Abstract

Laser-induced breakdown spectroscopy is a promising approach for explosive residue detection, but several limitations to its widespread use remain. One issue is that the emission spectra of the residues are dependent on the substrate composition because some of the substrate is usually entrained in the laser-induced plasma and the laser–material interaction can be significantly affected by the substrate type. Here, we have demonstrated that despite the strong spectral variation in cyclotrimethylenetrinitramine (RDX) residues applied to various metal substrates, classification of the RDX residue independent of substrate type is feasible. Several approaches to improving the chemometric models based on partial least squares discriminant analysis (PLS-DA) have been described: classifying the RDX residue spectra together in one class independent of substrate, using selected emission intensities and ratios to increase the true positive rate (TPR) and decrease the false positive rate (FPR), and fusing the results from two PLS-DA models generated using the full broadband spectra and selected intensities and ratios. The combination of these approaches resulted in a TPR of 97.5% and a FPR of 1.0% for RDX classification on metal substrates.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
    [CrossRef]
  2. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
  3. V. I. Babushok, F. C. De Lucia, P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of cyclotrimethylenetrinitramine (RDX),” Spectrochim. Acta B 62, 1321–1328 (2007).
    [CrossRef]
  4. V. Lazic, A. Palucci, S. Jovicevic, C. Poggi, and E. Buono, “Analysis of explosive and other organic residues by laser induced breakdown spectroscopy,” Spectrochim. Acta B 64, 1028–1039 (2009).
    [CrossRef]
  5. P. J. Dagdigian, A. Khachatrian, and V. I. Babushok, “Kinetic model of C/H/N/O emissions in laser-induced breakdown spectroscopy of organic compounds,” Appl. Opt. 49, C58–C66 (2010).
    [CrossRef]
  6. P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta B 66, 12–20 (2011).
    [CrossRef]
  7. M. Civiš, S. Civiš, K. N. Sovová, K. Dryahina, P. Španěl, and M. Kyncl, “Laser ablation of FOX-7: proposed mechanism of decomposition,” Anal. Chem. 83, 1069–1077 (2011).
    [CrossRef]
  8. F. C. De Lucia, and J. L. Gottfried, “Characterization of a series of nitrogen-rich molecules using laser-induced breakdown spectroscopy,” Propellants Explos. Pyrotech. 35, 268–277 (2010).
    [CrossRef]
  9. J. L. Gottfried, “Laser-induced plasma chemistry of the explosive RDX with various metallic nanoparticles,” Appl. Opt. 51, B13–B21 (2012).
    [CrossRef]
  10. D. A. Cremers and R. C. Chinni, “Laser-induced breakdown spectroscopy: capabilities and limitations,” Appl. Spectrosc. Rev. 44, 457–506 (2009).
    [CrossRef]
  11. C. Chaleard, P. Mauchien, N. Andre, J. Uebbing, J. L. Lacour, and C. Geersten, “Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry,” J. Anal. At. Spectrom. 12, 183–188 (1997).
    [CrossRef]
  12. S. Laville, M. Sabsabi, and F. R. Doucet, “Multi-elemental analysis of solidified mineral melt samples by laser-induced breakdown spectroscopy coupled with a linear multivariate calibration,” Spectrochim. Acta B 62, 1557–1566 (2007).
    [CrossRef]
  13. J. L. Gottfried, F. C. De Lucia, and A. W. Miziolek, “Discrimination of explosive residues on organic and inorganic substrates using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 24, 288–296 (2009).
    [CrossRef]
  14. E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: state of the art,” Spectrochem. Acta B 65, 1–14 (2010).
    [CrossRef]
  15. V. Lazic, A. Palucci, S. Jovicevic, and M. Carpanese, “Detection of explosives in traces by laser induced breakdown spectroscopy: differences from organic interferents and conditions for a correct classification,” Spectrochim. Acta B 66, 644–655 (2011).
    [CrossRef]
  16. D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields,” Appl. Spectrosc. 66, 347–419 (2012).
    [CrossRef]
  17. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205–216 (2008).
    [CrossRef]
  18. F. C. De Lucia and J. L. Gottfried, “Classification of explosive residues on organic substrates using laser induced breakdown spectroscopy,” Appl. Opt. 51, B83–B92 (2012).
    [CrossRef]
  19. Q. Wang, P. Jander, C. Fricke-Begemann, and R. Noll, “Comparison of 1064 nm and 266 nm excitation of laser-induced plasmas for several types of plastics and one explosive,” Spectrochim. Acta B 63, 1011–1015 (2008).
    [CrossRef]
  20. D. M. Wong and P. J. Dagdigian, “Comparison of laser-induced breakdown spectra of organic compounds with irradiation at 1.5 and 1.064 micron,” Appl. Opt. 47, G149–G157 (2008).
    [CrossRef]
  21. M. Barker and W. Rayens, “Partial least squares for discrimination,” J. Chemom. 17, 166–173 (2003).
    [CrossRef]
  22. V. I. Babushok, F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta B 61, 999–1014 (2006).
    [CrossRef]
  23. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B 62, 1405–1411 (2007).
    [CrossRef]
  24. C. Lopez-Moreno, S. Palanco, J. Javier Laserna, F. C. De Lucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55–60 (2006).
    [CrossRef]
  25. F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues,” Appl. Opt. 47, G112–G121 (2008).
    [CrossRef]
  26. R. Gonzalez, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Standoff LIBS detection of explosive residues behind a barrier,” J. Anal. At. Spectrom. 24, 1123–1126 (2009).
    [CrossRef]
  27. I.-G. Chong and C.-H. Jun, “Performance of some variable selection methods when multicollinearity is present,” Chemom. Intell. Lab. Syst. 78, 103–112 (2005).
    [CrossRef]
  28. J. A. Aguilera, C. Aragón, V. Madurga, and J. Manrique, “Study of matrix effects in laser induced breakdown spectroscopy on metallic samples using plasma characterization by emission spectroscopy,” Spectrochim. Acta B 64, 993–998 (2009).
    [CrossRef]
  29. F. C. De Lucia and J. L. Gottfried, “Influence of variable selection on partial least squares discriminant analysis models for explosive residue discrimination,” Spectrochim. Acta B 66, 122–128 (2011).
    [CrossRef]
  30. Y. Ralchenko, A. E. Kramida, J. Reader, and N. A. Team, “NIST atomic spectra database (version 4.1),” http://physics.nist.gov/asd .
  31. J. L. Gottfried, “Discrimination of biological and chemical threats in residue mixtures on multiple surfaces,” Anal. Bioanal. Chem. 400, 3289–3301 (2011).
    [CrossRef]

