. Oper. Res. Soc. Am. 57, 1143–1160 (2006).
[CrossRef]

Kupinski, P.

J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, and A. Kozlov, “Large-aperture plasma-assisted deposition of inertial confinement fusion laser coatings,” Appl. Opt. 50, C19–C26 (2011).
[CrossRef]

Lambropoulos, J. C.

J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, and A. Kozlov, “Large-aperture plasma-assisted deposition of inertial confinement fusion laser coatings,” Appl. Opt. 50, C19–C26 (2011).
[CrossRef]

Lancis, J.

J. A. Monsoriu, W. D. Furlan, P. Andrés, and J. Lancis, “Fractal conical lenses,” Opt. Express 14, 9077–9082 (2006).
[CrossRef]

Lee, C. C.

C. C. Jaing, M. C. Liu, C. C. Lee, W. H. Cho, W. T. Shen, C. J. Tang, and B. H. Liao, “Residual stress in obliquely deposited MgF2 thin films,” Appl. Opt. 47, C266–C270(2008).
[CrossRef]

Li, B. C.

B. C. Li, D. W. Lin, Y. L. Han, C. Guo, Y. D. Zhang, and H. X. Liu, “Anti-reflective fluoride coatings for widely tunable deep-ultraviolet diode-pumped solid-state laser applications,” Chin. Phys. Lett. 27, 044201 (2010).
[CrossRef]

Liao, B. H.

C. C. Jaing, M. C. Liu, C. C. Lee, W. H. Cho, W. T. Shen, C. J. Tang, and B. H. Liao, “Residual stress in obliquely deposited MgF2 thin films,” Appl. Opt. 47, C266–C270(2008).
[CrossRef]

Lin, C. F.

Y. J. Jen and C. F. Lin, “Anisotropic optical thin films finely sculptured by substrate sweep technology,” Opt. Express 16, 5372–5377 (2008).
[CrossRef]

Lin, C. L.

I. Huang, L. Lin, and C. L. Lin, “Novel illumination apertures for resolution-enhanced technology and through-pitch critical dimension control,” Proc. SPIE 5754, 1395–1404 (2005).
[CrossRef]

Lin, D. W.

B. C. Li, D. W. Lin, Y. L. Han, C. Guo, Y. D. Zhang, and H. X. Liu, “Anti-reflective fluoride coatings for widely tunable deep-ultraviolet diode-pumped solid-state laser applications,” Chin. Phys. Lett. 27, 044201 (2010).
[CrossRef]

Lin, L.

I. Huang, L. Lin, and C. L. Lin, “Novel illumination apertures for resolution-enhanced technology and through-pitch critical dimension control,” Proc. SPIE 5754, 1395–1404 (2005).
[CrossRef]

Liu, H. X.

B. C. Li, D. W. Lin, Y. L. Han, C. Guo, Y. D. Zhang, and H. X. Liu, “Anti-reflective fluoride coatings for widely tunable deep-ultraviolet diode-pumped solid-state laser applications,” Chin. Phys. Lett. 27, 044201 (2010).
[CrossRef]

Liu, M. C.

C. C. Jaing, M. C. Liu, C. C. Lee, W. H. Cho, W. T. Shen, C. J. Tang, and B. H. Liao, “Residual stress in obliquely deposited MgF2 thin films,” Appl. Opt. 47, C266–C270(2008).
[CrossRef]

Maier, R.

J. Wang, R. Maier, P. G. Dewa, H. Schreiber, R. A. Bellman, and D. D. Elli, “Nanoporous structure of a GdF3 thin film evaluated by variable angle spectroscopic ellipsometry,” Appl. Opt. 46, 3221–3226 (2007).
[CrossRef]

Martínez, A.

F. Villa, A. Martínez, and L. E. Regalado, “Correction masks for thickness uniformity in large-area thin films,” Appl. Opt. 39, 1602–1610 (2000).
[CrossRef]

Michel, C.

