Abstract

Six types of hexagonal boron nitride are investigated by terahertz time-domain spectroscopy. The loss coefficient is shown to be linear with porosity, while variations in refractive index indicate the distribution of porosity within the structure. Pyrolytic boron nitride is demonstrated to be suitable as a terahertz optical material.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Geick, C. H. Perry, and G. Rupprecht, “Normal modes in hexagonal boron nitride,” Phys. Rev. 146, 543–547 (1966).
    [CrossRef]
  2. “BN—boron nitride,” http://www.ioffe.rssi.ru/SVA/NSM/Semicond/BN/basic.html .
  3. F. P. Bundy and R. H. Wentorf, “Direct transformation of hexagonal boron nitride to denser forms,” J. Chem. Phys. 38, 1144–1149 (1963).
    [CrossRef]
  4. R. H. Wentorf, “Synthesis of the cubic form of boron nitride,” J. Chem. Phys. 34, 809–812 (1961).
    [CrossRef]
  5. Y. Kimura, T. Wakabayashi, K. Okada, T. Wada, and H. Nishikawa, “Boron nitride as a lubricant additive,” Wear 232, 199–206 (1999).
    [CrossRef]
  6. G. Yi and F. Yan, “Effect of hexagonal boron nitride and calcined petroleum coke on friction and wear behavior of phenolic resin-based friction composites,” Mater. Sci. Eng. A 425, 330–338 (2006).
    [CrossRef]
  7. G. Mariani, “Selection and application of solid lubricants as friction modifiers,” in Lubricant Additives—Chemistry and Applications, L. Rudnick, ed. (CRC Press, Taylor & Francis Group, 2003), pp. 180–182.
  8. J. Leist, M. Sinha, and R. Rojas-Wahl are preparing a manuscript to be called “Light spreading behavior of boron nitride powders.”
  9. S. Rudolph, “Composition and application of coatings based on boron nitride,” Interceram 42, 302–305 (1993).
  10. C. Raman and P. Meneghetti, “Boron nitride finds new applications in thermoplastic compounds,” Plast. Addit. Compound. 10, 26–31 (2008).
    [CrossRef]
  11. H. I. Faraoun, T. Grosdidier, J.-L. Seichepine, D. Goran, H. Auorag, C. Coddet, J. Zwick, and N. Hopkins, “Improvement of thermally sprayed abradable coating by microstructure control,” Surf. Coat. Technol. 201, 2303–2312 (2006).
    [CrossRef]
  12. H. Wu and W. Zhang, “Fabrication and properties of ZrB2-SiC-BN machinable ceramics,” J. Eur. Ceram. Soc. 30, 1035–1042 (2010).
    [CrossRef]
  13. A. J. Gatesman, R. H. Giles, and J. Waldman, “Submillimeter optical properties of hexagonal boron nitride,” J. Appl. Phys. 73, 3962–3966 (1993).
    [CrossRef]
  14. T. Ishii and T. Sato, “Growth of single crystals of hexagonal boron nitride,” J. Cryst. Growth 61, 689–690 (1983).
    [CrossRef]
  15. P. J. Gielisse, S. S. Mitra, J. N. Plendl, R. D. Griffis, L. C. Mansur, R. Marshall, and E. A. Pascoe, “Lattice infrared spectra of boron nitride and boron monophosphide,” Phys. Rev. 155, 1039–1046 (1967).
    [CrossRef]
  16. L. N. Rusanova and L. I. Gorchakova, “Sintering of turbostratic-structure boron nitride powders,” Powder Metall. Met. Ceram. 28, 108–111 (1989).
  17. D. M. Hoffman, G. L. Doll, and P. C. Eklund, “Optical properties of pyrolytic boron nitride in the energy range 0.05–10 eV,” Phys. Rev. B 30, 6051–6056 (1984).
    [CrossRef]
  18. P. Uhd Jepsen and B. M. Fischer, “Dynamic range in terahertz time-domain transmission and reflection spectroscopy,” Opt. Lett. 30, 29–31 (2005).
    [CrossRef]
  19. M. Naftaly, J. Leist, and R. Dudley, “Investigation of ceramic boron nitride by terahertz time-domain spectroscopy,” J. Eur. Ceram. Soc. 30, 2691–2697 (2010).
    [CrossRef]
  20. H. E. Camurlu, N. Sevinc, and Y. Topkaya, “Effect of calcium carbonate addition on carbothermic formation of hexagonal boron nitride,” J. Eur. Ceram. Soc. 28, 679–689 (2008).
    [CrossRef]
  21. M. Naftaly, P. J. Greenslade, R. E. Miles, and D. Evans, “Low loss nitride ceramics for terahertz windows,” Opt. Mater 31, 1575–1577 (2009).
  22. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).