2012

J. L. Gottfried, “Laser-induced plasma chemistry of the explosive RDX with various metallic nanoparticles,” Appl. Opt. 51, B13–B21 (2012).
[CrossRef]

F. C. De Lucia and J. L. Gottfried, “Classification of explosive residues on organic substrates using laser induced breakdown spectroscopy,” Appl. Opt. 51, B83–B92 (2012).
[CrossRef]

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields,” Appl. Spectrosc. 66, 347–419 (2012).
[CrossRef]

2011

F. C. De Lucia and J. L. Gottfried, “Influence of variable selection on partial least squares discriminant analysis models for explosive residue discrimination,” Spectrochim. Acta B 66, 122–128 (2011).
[CrossRef]

J. L. Gottfried, “Discrimination of biological and chemical threats in residue mixtures on multiple surfaces,” Anal. Bioanal. Chem. 400, 3289–3301 (2011).
[CrossRef]

V. Lazic, A. Palucci, S. Jovicevic, and M. Carpanese, “Detection of explosives in traces by laser induced breakdown spectroscopy: differences from organic interferents and conditions for a correct classification,” Spectrochim. Acta B 66, 644–655 (2011).
[CrossRef]

P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta B 66, 12–20 (2011).
[CrossRef]

M. Civiš, S. Civiš, K. N. Sovová, K. Dryahina, P. Španěl, and M. Kyncl, “Laser ablation of FOX-7: proposed mechanism of decomposition,” Anal. Chem. 83, 1069–1077 (2011).
[CrossRef]

2010

F. C. De Lucia, and J. L. Gottfried, “Characterization of a series of nitrogen-rich molecules using laser-induced breakdown spectroscopy,” Propellants Explos. Pyrotech. 35, 268–277 (2010).
[CrossRef]

P. J. Dagdigian, A. Khachatrian, and V. I. Babushok, “Kinetic model of C/H/N/O emissions in laser-induced breakdown spectroscopy of organic compounds,” Appl. Opt. 49, C58–C66 (2010).
[CrossRef]

E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: state of the art,” Spectrochem. Acta B 65, 1–14 (2010).
[CrossRef]

2009

J. L. Gottfried, F. C. De Lucia, and A. W. Miziolek, “Discrimination of explosive residues on organic and inorganic substrates using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 24, 288–296 (2009).
[CrossRef]

V. Lazic, A. Palucci, S. Jovicevic, C. Poggi, and E. Buono, “Analysis of explosive and other organic residues by laser induced breakdown spectroscopy,” Spectrochim. Acta B 64, 1028–1039 (2009).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

D. A. Cremers and R. C. Chinni, “Laser-induced breakdown spectroscopy: capabilities and limitations,” Appl. Spectrosc. Rev. 44, 457–506 (2009).
[CrossRef]

J. A. Aguilera, C. Aragón, V. Madurga, and J. Manrique, “Study of matrix effects in laser induced breakdown spectroscopy on metallic samples using plasma characterization by emission spectroscopy,” Spectrochim. Acta B 64, 993–998 (2009).
[CrossRef]

R. Gonzalez, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Standoff LIBS detection of explosive residues behind a barrier,” J. Anal. At. Spectrom. 24, 1123–1126 (2009).
[CrossRef]

2008

F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues,” Appl. Opt. 47, G112–G121 (2008).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205–216 (2008).
[CrossRef]