B. Sassolas, R. Flaminio, J. Franc, C. Michel, J. L. Montorio, N. Morgado, and L. Pinard, “Masking technique for coating thickness control on large and strongly curved aspherical optics,” Appl. Opt. 48, 3760–3765 (2009).
[CrossRef]

MikhaÏlov, A. V.

G. I. Abzalova, R. S. Sabirov, and A. V. MikhaÏlov, “Depositing uniform-thickness coatings on large surfaces by means of electron-beam evaporation in vacuum,” J. Opt. Technol. 72, 799–801 (2005).
[CrossRef]

Monsoriu, J. A.

J. A. Monsoriu, W. D. Furlan, P. Andrés, and J. Lancis, “Fractal conical lenses,” Opt. Express 14, 9077–9082 (2006).
[CrossRef]

Montorio, J. L.

B. Sassolas, R. Flaminio, J. Franc, C. Michel, J. L. Montorio, N. Morgado, and L. Pinard, “Masking technique for coating thickness control on large and strongly curved aspherical optics,” Appl. Opt. 48, 3760–3765 (2009).
[CrossRef]

Morgado, N.

B. Sassolas, R. Flaminio, J. Franc, C. Michel, J. L. Montorio, N. Morgado, and L. Pinard, “Masking technique for coating thickness control on large and strongly curved aspherical optics,” Appl. Opt. 48, 3760–3765 (2009).
[CrossRef]

Müllender, S.

C. Zaczek, S. Müllender, H. Enkisch, and F. Bijkerk, “Coatings for next generation lithography,” Proc. SPIE 7101, 71010X (2008).
[CrossRef]

Nelson, J.

Z. Ding, H. Ren, Y. Zhao, J. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27, 243–245 (2002).
[CrossRef]

Oliver, J. B.

J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, and A. Kozlov, “Large-aperture plasma-assisted deposition of inertial confinement fusion laser coatings,” Appl. Opt. 50, C19–C26 (2011).
[CrossRef]

J. B. Oliver and D. Talbot, “Optimization of deposition uniformity for large-aperture national ignition facility substrates in a planetary rotation system,” Appl. Opt. 45, 3097–3105 (2006).
[CrossRef]

Papernov, S.

J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, and A. Kozlov, “Large-aperture plasma-assisted deposition of inertial confinement fusion laser coatings,” Appl. Opt. 50, C19–C26 (2011).
[CrossRef]

Peterson, D.

P. Kelkar, B. Tirri, R. Wilklow, and D. Peterson, “Deposition and characterization of challenging DUV coatings,” Proc. SPIE 7067, 706708 (2008).
[CrossRef]

Pinard, L.

B. Sassolas, R. Flaminio, J. Franc, C. Michel, J. L. Montorio, N. Morgado, and L. Pinard, “Masking technique for coating thickness control on large and strongly curved aspherical optics,” Appl. Opt. 48, 3760–3765 (2009).
[CrossRef]

Pompa, O.

F. Villa and O. Pompa, “Emission pattern of a real vapor sources in high vacuum: an overview,” Appl. Opt. 38, 695–703(1999).
[CrossRef]

Regalado, L. E.

F. Villa, A. Martínez, and L. E. Regalado, “Correction masks for thickness uniformity in large-area thin films,” Appl. Opt. 39, 1602–1610 (2000).
[CrossRef]

Ren, H.

Z. Ding, H. Ren, Y. Zhao, J. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27, 243–245 (2002).
[CrossRef]

Rigatti, A. L.

J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, and A. Kozlov, “Large-aperture plasma-assisted deposition of inertial confinement fusion laser coatings,” Appl. Opt. 50, C19–C26 (2011).
[CrossRef]

Robert, C.

L. Sara, I. Umberto, and C. Robert, “Analysis of the combined impact of the laser spectrum, illuminator miscalibrations, and lens aberrations on the 90 nm technology node imaging with off axis illumination,” Proc. SPIE 6154, 615434 (2006).