2010

H. Wu and W. Zhang, “Fabrication and properties of ZrB2-SiC-BN machinable ceramics,” J. Eur. Ceram. Soc. 30, 1035–1042 (2010).
[CrossRef]

M. Naftaly, J. Leist, and R. Dudley, “Investigation of ceramic boron nitride by terahertz time-domain spectroscopy,” J. Eur. Ceram. Soc. 30, 2691–2697 (2010).
[CrossRef]

2009

M. Naftaly, P. J. Greenslade, R. E. Miles, and D. Evans, “Low loss nitride ceramics for terahertz windows,” Opt. Mater 31, 1575–1577 (2009).

2008

H. E. Camurlu, N. Sevinc, and Y. Topkaya, “Effect of calcium carbonate addition on carbothermic formation of hexagonal boron nitride,” J. Eur. Ceram. Soc. 28, 679–689 (2008).
[CrossRef]

C. Raman and P. Meneghetti, “Boron nitride finds new applications in thermoplastic compounds,” Plast. Addit. Compound. 10, 26–31 (2008).
[CrossRef]

2006

H. I. Faraoun, T. Grosdidier, J.-L. Seichepine, D. Goran, H. Auorag, C. Coddet, J. Zwick, and N. Hopkins, “Improvement of thermally sprayed abradable coating by microstructure control,” Surf. Coat. Technol. 201, 2303–2312 (2006).
[CrossRef]

G. Yi and F. Yan, “Effect of hexagonal boron nitride and calcined petroleum coke on friction and wear behavior of phenolic resin-based friction composites,” Mater. Sci. Eng. A 425, 330–338 (2006).
[CrossRef]

2005

P. Uhd Jepsen and B. M. Fischer, “Dynamic range in terahertz time-domain transmission and reflection spectroscopy,” Opt. Lett. 30, 29–31 (2005).
[CrossRef]

1999

Y. Kimura, T. Wakabayashi, K. Okada, T. Wada, and H. Nishikawa, “Boron nitride as a lubricant additive,” Wear 232, 199–206 (1999).
[CrossRef]

1993

S. Rudolph, “Composition and application of coatings based on boron nitride,” Interceram 42, 302–305 (1993).

A. J. Gatesman, R. H. Giles, and J. Waldman, “Submillimeter optical properties of hexagonal boron nitride,” J. Appl. Phys. 73, 3962–3966 (1993).
[CrossRef]

1989

L. N. Rusanova and L. I. Gorchakova, “Sintering of turbostratic-structure boron nitride powders,” Powder Metall. Met. Ceram. 28, 108–111 (1989).

1984

D. M. Hoffman, G. L. Doll, and P. C. Eklund, “Optical properties of pyrolytic boron nitride in the energy range 0.05–10 eV,” Phys. Rev. B 30, 6051–6056 (1984).
[CrossRef]

1983

T. Ishii and T. Sato, “Growth of single crystals of hexagonal boron nitride,” J. Cryst. Growth 61, 689–690 (1983).
[CrossRef]

1967

P. J. Gielisse, S. S. Mitra, J. N. Plendl, R. D. Griffis, L. C. Mansur, R. Marshall, and E. A. Pascoe, “Lattice infrared spectra of boron nitride and boron monophosphide,” Phys. Rev. 155, 1039–1046 (1967).
[CrossRef]

1966

R. Geick, C. H. Perry, and G. Rupprecht, “Normal modes in hexagonal boron nitride,” Phys. Rev. 146, 543–547 (1966).
[CrossRef]

1963

F. P. Bundy and R. H. Wentorf, “Direct transformation of hexagonal boron nitride to denser forms,” J. Chem. Phys. 38, 1144–1149 (1963).
[CrossRef]

1961

R. H. Wentorf, “Synthesis of the cubic form of boron nitride,” J. Chem. Phys. 34, 809–812 (1961).
[CrossRef]

Auorag, H.