Q. Wang, P. Jander, C. Fricke-Begemann, and R. Noll, “Comparison of 1064 nm and 266 nm excitation of laser-induced plasmas for several types of plastics and one explosive,” Spectrochim. Acta B 63, 1011–1015 (2008).
[CrossRef]

D. M. Wong and P. J. Dagdigian, “Comparison of laser-induced breakdown spectra of organic compounds with irradiation at 1.5 and 1.064 micron,” Appl. Opt. 47, G149–G157 (2008).
[CrossRef]

2007

S. Laville, M. Sabsabi, and F. R. Doucet, “Multi-elemental analysis of solidified mineral melt samples by laser-induced breakdown spectroscopy coupled with a linear multivariate calibration,” Spectrochim. Acta B 62, 1557–1566 (2007).
[CrossRef]

V. I. Babushok, F. C. De Lucia, P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of cyclotrimethylenetrinitramine (RDX),” Spectrochim. Acta B 62, 1321–1328 (2007).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B 62, 1405–1411 (2007).
[CrossRef]

2006

C. Lopez-Moreno, S. Palanco, J. Javier Laserna, F. C. De Lucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55–60 (2006).
[CrossRef]

V. I. Babushok, F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta B 61, 999–1014 (2006).
[CrossRef]

2005

I.-G. Chong and C.-H. Jun, “Performance of some variable selection methods when multicollinearity is present,” Chemom. Intell. Lab. Syst. 78, 103–112 (2005).
[CrossRef]

2003

M. Barker and W. Rayens, “Partial least squares for discrimination,” J. Chemom. 17, 166–173 (2003).
[CrossRef]

1997

C. Chaleard, P. Mauchien, N. Andre, J. Uebbing, J. L. Lacour, and C. Geersten, “Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry,” J. Anal. At. Spectrom. 12, 183–188 (1997).
[CrossRef]

Aguilera, J. A.

J. A. Aguilera, C. Aragón, V. Madurga, and J. Manrique, “Study of matrix effects in laser induced breakdown spectroscopy on metallic samples using plasma characterization by emission spectroscopy,” Spectrochim. Acta B 64, 993–998 (2009).
[CrossRef]

Andre, N.

C. Chaleard, P. Mauchien, N. Andre, J. Uebbing, J. L. Lacour, and C. Geersten, “Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry,” J. Anal. At. Spectrom. 12, 183–188 (1997).
[CrossRef]

Aragón, C.

J. A. Aguilera, C. Aragón, V. Madurga, and J. Manrique, “Study of matrix effects in laser induced breakdown spectroscopy on metallic samples using plasma characterization by emission spectroscopy,” Spectrochim. Acta B 64, 993–998 (2009).
[CrossRef]

Babushok, V. I.

P. J. Dagdigian, A. Khachatrian, and V. I. Babushok, “Kinetic model of C/H/N/O emissions in laser-induced breakdown spectroscopy of organic compounds,” Appl. Opt. 49, C58–C66 (2010).
[CrossRef]

V. I. Babushok, F. C. De Lucia, P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of cyclotrimethylenetrinitramine (RDX),” Spectrochim. Acta B 62, 1321–1328 (2007).
[CrossRef]

V. I. Babushok, F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta B 61, 999–1014 (2006).
[CrossRef]

Barker, M.

M. Barker and W. Rayens, “Partial least squares for discrimination,” J. Chemom. 17, 166–173 (2003).
[CrossRef]

Buono, E.

V. Lazic, A. Palucci, S. Jovicevic, C. Poggi, and E. Buono, “Analysis of explosive and other organic residues by laser induced breakdown spectroscopy,” Spectrochim. Acta B 64, 1028–1039 (2009).
[CrossRef]

Carpanese, M.

V. Lazic, A. Palucci, S. Jovicevic, and M. Carpanese, “Detection of explosives in traces by laser induced breakdown spectroscopy: differences from organic interferents and conditions for a correct classification,” Spectrochim. Acta B 66, 644–655 (2011).
[CrossRef]

Chaleard, C.

C. Chaleard, P. Mauchien, N. Andre, J. Uebbing, J. L. Lacour, and C. Geersten, “Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry,” J. Anal. At. Spectrom. 12, 183–188 (1997).
[CrossRef]

Chinni, R. C.

D. A. Cremers and R. C. Chinni, “Laser-induced breakdown spectroscopy: capabilities and limitations,” Appl. Spectrosc. Rev. 44, 457–506 (2009).
[CrossRef]

Chong, I.-G.

I.-G. Chong and C.-H. Jun, “Performance of some variable selection methods when multicollinearity is present,” Chemom. Intell. Lab. Syst. 78, 103–112 (2005).
[CrossRef]

Civiš, M.

M. Civiš, S. Civiš, K. N. Sovová, K. Dryahina, P. Španěl, and M. Kyncl, “Laser ablation of FOX-7: proposed mechanism of decomposition,” Anal. Chem. 83, 1069–1077 (2011).
[CrossRef]

Civiš, S.