Sabirov, R. S.

G. I. Abzalova, R. S. Sabirov, and A. V. MikhaÏlov, “Depositing uniform-thickness coatings on large surfaces by means of electron-beam evaporation in vacuum,” J. Opt. Technol. 72, 799–801 (2005).
[CrossRef]

Sara, L.

L. Sara, I. Umberto, and C. Robert, “Analysis of the combined impact of the laser spectrum, illuminator miscalibrations, and lens aberrations on the 90 nm technology node imaging with off axis illumination,” Proc. SPIE 6154, 615434 (2006).

Sassolas, B.

B. Sassolas, R. Flaminio, J. Franc, C. Michel, J. L. Montorio, N. Morgado, and L. Pinard, “Masking technique for coating thickness control on large and strongly curved aspherical optics,” Appl. Opt. 48, 3760–3765 (2009).
[CrossRef]

Schmid, A. W.

J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, and A. Kozlov, “Large-aperture plasma-assisted deposition of inertial confinement fusion laser coatings,” Appl. Opt. 50, C19–C26 (2011).
[CrossRef]

Schreiber, H.

J. Wang, R. Maier, P. G. Dewa, H. Schreiber, R. A. Bellman, and D. D. Elli, “Nanoporous structure of a GdF3 thin film evaluated by variable angle spectroscopic ellipsometry,” Appl. Opt. 46, 3221–3226 (2007).
[CrossRef]

Shen, W. T.

C. C. Jaing, M. C. Liu, C. C. Lee, W. H. Cho, W. T. Shen, C. J. Tang, and B. H. Liao, “Residual stress in obliquely deposited MgF2 thin films,” Appl. Opt. 47, C266–C270(2008).
[CrossRef]

Suman, B.

B. Suman and P. Kumar, “A survey of simulated annealing as a tool for single and multiobjective optimization,” J. Oper. Res. Soc. Am. 57, 1143–1160 (2006).
[CrossRef]

Talbot, D.

J. B. Oliver and D. Talbot, “Optimization of deposition uniformity for large-aperture national ignition facility substrates in a planetary rotation system,” Appl. Opt. 45, 3097–3105 (2006).
[CrossRef]

Tang, C. J.

C. C. Jaing, M. C. Liu, C. C. Lee, W. H. Cho, W. T. Shen, C. J. Tang, and B. H. Liao, “Residual stress in obliquely deposited MgF2 thin films,” Appl. Opt. 47, C266–C270(2008).
[CrossRef]

Tirri, B.

P. Kelkar, B. Tirri, R. Wilklow, and D. Peterson, “Deposition and characterization of challenging DUV coatings,” Proc. SPIE 7067, 706708 (2008).
[CrossRef]

Umberto, I.

L. Sara, I. Umberto, and C. Robert, “Analysis of the combined impact of the laser spectrum, illuminator miscalibrations, and lens aberrations on the 90 nm technology node imaging with off axis illumination,” Proc. SPIE 6154, 615434 (2006).

Villa, F.

F. Villa, A. Martínez, and L. E. Regalado, “Correction masks for thickness uniformity in large-area thin films,” Appl. Opt. 39, 1602–1610 (2000).
[CrossRef]

F. Villa and O. Pompa, “Emission pattern of a real vapor sources in high vacuum: an overview,” Appl. Opt. 38, 695–703(1999).
[CrossRef]

Wang, F. L.

F. L. Wang, R. Crocker, and R. Faber, “Large-area uniformity in evaporation coating through a new form of substrate motion,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2010), pp. 1–3.

Wang, J.

J. Wang, R. Maier, P. G. Dewa, H. Schreiber, R. A. Bellman, and D. D. Elli, “Nanoporous structure of a GdF3 thin film evaluated by variable angle spectroscopic ellipsometry,” Appl. Opt. 46, 3221–3226 (2007).
[CrossRef]

Wilklow, R.