H. I. Faraoun, T. Grosdidier, J.-L. Seichepine, D. Goran, H. Auorag, C. Coddet, J. Zwick, and N. Hopkins, “Improvement of thermally sprayed abradable coating by microstructure control,” Surf. Coat. Technol. 201, 2303–2312 (2006).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).

Bundy, F. P.

F. P. Bundy and R. H. Wentorf, “Direct transformation of hexagonal boron nitride to denser forms,” J. Chem. Phys. 38, 1144–1149 (1963).
[CrossRef]

Camurlu, H. E.

H. E. Camurlu, N. Sevinc, and Y. Topkaya, “Effect of calcium carbonate addition on carbothermic formation of hexagonal boron nitride,” J. Eur. Ceram. Soc. 28, 679–689 (2008).
[CrossRef]

Coddet, C.

H. I. Faraoun, T. Grosdidier, J.-L. Seichepine, D. Goran, H. Auorag, C. Coddet, J. Zwick, and N. Hopkins, “Improvement of thermally sprayed abradable coating by microstructure control,” Surf. Coat. Technol. 201, 2303–2312 (2006).
[CrossRef]

Doll, G. L.

D. M. Hoffman, G. L. Doll, and P. C. Eklund, “Optical properties of pyrolytic boron nitride in the energy range 0.05–10 eV,” Phys. Rev. B 30, 6051–6056 (1984).
[CrossRef]

Dudley, R.

M. Naftaly, J. Leist, and R. Dudley, “Investigation of ceramic boron nitride by terahertz time-domain spectroscopy,” J. Eur. Ceram. Soc. 30, 2691–2697 (2010).
[CrossRef]

Eklund, P. C.

D. M. Hoffman, G. L. Doll, and P. C. Eklund, “Optical properties of pyrolytic boron nitride in the energy range 0.05–10 eV,” Phys. Rev. B 30, 6051–6056 (1984).
[CrossRef]

Evans, D.

M. Naftaly, P. J. Greenslade, R. E. Miles, and D. Evans, “Low loss nitride ceramics for terahertz windows,” Opt. Mater 31, 1575–1577 (2009).

Faraoun, H. I.

H. I. Faraoun, T. Grosdidier, J.-L. Seichepine, D. Goran, H. Auorag, C. Coddet, J. Zwick, and N. Hopkins, “Improvement of thermally sprayed abradable coating by microstructure control,” Surf. Coat. Technol. 201, 2303–2312 (2006).
[CrossRef]

Fischer, B. M.

P. Uhd Jepsen and B. M. Fischer, “Dynamic range in terahertz time-domain transmission and reflection spectroscopy,” Opt. Lett. 30, 29–31 (2005).
[CrossRef]

Gatesman, A. J.

A. J. Gatesman, R. H. Giles, and J. Waldman, “Submillimeter optical properties of hexagonal boron nitride,” J. Appl. Phys. 73, 3962–3966 (1993).
[CrossRef]

Geick, R.

R. Geick, C. H. Perry, and G. Rupprecht, “Normal modes in hexagonal boron nitride,” Phys. Rev. 146, 543–547 (1966).
[CrossRef]

Gielisse, P. J.

P. J. Gielisse, S. S. Mitra, J. N. Plendl, R. D. Griffis, L. C. Mansur, R. Marshall, and E. A. Pascoe, “Lattice infrared spectra of boron nitride and boron monophosphide,” Phys. Rev. 155, 1039–1046 (1967).
[CrossRef]

Giles, R. H.

A. J. Gatesman, R. H. Giles, and J. Waldman, “Submillimeter optical properties of hexagonal boron nitride,” J. Appl. Phys. 73, 3962–3966 (1993).
[CrossRef]

Goran, D.

H. I. Faraoun, T. Grosdidier, J.-L. Seichepine, D. Goran, H. Auorag, C. Coddet, J. Zwick, and N. Hopkins, “Improvement of thermally sprayed abradable coating by microstructure control,” Surf. Coat. Technol. 201, 2303–2312 (2006).
[CrossRef]

Gorchakova, L. I.