M. Civiš, S. Civiš, K. N. Sovová, K. Dryahina, P. Španěl, and M. Kyncl, “Laser ablation of FOX-7: proposed mechanism of decomposition,” Anal. Chem. 83, 1069–1077 (2011).
[CrossRef]

Cremers, D. A.

D. A. Cremers and R. C. Chinni, “Laser-induced breakdown spectroscopy: capabilities and limitations,” Appl. Spectrosc. Rev. 44, 457–506 (2009).
[CrossRef]

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

Cristoforetti, G.

E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: state of the art,” Spectrochem. Acta B 65, 1–14 (2010).
[CrossRef]

Dagdigian, P. J.

P. J. Dagdigian, A. Khachatrian, and V. I. Babushok, “Kinetic model of C/H/N/O emissions in laser-induced breakdown spectroscopy of organic compounds,” Appl. Opt. 49, C58–C66 (2010).
[CrossRef]

D. M. Wong and P. J. Dagdigian, “Comparison of laser-induced breakdown spectra of organic compounds with irradiation at 1.5 and 1.064 micron,” Appl. Opt. 47, G149–G157 (2008).
[CrossRef]

V. I. Babushok, F. C. De Lucia, P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of cyclotrimethylenetrinitramine (RDX),” Spectrochim. Acta B 62, 1321–1328 (2007).
[CrossRef]

De Lucia, F. C.

F. C. De Lucia and J. L. Gottfried, “Classification of explosive residues on organic substrates using laser induced breakdown spectroscopy,” Appl. Opt. 51, B83–B92 (2012).
[CrossRef]

F. C. De Lucia and J. L. Gottfried, “Influence of variable selection on partial least squares discriminant analysis models for explosive residue discrimination,” Spectrochim. Acta B 66, 122–128 (2011).
[CrossRef]

F. C. De Lucia, and J. L. Gottfried, “Characterization of a series of nitrogen-rich molecules using laser-induced breakdown spectroscopy,” Propellants Explos. Pyrotech. 35, 268–277 (2010).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, and A. W. Miziolek, “Discrimination of explosive residues on organic and inorganic substrates using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 24, 288–296 (2009).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205–216 (2008).
[CrossRef]

F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues,” Appl. Opt. 47, G112–G121 (2008).
[CrossRef]

V. I. Babushok, F. C. De Lucia, P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of cyclotrimethylenetrinitramine (RDX),” Spectrochim. Acta B 62, 1321–1328 (2007).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B 62, 1405–1411 (2007).
[CrossRef]

C. Lopez-Moreno, S. Palanco, J. Javier Laserna, F. C. De Lucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55–60 (2006).
[CrossRef]

V. I. Babushok, F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta B 61, 999–1014 (2006).
[CrossRef]

Dona, A.

P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta B 66, 12–20 (2011).
[CrossRef]

Doucet, F. R.

S. Laville, M. Sabsabi, and F. R. Doucet, “Multi-elemental analysis of solidified mineral melt samples by laser-induced breakdown spectroscopy coupled with a linear multivariate calibration,” Spectrochim. Acta B 62, 1557–1566 (2007).
[CrossRef]

Dryahina, K.

M. Civiš, S. Civiš, K. N. Sovová, K. Dryahina, P. Španěl, and M. Kyncl, “Laser ablation of FOX-7: proposed mechanism of decomposition,” Anal. Chem. 83, 1069–1077 (2011).
[CrossRef]

Fricke-Begemann, C.

Q. Wang, P. Jander, C. Fricke-Begemann, and R. Noll, “Comparison of 1064 nm and 266 nm excitation of laser-induced plasmas for several types of plastics and one explosive,” Spectrochim. Acta B 63, 1011–1015 (2008).
[CrossRef]

Geersten, C.

C. Chaleard, P. Mauchien, N. Andre, J. Uebbing, J. L. Lacour, and C. Geersten, “Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry,” J. Anal. At. Spectrom. 12, 183–188 (1997).
[CrossRef]

Gonzalez, R.

R. Gonzalez, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Standoff LIBS detection of explosive residues behind a barrier,” J. Anal. At. Spectrom. 24, 1123–1126 (2009).
[CrossRef]

Gottfried, J. L.

F. C. De Lucia and J. L. Gottfried, “Classification of explosive residues on organic substrates using laser induced breakdown spectroscopy,” Appl. Opt. 51, B83–B92 (2012).
[CrossRef]

J. L. Gottfried, “Laser-induced plasma chemistry of the explosive RDX with various metallic nanoparticles,” Appl. Opt. 51, B13–B21 (2012).
[CrossRef]

J. L. Gottfried, “Discrimination of biological and chemical threats in residue mixtures on multiple surfaces,” Anal. Bioanal. Chem. 400, 3289–3301 (2011).
[CrossRef]

F. C. De Lucia and J. L. Gottfried, “Influence of variable selection on partial least squares discriminant analysis models for explosive residue discrimination,” Spectrochim. Acta B 66, 122–128 (2011).
[CrossRef]