P. Kelkar, B. Tirri, R. Wilklow, and D. Peterson, “Deposition and characterization of challenging DUV coatings,” Proc. SPIE 7067, 706708 (2008).
[CrossRef]

Zaczek, C.

C. Zaczek, S. Müllender, H. Enkisch, and F. Bijkerk, “Coatings for next generation lithography,” Proc. SPIE 7101, 71010X (2008).
[CrossRef]

Zhang, Y. D.

B. C. Li, D. W. Lin, Y. L. Han, C. Guo, Y. D. Zhang, and H. X. Liu, “Anti-reflective fluoride coatings for widely tunable deep-ultraviolet diode-pumped solid-state laser applications,” Chin. Phys. Lett. 27, 044201 (2010).
[CrossRef]

Zhao, Y.

Z. Ding, H. Ren, Y. Zhao, J. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27, 243–245 (2002).
[CrossRef]

Appl. Opt. (8)

F. Villa and O. Pompa, “Emission pattern of a real vapor sources in high vacuum: an overview,” Appl. Opt. 38, 695–703(1999).
[CrossRef]

F. Villa, A. Martínez, and L. E. Regalado, “Correction masks for thickness uniformity in large-area thin films,” Appl. Opt. 39, 1602–1610 (2000).
[CrossRef]

J. B. Oliver and D. Talbot, “Optimization of deposition uniformity for large-aperture national ignition facility substrates in a planetary rotation system,” Appl. Opt. 45, 3097–3105 (2006).
[CrossRef]

B. Sassolas, R. Flaminio, J. Franc, C. Michel, J. L. Montorio, N. Morgado, and L. Pinard, “Masking technique for coating thickness control on large and strongly curved aspherical optics,” Appl. Opt. 48, 3760–3765 (2009).
[CrossRef]

J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, and A. Kozlov, “Large-aperture plasma-assisted deposition of inertial confinement fusion laser coatings,” Appl. Opt. 50, C19–C26 (2011).
[CrossRef]

M. Gross, S. Dligatch, and A. Chtanov, “Optimization of coating uniformity in an ion beam sputtering system using a modified planetary rotation method,” Appl. Opt. 50, C316–C320 (2011).
[CrossRef]

C. C. Jaing, M. C. Liu, C. C. Lee, W. H. Cho, W. T. Shen, C. J. Tang, and B. H. Liao, “Residual stress in obliquely deposited MgF2 thin films,” Appl. Opt. 47, C266–C270(2008).
[CrossRef]

J. Wang, R. Maier, P. G. Dewa, H. Schreiber, R. A. Bellman, and D. D. Elli, “Nanoporous structure of a GdF3 thin film evaluated by variable angle spectroscopic ellipsometry,” Appl. Opt. 46, 3221–3226 (2007).
[CrossRef]

Appl. Sci. Res. (1)

A. Bouwers, “Improvement of resolving power of optical systems by a new optical element,” Appl. Sci. Res. 3, 147–148(1954).
[CrossRef]

Chin. Phys. Lett. (1)

B. C. Li, D. W. Lin, Y. L. Han, C. Guo, Y. D. Zhang, and H. X. Liu, “Anti-reflective fluoride coatings for widely tunable deep-ultraviolet diode-pumped solid-state laser applications,” Chin. Phys. Lett. 27, 044201 (2010).
[CrossRef]

J. Oper. Res. Soc. Am. (1)

B. Suman and P. Kumar, “A survey of simulated annealing as a tool for single and multiobjective optimization,” J. Oper. Res. Soc. Am. 57, 1143–1160 (2006).
[CrossRef]

J. Opt. Technol. (1)

G. I. Abzalova, R. S. Sabirov, and A. V. MikhaÏlov, “Depositing uniform-thickness coatings on large surfaces by means of electron-beam evaporation in vacuum,” J. Opt. Technol. 72, 799–801 (2005).
[CrossRef]

Opt. Express (2)