L. N. Rusanova and L. I. Gorchakova, “Sintering of turbostratic-structure boron nitride powders,” Powder Metall. Met. Ceram. 28, 108–111 (1989).

Greenslade, P. J.

M. Naftaly, P. J. Greenslade, R. E. Miles, and D. Evans, “Low loss nitride ceramics for terahertz windows,” Opt. Mater 31, 1575–1577 (2009).

Griffis, R. D.

P. J. Gielisse, S. S. Mitra, J. N. Plendl, R. D. Griffis, L. C. Mansur, R. Marshall, and E. A. Pascoe, “Lattice infrared spectra of boron nitride and boron monophosphide,” Phys. Rev. 155, 1039–1046 (1967).
[CrossRef]

Grosdidier, T.

H. I. Faraoun, T. Grosdidier, J.-L. Seichepine, D. Goran, H. Auorag, C. Coddet, J. Zwick, and N. Hopkins, “Improvement of thermally sprayed abradable coating by microstructure control,” Surf. Coat. Technol. 201, 2303–2312 (2006).
[CrossRef]

Hoffman, D. M.

D. M. Hoffman, G. L. Doll, and P. C. Eklund, “Optical properties of pyrolytic boron nitride in the energy range 0.05–10 eV,” Phys. Rev. B 30, 6051–6056 (1984).
[CrossRef]

Hopkins, N.

H. I. Faraoun, T. Grosdidier, J.-L. Seichepine, D. Goran, H. Auorag, C. Coddet, J. Zwick, and N. Hopkins, “Improvement of thermally sprayed abradable coating by microstructure control,” Surf. Coat. Technol. 201, 2303–2312 (2006).
[CrossRef]

Ishii, T.

T. Ishii and T. Sato, “Growth of single crystals of hexagonal boron nitride,” J. Cryst. Growth 61, 689–690 (1983).
[CrossRef]

Kimura, Y.

Y. Kimura, T. Wakabayashi, K. Okada, T. Wada, and H. Nishikawa, “Boron nitride as a lubricant additive,” Wear 232, 199–206 (1999).
[CrossRef]

Leist, J.

M. Naftaly, J. Leist, and R. Dudley, “Investigation of ceramic boron nitride by terahertz time-domain spectroscopy,” J. Eur. Ceram. Soc. 30, 2691–2697 (2010).
[CrossRef]

J. Leist, M. Sinha, and R. Rojas-Wahl are preparing a manuscript to be called “Light spreading behavior of boron nitride powders.”

Mansur, L. C.

P. J. Gielisse, S. S. Mitra, J. N. Plendl, R. D. Griffis, L. C. Mansur, R. Marshall, and E. A. Pascoe, “Lattice infrared spectra of boron nitride and boron monophosphide,” Phys. Rev. 155, 1039–1046 (1967).
[CrossRef]

Mariani, G.

G. Mariani, “Selection and application of solid lubricants as friction modifiers,” in Lubricant Additives—Chemistry and Applications, L. Rudnick, ed. (CRC Press, Taylor & Francis Group, 2003), pp. 180–182.

Marshall, R.

P. J. Gielisse, S. S. Mitra, J. N. Plendl, R. D. Griffis, L. C. Mansur, R. Marshall, and E. A. Pascoe, “Lattice infrared spectra of boron nitride and boron monophosphide,” Phys. Rev. 155, 1039–1046 (1967).
[CrossRef]

Meneghetti, P.

C. Raman and P. Meneghetti, “Boron nitride finds new applications in thermoplastic compounds,” Plast. Addit. Compound. 10, 26–31 (2008).
[CrossRef]

Miles, R. E.

M. Naftaly, P. J. Greenslade, R. E. Miles, and D. Evans, “Low loss nitride ceramics for terahertz windows,” Opt. Mater 31, 1575–1577 (2009).

Mitra, S. S.

P. J. Gielisse, S. S. Mitra, J. N. Plendl, R. D. Griffis, L. C. Mansur, R. Marshall, and E. A. Pascoe, “Lattice infrared spectra of boron nitride and boron monophosphide,” Phys. Rev. 155, 1039–1046 (1967).
[CrossRef]

Naftaly, M.