F. C. De Lucia, and J. L. Gottfried, “Characterization of a series of nitrogen-rich molecules using laser-induced breakdown spectroscopy,” Propellants Explos. Pyrotech. 35, 268–277 (2010).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, and A. W. Miziolek, “Discrimination of explosive residues on organic and inorganic substrates using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 24, 288–296 (2009).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205–216 (2008).
[CrossRef]

F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues,” Appl. Opt. 47, G112–G121 (2008).
[CrossRef]

V. I. Babushok, F. C. De Lucia, P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of cyclotrimethylenetrinitramine (RDX),” Spectrochim. Acta B 62, 1321–1328 (2007).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B 62, 1405–1411 (2007).
[CrossRef]

V. I. Babushok, F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta B 61, 999–1014 (2006).
[CrossRef]

Hahn, D. W.

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields,” Appl. Spectrosc. 66, 347–419 (2012).
[CrossRef]

Jander, P.

Q. Wang, P. Jander, C. Fricke-Begemann, and R. Noll, “Comparison of 1064 nm and 266 nm excitation of laser-induced plasmas for several types of plastics and one explosive,” Spectrochim. Acta B 63, 1011–1015 (2008).
[CrossRef]

Jovicevic, S.

V. Lazic, A. Palucci, S. Jovicevic, and M. Carpanese, “Detection of explosives in traces by laser induced breakdown spectroscopy: differences from organic interferents and conditions for a correct classification,” Spectrochim. Acta B 66, 644–655 (2011).
[CrossRef]

V. Lazic, A. Palucci, S. Jovicevic, C. Poggi, and E. Buono, “Analysis of explosive and other organic residues by laser induced breakdown spectroscopy,” Spectrochim. Acta B 64, 1028–1039 (2009).
[CrossRef]

Jun, C.-H.

I.-G. Chong and C.-H. Jun, “Performance of some variable selection methods when multicollinearity is present,” Chemom. Intell. Lab. Syst. 78, 103–112 (2005).
[CrossRef]

Khachatrian, A.

P. J. Dagdigian, A. Khachatrian, and V. I. Babushok, “Kinetic model of C/H/N/O emissions in laser-induced breakdown spectroscopy of organic compounds,” Appl. Opt. 49, C58–C66 (2010).
[CrossRef]

Kyncl, M.

M. Civiš, S. Civiš, K. N. Sovová, K. Dryahina, P. Španěl, and M. Kyncl, “Laser ablation of FOX-7: proposed mechanism of decomposition,” Anal. Chem. 83, 1069–1077 (2011).
[CrossRef]

Lacour, J. L.

C. Chaleard, P. Mauchien, N. Andre, J. Uebbing, J. L. Lacour, and C. Geersten, “Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry,” J. Anal. At. Spectrom. 12, 183–188 (1997).
[CrossRef]

Laserna, J. J.

P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta B 66, 12–20 (2011).
[CrossRef]

R. Gonzalez, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Standoff LIBS detection of explosive residues behind a barrier,” J. Anal. At. Spectrom. 24, 1123–1126 (2009).
[CrossRef]

Laserna, J. Javier

C. Lopez-Moreno, S. Palanco, J. Javier Laserna, F. C. De Lucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55–60 (2006).
[CrossRef]

Laville, S.

S. Laville, M. Sabsabi, and F. R. Doucet, “Multi-elemental analysis of solidified mineral melt samples by laser-induced breakdown spectroscopy coupled with a linear multivariate calibration,” Spectrochim. Acta B 62, 1557–1566 (2007).
[CrossRef]

Lazic, V.

V. Lazic, A. Palucci, S. Jovicevic, and M. Carpanese, “Detection of explosives in traces by laser induced breakdown spectroscopy: differences from organic interferents and conditions for a correct classification,” Spectrochim. Acta B 66, 644–655 (2011).
[CrossRef]

V. Lazic, A. Palucci, S. Jovicevic, C. Poggi, and E. Buono, “Analysis of explosive and other organic residues by laser induced breakdown spectroscopy,” Spectrochim. Acta B 64, 1028–1039 (2009).
[CrossRef]

Legnaioli, S.

E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: state of the art,” Spectrochem. Acta B 65, 1–14 (2010).
[CrossRef]

Lopez-Moreno, C.

C. Lopez-Moreno, S. Palanco, J. Javier Laserna, F. C. De Lucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55–60 (2006).
[CrossRef]

Lucena, P.

P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta B 66, 12–20 (2011).
[CrossRef]

R. Gonzalez, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Standoff LIBS detection of explosive residues behind a barrier,” J. Anal. At. Spectrom. 24, 1123–1126 (2009).
[CrossRef]

Madurga, V.

J. A. Aguilera, C. Aragón, V. Madurga, and J. Manrique, “Study of matrix effects in laser induced breakdown spectroscopy on metallic samples using plasma characterization by emission spectroscopy,” Spectrochim. Acta B 64, 993–998 (2009).
[CrossRef]

Manrique, J.