Y. J. Jen and C. F. Lin, “Anisotropic optical thin films finely sculptured by substrate sweep technology,” Opt. Express 16, 5372–5377 (2008).
[CrossRef]

J. A. Monsoriu, W. D. Furlan, P. Andrés, and J. Lancis, “Fractal conical lenses,” Opt. Express 14, 9077–9082 (2006).
[CrossRef]

Opt. Lett. (1)

Z. Ding, H. Ren, Y. Zhao, J. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27, 243–245 (2002).
[CrossRef]

Proc. SPIE (4)

L. Sara, I. Umberto, and C. Robert, “Analysis of the combined impact of the laser spectrum, illuminator miscalibrations, and lens aberrations on the 90 nm technology node imaging with off axis illumination,” Proc. SPIE 6154, 615434 (2006).

I. Huang, L. Lin, and C. L. Lin, “Novel illumination apertures for resolution-enhanced technology and through-pitch critical dimension control,” Proc. SPIE 5754, 1395–1404 (2005).
[CrossRef]

P. Kelkar, B. Tirri, R. Wilklow, and D. Peterson, “Deposition and characterization of challenging DUV coatings,” Proc. SPIE 7067, 706708 (2008).
[CrossRef]

C. Zaczek, S. Müllender, H. Enkisch, and F. Bijkerk, “Coatings for next generation lithography,” Proc. SPIE 7101, 71010X (2008).
[CrossRef]

Other (2)

F. L. Wang, R. Crocker, and R. Faber, “Large-area uniformity in evaporation coating through a new form of substrate motion,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2010), pp. 1–3.

FilmWizard, optical coating software.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

General geometric configuration of a planetary rotation system with a conical substrate.

Fig. 2.
Fig. 2.

Assembly of the conical substrate holder and substrates for thickness uniformity experiment.

Fig. 3.
Fig. 3.

Experimental (dashed curve) and fitted (solid curve) transmittance spectra of a single-layer MgF2 film deposited on a BK7 substrate.

Fig. 4.
Fig. 4.

Dependence of the uncorrected thickness distribution on the emission characteristic parameter j. (a) Calculated (lines) and experimental (circles) thickness distributions along the radical direction l. (b) Calculated and experimental slopes (squares and circle), and corresponding polynomial fit (solid curve).

Fig. 5.
Fig. 5.

Calculated thickness distributions on the conical substrate without (a) and with (b) shadowing mask correction.

Fig. 6.
Fig. 6.

Calculated and experimental thickness distributions of single-layer MgF2 film along the radial direction of the conical substrate without and with shadowing mask correction.

Fig. 7.
Fig. 7.

Measured reflectance spectra of the 193 nm AR coating on fused silica substrates deposited at different locations.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

t=Acosφcosjθr22,
t(r,r1)=Au(r,r1)vj(r,r1)|rr1|j+3.
v(r,r1)=z1z.
{x1=Rcosα+lcosβsinγcosαcos[(n+1)α]+lsinγsinαsin[(n+1)α]+sinβcosα(hlcosγ)y1=Rsinα+lcosβsinγsinαcos[(n+1)α]lsinγcosαsin[(n+1)α]+sinβsinα(hlcosγ)z1=h1+lsinβsinγcos[(n+1)α]cosβ(hlcosγ),
l[0,h/cosγ],
u(r,r1)={cosβcosγcosαcos[(n+1)α]+cosγsinαsin[(n+1)α]+sinβsinγcosα}(xx1)+{cosβcosγsinαcos[(n+1)α]cosγcosαsin[(n+1)α]+sinβsinγsinα}(yy1)+{sinβcosγcos[(n+1)α]cosβsinγ}(zz1),
|rr1|=[(xx1)2+(yy1)2+(zz1)2]1/2.
t(l)=02πCt(l,α)dα,
t(l)=02πCt(l,α)B(l,α)dα.
B(l,α)={1,φ90°0,φ>90°.
02πCt(l,α)B(l,α)M(l,α)dα=t0,

Metrics