M. Naftaly, J. Leist, and R. Dudley, “Investigation of ceramic boron nitride by terahertz time-domain spectroscopy,” J. Eur. Ceram. Soc. 30, 2691–2697 (2010).
[CrossRef]

M. Naftaly, P. J. Greenslade, R. E. Miles, and D. Evans, “Low loss nitride ceramics for terahertz windows,” Opt. Mater 31, 1575–1577 (2009).

Nishikawa, H.

Y. Kimura, T. Wakabayashi, K. Okada, T. Wada, and H. Nishikawa, “Boron nitride as a lubricant additive,” Wear 232, 199–206 (1999).
[CrossRef]

Okada, K.

Y. Kimura, T. Wakabayashi, K. Okada, T. Wada, and H. Nishikawa, “Boron nitride as a lubricant additive,” Wear 232, 199–206 (1999).
[CrossRef]

Pascoe, E. A.

P. J. Gielisse, S. S. Mitra, J. N. Plendl, R. D. Griffis, L. C. Mansur, R. Marshall, and E. A. Pascoe, “Lattice infrared spectra of boron nitride and boron monophosphide,” Phys. Rev. 155, 1039–1046 (1967).
[CrossRef]

Perry, C. H.

R. Geick, C. H. Perry, and G. Rupprecht, “Normal modes in hexagonal boron nitride,” Phys. Rev. 146, 543–547 (1966).
[CrossRef]

Plendl, J. N.

P. J. Gielisse, S. S. Mitra, J. N. Plendl, R. D. Griffis, L. C. Mansur, R. Marshall, and E. A. Pascoe, “Lattice infrared spectra of boron nitride and boron monophosphide,” Phys. Rev. 155, 1039–1046 (1967).
[CrossRef]

Raman, C.

C. Raman and P. Meneghetti, “Boron nitride finds new applications in thermoplastic compounds,” Plast. Addit. Compound. 10, 26–31 (2008).
[CrossRef]

Rojas-Wahl, R.

J. Leist, M. Sinha, and R. Rojas-Wahl are preparing a manuscript to be called “Light spreading behavior of boron nitride powders.”

Rudolph, S.

S. Rudolph, “Composition and application of coatings based on boron nitride,” Interceram 42, 302–305 (1993).

Rupprecht, G.

R. Geick, C. H. Perry, and G. Rupprecht, “Normal modes in hexagonal boron nitride,” Phys. Rev. 146, 543–547 (1966).
[CrossRef]

Rusanova, L. N.

L. N. Rusanova and L. I. Gorchakova, “Sintering of turbostratic-structure boron nitride powders,” Powder Metall. Met. Ceram. 28, 108–111 (1989).

Sato, T.

T. Ishii and T. Sato, “Growth of single crystals of hexagonal boron nitride,” J. Cryst. Growth 61, 689–690 (1983).
[CrossRef]

Seichepine, J.-L.

H. I. Faraoun, T. Grosdidier, J.-L. Seichepine, D. Goran, H. Auorag, C. Coddet, J. Zwick, and N. Hopkins, “Improvement of thermally sprayed abradable coating by microstructure control,” Surf. Coat. Technol. 201, 2303–2312 (2006).
[CrossRef]

Sevinc, N.

H. E. Camurlu, N. Sevinc, and Y. Topkaya, “Effect of calcium carbonate addition on carbothermic formation of hexagonal boron nitride,” J. Eur. Ceram. Soc. 28, 679–689 (2008).
[CrossRef]

Sinha, M.

J. Leist, M. Sinha, and R. Rojas-Wahl are preparing a manuscript to be called “Light spreading behavior of boron nitride powders.”

Topkaya, Y.

H. E. Camurlu, N. Sevinc, and Y. Topkaya, “Effect of calcium carbonate addition on carbothermic formation of hexagonal boron nitride,” J. Eur. Ceram. Soc. 28, 679–689 (2008).
[CrossRef]

Uhd Jepsen, P.