J. A. Aguilera, C. Aragón, V. Madurga, and J. Manrique, “Study of matrix effects in laser induced breakdown spectroscopy on metallic samples using plasma characterization by emission spectroscopy,” Spectrochim. Acta B 64, 993–998 (2009).
[CrossRef]

Mauchien, P.

C. Chaleard, P. Mauchien, N. Andre, J. Uebbing, J. L. Lacour, and C. Geersten, “Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry,” J. Anal. At. Spectrom. 12, 183–188 (1997).
[CrossRef]

Miziolek, A. W.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, and A. W. Miziolek, “Discrimination of explosive residues on organic and inorganic substrates using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 24, 288–296 (2009).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205–216 (2008).
[CrossRef]

F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues,” Appl. Opt. 47, G112–G121 (2008).
[CrossRef]

V. I. Babushok, F. C. De Lucia, P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of cyclotrimethylenetrinitramine (RDX),” Spectrochim. Acta B 62, 1321–1328 (2007).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B 62, 1405–1411 (2007).
[CrossRef]

C. Lopez-Moreno, S. Palanco, J. Javier Laserna, F. C. De Lucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55–60 (2006).
[CrossRef]

V. I. Babushok, F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta B 61, 999–1014 (2006).
[CrossRef]

Munson, C. A.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues,” Appl. Opt. 47, G112–G121 (2008).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205–216 (2008).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B 62, 1405–1411 (2007).
[CrossRef]

V. I. Babushok, F. C. De Lucia, P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of cyclotrimethylenetrinitramine (RDX),” Spectrochim. Acta B 62, 1321–1328 (2007).
[CrossRef]

V. I. Babushok, F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta B 61, 999–1014 (2006).
[CrossRef]

Noll, R.

Q. Wang, P. Jander, C. Fricke-Begemann, and R. Noll, “Comparison of 1064 nm and 266 nm excitation of laser-induced plasmas for several types of plastics and one explosive,” Spectrochim. Acta B 63, 1011–1015 (2008).
[CrossRef]

Nusca, M. J.

V. I. Babushok, F. C. De Lucia, P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of cyclotrimethylenetrinitramine (RDX),” Spectrochim. Acta B 62, 1321–1328 (2007).
[CrossRef]

Omenetto, N.

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields,” Appl. Spectrosc. 66, 347–419 (2012).
[CrossRef]

Palanco, S.

C. Lopez-Moreno, S. Palanco, J. Javier Laserna, F. C. De Lucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55–60 (2006).
[CrossRef]

Palleschi, V.

E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: state of the art,” Spectrochem. Acta B 65, 1–14 (2010).
[CrossRef]

Palucci, A.

V. Lazic, A. Palucci, S. Jovicevic, and M. Carpanese, “Detection of explosives in traces by laser induced breakdown spectroscopy: differences from organic interferents and conditions for a correct classification,” Spectrochim. Acta B 66, 644–655 (2011).
[CrossRef]

V. Lazic, A. Palucci, S. Jovicevic, C. Poggi, and E. Buono, “Analysis of explosive and other organic residues by laser induced breakdown spectroscopy,” Spectrochim. Acta B 64, 1028–1039 (2009).
[CrossRef]

Poggi, C.

V. Lazic, A. Palucci, S. Jovicevic, C. Poggi, and E. Buono, “Analysis of explosive and other organic residues by laser induced breakdown spectroscopy,” Spectrochim. Acta B 64, 1028–1039 (2009).
[CrossRef]

Radziemski, L. J.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

Rayens, W.

M. Barker and W. Rayens, “Partial least squares for discrimination,” J. Chemom. 17, 166–173 (2003).
[CrossRef]

Rose, J.

C. Lopez-Moreno, S. Palanco, J. Javier Laserna, F. C. De Lucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55–60 (2006).
[CrossRef]

Sabsabi, M.

S. Laville, M. Sabsabi, and F. R. Doucet, “Multi-elemental analysis of solidified mineral melt samples by laser-induced breakdown spectroscopy coupled with a linear multivariate calibration,” Spectrochim. Acta B 62, 1557–1566 (2007).
[CrossRef]

Sovová, K. N.

M. Civiš, S. Civiš, K. N. Sovová, K. Dryahina, P. Španěl, and M. Kyncl, “Laser ablation of FOX-7: proposed mechanism of decomposition,” Anal. Chem. 83, 1069–1077 (2011).
[CrossRef]

Španel, P.

M. Civiš, S. Civiš, K. N. Sovová, K. Dryahina, P. Španěl, and M. Kyncl, “Laser ablation of FOX-7: proposed mechanism of decomposition,” Anal. Chem. 83, 1069–1077 (2011).
[CrossRef]

Tobaria, L. M.

P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta B 66, 12–20 (2011).
[CrossRef]

R. Gonzalez, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Standoff LIBS detection of explosive residues behind a barrier,” J. Anal. At. Spectrom. 24, 1123–1126 (2009).
[CrossRef]

Tognoni, E.

E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: state of the art,” Spectrochem. Acta B 65, 1–14 (2010).
[CrossRef]

Uebbing, J.

C. Chaleard, P. Mauchien, N. Andre, J. Uebbing, J. L. Lacour, and C. Geersten, “Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry,” J. Anal. At. Spectrom. 12, 183–188 (1997).
[CrossRef]

Walters, R. A.

C. Lopez-Moreno, S. Palanco, J. Javier Laserna, F. C. De Lucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55–60 (2006).
[CrossRef]

Wang, Q.

Q. Wang, P. Jander, C. Fricke-Begemann, and R. Noll, “Comparison of 1064 nm and 266 nm excitation of laser-induced plasmas for several types of plastics and one explosive,” Spectrochim. Acta B 63, 1011–1015 (2008).
[CrossRef]

Whitehouse, A. I.

C. Lopez-Moreno, S. Palanco, J. Javier Laserna, F. C. De Lucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55–60 (2006).
[CrossRef]

Wong, D. M.

D. M. Wong and P. J. Dagdigian, “Comparison of laser-induced breakdown spectra of organic compounds with irradiation at 1.5 and 1.064 micron,” Appl. Opt. 47, G149–G157 (2008).
[CrossRef]

Anal. Bioanal. Chem.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

J. L. Gottfried, “Discrimination of biological and chemical threats in residue mixtures on multiple surfaces,” Anal. Bioanal. Chem. 400, 3289–3301 (2011).
[CrossRef]

Anal. Chem.

M. Civiš, S. Civiš, K. N. Sovová, K. Dryahina, P. Španěl, and M. Kyncl, “Laser ablation of FOX-7: proposed mechanism of decomposition,” Anal. Chem. 83, 1069–1077 (2011).
[CrossRef]

Appl. Opt.

P. J. Dagdigian, A. Khachatrian, and V. I. Babushok, “Kinetic model of C/H/N/O emissions in laser-induced breakdown spectroscopy of organic compounds,” Appl. Opt. 49, C58–C66 (2010).
[CrossRef]

J. L. Gottfried, “Laser-induced plasma chemistry of the explosive RDX with various metallic nanoparticles,” Appl. Opt. 51, B13–B21 (2012).
[CrossRef]

D. M. Wong and P. J. Dagdigian, “Comparison of laser-induced breakdown spectra of organic compounds with irradiation at 1.5 and 1.064 micron,” Appl. Opt. 47, G149–G157 (2008).
[CrossRef]

F. C. De Lucia and J. L. Gottfried, “Classification of explosive residues on organic substrates using laser induced breakdown spectroscopy,” Appl. Opt. 51, B83–B92 (2012).
[CrossRef]

F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues,” Appl. Opt. 47, G112–G121 (2008).
[CrossRef]

Appl. Spectrosc.

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields,” Appl. Spectrosc. 66, 347–419 (2012).
[CrossRef]

Appl. Spectrosc. Rev.

D. A. Cremers and R. C. Chinni, “Laser-induced breakdown spectroscopy: capabilities and limitations,” Appl. Spectrosc. Rev. 44, 457–506 (2009).
[CrossRef]

Chemom. Intell. Lab. Syst.

I.-G. Chong and C.-H. Jun, “Performance of some variable selection methods when multicollinearity is present,” Chemom. Intell. Lab. Syst. 78, 103–112 (2005).
[CrossRef]

J. Anal. At. Spectrom.

C. Lopez-Moreno, S. Palanco, J. Javier Laserna, F. C. De Lucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55–60 (2006).
[CrossRef]

R. Gonzalez, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Standoff LIBS detection of explosive residues behind a barrier,” J. Anal. At. Spectrom. 24, 1123–1126 (2009).
[CrossRef]

C. Chaleard, P. Mauchien, N. Andre, J. Uebbing, J. L. Lacour, and C. Geersten, “Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry,” J. Anal. At. Spectrom. 12, 183–188 (1997).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205–216 (2008).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, and A. W. Miziolek, “Discrimination of explosive residues on organic and inorganic substrates using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 24, 288–296 (2009).
[CrossRef]

J. Chemom.

M. Barker and W. Rayens, “Partial least squares for discrimination,” J. Chemom. 17, 166–173 (2003).
[CrossRef]

Propellants Explos. Pyrotech.

F. C. De Lucia, and J. L. Gottfried, “Characterization of a series of nitrogen-rich molecules using laser-induced breakdown spectroscopy,” Propellants Explos. Pyrotech. 35, 268–277 (2010).
[CrossRef]

Spectrochem. Acta B

E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: state of the art,” Spectrochem. Acta B 65, 1–14 (2010).
[CrossRef]

Spectrochim. Acta B

V. Lazic, A. Palucci, S. Jovicevic, and M. Carpanese, “Detection of explosives in traces by laser induced breakdown spectroscopy: differences from organic interferents and conditions for a correct classification,” Spectrochim. Acta B 66, 644–655 (2011).
[CrossRef]

S. Laville, M. Sabsabi, and F. R. Doucet, “Multi-elemental analysis of solidified mineral melt samples by laser-induced breakdown spectroscopy coupled with a linear multivariate calibration,” Spectrochim. Acta B 62, 1557–1566 (2007).
[CrossRef]