P. Uhd Jepsen and B. M. Fischer, “Dynamic range in terahertz time-domain transmission and reflection spectroscopy,” Opt. Lett. 30, 29–31 (2005).
[CrossRef]

Wada, T.

Y. Kimura, T. Wakabayashi, K. Okada, T. Wada, and H. Nishikawa, “Boron nitride as a lubricant additive,” Wear 232, 199–206 (1999).
[CrossRef]

Wakabayashi, T.

Y. Kimura, T. Wakabayashi, K. Okada, T. Wada, and H. Nishikawa, “Boron nitride as a lubricant additive,” Wear 232, 199–206 (1999).
[CrossRef]

Waldman, J.

A. J. Gatesman, R. H. Giles, and J. Waldman, “Submillimeter optical properties of hexagonal boron nitride,” J. Appl. Phys. 73, 3962–3966 (1993).
[CrossRef]

Wentorf, R. H.

F. P. Bundy and R. H. Wentorf, “Direct transformation of hexagonal boron nitride to denser forms,” J. Chem. Phys. 38, 1144–1149 (1963).
[CrossRef]

R. H. Wentorf, “Synthesis of the cubic form of boron nitride,” J. Chem. Phys. 34, 809–812 (1961).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).

Wu, H.

H. Wu and W. Zhang, “Fabrication and properties of ZrB2-SiC-BN machinable ceramics,” J. Eur. Ceram. Soc. 30, 1035–1042 (2010).
[CrossRef]

Yan, F.

G. Yi and F. Yan, “Effect of hexagonal boron nitride and calcined petroleum coke on friction and wear behavior of phenolic resin-based friction composites,” Mater. Sci. Eng. A 425, 330–338 (2006).
[CrossRef]

Yi, G.

G. Yi and F. Yan, “Effect of hexagonal boron nitride and calcined petroleum coke on friction and wear behavior of phenolic resin-based friction composites,” Mater. Sci. Eng. A 425, 330–338 (2006).
[CrossRef]

Zhang, W.

H. Wu and W. Zhang, “Fabrication and properties of ZrB2-SiC-BN machinable ceramics,” J. Eur. Ceram. Soc. 30, 1035–1042 (2010).
[CrossRef]

Zwick, J.

H. I. Faraoun, T. Grosdidier, J.-L. Seichepine, D. Goran, H. Auorag, C. Coddet, J. Zwick, and N. Hopkins, “Improvement of thermally sprayed abradable coating by microstructure control,” Surf. Coat. Technol. 201, 2303–2312 (2006).
[CrossRef]

Interceram

S. Rudolph, “Composition and application of coatings based on boron nitride,” Interceram 42, 302–305 (1993).

J. Appl. Phys.

A. J. Gatesman, R. H. Giles, and J. Waldman, “Submillimeter optical properties of hexagonal boron nitride,” J. Appl. Phys. 73, 3962–3966 (1993).
[CrossRef]

J. Chem. Phys.

F. P. Bundy and R. H. Wentorf, “Direct transformation of hexagonal boron nitride to denser forms,” J. Chem. Phys. 38, 1144–1149 (1963).
[CrossRef]

R. H. Wentorf, “Synthesis of the cubic form of boron nitride,” J. Chem. Phys. 34, 809–812 (1961).
[CrossRef]

J. Cryst. Growth

T. Ishii and T. Sato, “Growth of single crystals of hexagonal boron nitride,” J. Cryst. Growth 61, 689–690 (1983).
[CrossRef]

J. Eur. Ceram. Soc.

M. Naftaly, J. Leist, and R. Dudley, “Investigation of ceramic boron nitride by terahertz time-domain spectroscopy,” J. Eur. Ceram. Soc. 30, 2691–2697 (2010).
[CrossRef]

H. E. Camurlu, N. Sevinc, and Y. Topkaya, “Effect of calcium carbonate addition on carbothermic formation of hexagonal boron nitride,” J. Eur. Ceram. Soc. 28, 679–689 (2008).
[CrossRef]

H. Wu and W. Zhang, “Fabrication and properties of ZrB2-SiC-BN machinable ceramics,” J. Eur. Ceram. Soc. 30, 1035–1042 (2010).
[CrossRef]

Mater. Sci. Eng. A

G. Yi and F. Yan, “Effect of hexagonal boron nitride and calcined petroleum coke on friction and wear behavior of phenolic resin-based friction composites,” Mater. Sci. Eng. A 425, 330–338 (2006).
[CrossRef]

Opt. Lett.