P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta B 66, 12–20 (2011).
[CrossRef]

V. I. Babushok, F. C. De Lucia, P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of cyclotrimethylenetrinitramine (RDX),” Spectrochim. Acta B 62, 1321–1328 (2007).
[CrossRef]

V. Lazic, A. Palucci, S. Jovicevic, C. Poggi, and E. Buono, “Analysis of explosive and other organic residues by laser induced breakdown spectroscopy,” Spectrochim. Acta B 64, 1028–1039 (2009).
[CrossRef]

V. I. Babushok, F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta B 61, 999–1014 (2006).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B 62, 1405–1411 (2007).
[CrossRef]

Q. Wang, P. Jander, C. Fricke-Begemann, and R. Noll, “Comparison of 1064 nm and 266 nm excitation of laser-induced plasmas for several types of plastics and one explosive,” Spectrochim. Acta B 63, 1011–1015 (2008).
[CrossRef]

J. A. Aguilera, C. Aragón, V. Madurga, and J. Manrique, “Study of matrix effects in laser induced breakdown spectroscopy on metallic samples using plasma characterization by emission spectroscopy,” Spectrochim. Acta B 64, 993–998 (2009).
[CrossRef]

F. C. De Lucia and J. L. Gottfried, “Influence of variable selection on partial least squares discriminant analysis models for explosive residue discrimination,” Spectrochim. Acta B 66, 122–128 (2011).
[CrossRef]

Other

Y. Ralchenko, A. E. Kramida, J. Reader, and N. A. Team, “NIST atomic spectra database (version 4.1),” http://physics.nist.gov/asd .

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

LIBS spectra of RDX residue on high-purity (a) Al, (b) Cu, (c) Ni, (d) Sn, and (e) Ti substrates. The insets show the emission lines due to RDX (C, CN, H, N, and O); the CN lines were not visible for the Ti substrate because of overlapping Ti emission lines. The gray lines in the insets correspond to the relevant blank substrate spectra.

Fig. 2.
Fig. 2.

LIBS spectra of RDX residue on (a) Ag, (b) Au, (c) In, (d) Mg, and (e) Zn substrates. The insets show the emission lines due to RDX and trace organic content from the substrates. The gray lines in the insets correspond to the relevant blank substrate spectra.

Fig. 3.
Fig. 3.

Selected spectral regions for the blank Al substrates: (a) Al (99.999%), (b) Al alloy 5182 (94.58%), (c) Al alloy 7075 (89.76%), (d) Al alloy 380 (82.99%), and (e) Al2O3.

Fig. 4.
Fig. 4.

Selected spectral regions for the blank alloy substrates: (a) brass alloy 1107 (solid black) and brass alloy 1110 (dotted red); (b) Ni (solid blue), Cu (thick green), and Ni-Cu alloy C1248 (dotted red); (c) high-purity lead C2418 (solid black) and lead alloy C2417 (dotted red); (d) stainless steel C1296 (solid black) and low-alloy steel 1761A (dotted red); (e) Ti (solid black) and Ti alloy 641 (dotted red); and (f) Zn (solid black) and Zn alloy 625 (dotted red).

Fig. 5.
Fig. 5.

Comparison of VIP scores for the Au class in the pure metal model and the RDX residue model. The VIP scores for the Au emission lines are approximately the same for both models, while the emission lines such as C and H due to contaminants in the blank substrate are less important in the RDX residue model.

Fig. 6.
Fig. 6.

VIP scores from the RDX class in the PLS-DA model for classification of RDX residues on 10 metal substrates. Emission lines from both the RDX and the substrates contribute to the classification of the RDX residue.

Fig. 7.
Fig. 7.

VIP scores for the RDX and Al classes using a model based on selected emission intensities, calculated excitation temperature, and selected intensity ratios. For clarity, not all of the variable names are displayed on the x axis.

Fig. 8.
Fig. 8.

ROC curves for the classification of the RDX residue (from the validation and alloy sets) using PLS-DA models based on full spectra, selected intensities/ratios, and fused probabilities. The points on the fusion ROC curves labeled A correspond to a threshold of 0.12, while the points labeled B correspond to a threshold of 0.56.

Tables (6)

Tables Icon

Table 1. List of Pure Metal Substrates and Alloysa

Tables Icon

Table 2. PLS-DA Results for the Classification of RDX Residue on 10 Metal Substrates Using the Full Spectraa

Tables Icon

Table 3. PLS-DA Results for the Second Validation Test Set Consisting of Substrates Not Included in the Full Spectra Modela

Tables Icon

Table 4. Selected Emission Features Based on Intensity and Lack of Spectral Interferences

Tables Icon

Table 5. PLS-DA Results for the Classification of RDX Residue on 10 Metal Substrates Using the Intensities/Ratio Modela

Tables Icon

Table 6. PLS-DA Results for the Second Validation Test Set Consisting of Substrates Not Included in the Intensity/Ratio Modela

Metrics