P. Uhd Jepsen and B. M. Fischer, “Dynamic range in terahertz time-domain transmission and reflection spectroscopy,” Opt. Lett. 30, 29–31 (2005).
[CrossRef]

Opt. Mater

M. Naftaly, P. J. Greenslade, R. E. Miles, and D. Evans, “Low loss nitride ceramics for terahertz windows,” Opt. Mater 31, 1575–1577 (2009).

Phys. Rev.

P. J. Gielisse, S. S. Mitra, J. N. Plendl, R. D. Griffis, L. C. Mansur, R. Marshall, and E. A. Pascoe, “Lattice infrared spectra of boron nitride and boron monophosphide,” Phys. Rev. 155, 1039–1046 (1967).
[CrossRef]

R. Geick, C. H. Perry, and G. Rupprecht, “Normal modes in hexagonal boron nitride,” Phys. Rev. 146, 543–547 (1966).
[CrossRef]

Phys. Rev. B

D. M. Hoffman, G. L. Doll, and P. C. Eklund, “Optical properties of pyrolytic boron nitride in the energy range 0.05–10 eV,” Phys. Rev. B 30, 6051–6056 (1984).
[CrossRef]

Plast. Addit. Compound.

C. Raman and P. Meneghetti, “Boron nitride finds new applications in thermoplastic compounds,” Plast. Addit. Compound. 10, 26–31 (2008).
[CrossRef]

Powder Metall. Met. Ceram.

L. N. Rusanova and L. I. Gorchakova, “Sintering of turbostratic-structure boron nitride powders,” Powder Metall. Met. Ceram. 28, 108–111 (1989).

Surf. Coat. Technol.

H. I. Faraoun, T. Grosdidier, J.-L. Seichepine, D. Goran, H. Auorag, C. Coddet, J. Zwick, and N. Hopkins, “Improvement of thermally sprayed abradable coating by microstructure control,” Surf. Coat. Technol. 201, 2303–2312 (2006).
[CrossRef]

Wear

Y. Kimura, T. Wakabayashi, K. Okada, T. Wada, and H. Nishikawa, “Boron nitride as a lubricant additive,” Wear 232, 199–206 (1999).
[CrossRef]

Other

“BN—boron nitride,” http://www.ioffe.rssi.ru/SVA/NSM/Semicond/BN/basic.html .

G. Mariani, “Selection and application of solid lubricants as friction modifiers,” in Lubricant Additives—Chemistry and Applications, L. Rudnick, ed. (CRC Press, Taylor & Francis Group, 2003), pp. 180–182.

J. Leist, M. Sinha, and R. Rojas-Wahl are preparing a manuscript to be called “Light spreading behavior of boron nitride powders.”

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic structure of hexagonal boron nitride.

Fig. 2.
Fig. 2.

(a) Loss coefficients of grades HBN, HBC, HBR, and HBT. (b) Refractive indices of grades HBN, HBC, HBR, and HBT. (c) Loss coefficient and refractive index of grade BIN77.

Fig. 3.
Fig. 3.

Refractive indices of pure BN grades at 2 THz as a function of porosity.

Fig. 4.
Fig. 4.

Loss coefficient of pure BN grades at 2 THz as a function of porosity.

Fig. 5.
Fig. 5.

(a) Terahertz loss coefficient in pBN after polishing with water-based alumina paste and drying at 800°C (data obtained from 5 mm thick samples, taking into account reflection loss). (b) Loss coefficients in pBN (dry polished). Ordinary-ray loss and the higher value of extraordinary-ray loss were measured with the beam propagating normal to the c axis. The lower value of extraordinary-ray loss was measured with the beam propagating parallel to the c axis. (c) Refractive indices in pBN.

Tables (1)

Tables Icon

Table 1. Properties of Different Grades of Boron Nitride

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α(ν)=2d1d2ln[E2(ν)E1(ν)],
n(ν)=1+c[ϕ2(ν)ϕ1(ν)]2πν(d1d2),

Metrics