Abstract

We present a theoretical approach to generate a nondiffracting beam with extended depth of focus (DOF) and a smaller focal spot along the optical axis, by tight focusing of an azimuthally polarized beam with a circular symmetrical binary phase mask and an interference effect over a high-numerical-aperture (NA) lens axicon system. We find a general azimuthal diffraction integral for the circularly symmetric binary phase mask and examine it in two special cases: a high-NA lens and a high-NA lens axicon. The azimuthally polarized beam remains well behaved in both cases. We verify that the longitudinal component generated by azimuthally polarized illumination produces the narrowest spot size for a wide range of geometries. Finally, we discuss the effects of tight focusing on a dielectric interface and provide some ideas for circumventing the effects of the binary phase mask interface and even utilize them for spot size reduction.

© 2013 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501–505 (2008).
    [CrossRef]
  2. H. F. Wang, L. P. Shi, G. Q. Yuan, X. S. Miao, W. L. Tan, and C. T. Chong, “Subwavelength and super-resolution nondiffraction beam,” Appl. Phys. Lett. 89, 171102 (2006).
    [CrossRef]
  3. C. C. Sun and C. K. Liu, “Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation,” Opt. Lett. 28, 99–101 (2003).
    [CrossRef]
  4. M. Erdelyi, Z. L. Horvath, G. Szabo, Z. Bor, F. K. Tittel, J. R. Cavallaro, and M. C. Smayling, “Generation of diffraction-free beams for applications in optical microlithography,” J. Vac. Sci. Technol. B 15, 287–292 (1997).
    [CrossRef]
  5. L. B. Liu, C. Liu, W. C. Howe, C. J. R. Sheppard, and N. G. Chen, “Binary-phase spatial filter for real-time swept-source optical coherence microscopy,” Opt. Lett. 32, 2375–2377 (2007).
    [CrossRef]
  6. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31, 2450–2452 (2006).
    [CrossRef]
  7. Q. Q. Zhang, J. G. Wang, M. W. Wang, J. Bu, S. W. Zhu, R. Wang, B. Z. Gao, and X.-C. Yuan, “A modified fractal zone plate with extended depth of focus in spectral domain optical coherence tomography,” J. Opt. 13, 055301 (2011).
    [CrossRef]
  8. L. Cicchitelli, H. Hora, and R. Postle, “Longitudinal field components for laser beams in vacuum,” Phys. Rev. A 41, 3727–3732 (1990).
    [CrossRef]
  9. J. R. Fontana and R. H. Pantell, “A high-energy laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys. 54, 4285–4288 (1983).
    [CrossRef]
  10. R. D. Romea and W. D. Kimura, “Modeling of inverse Čerenkov laser acceleration with axicon laser beam focusing,” Phys. Rev. D 42, 1807–1818 (1990).
    [CrossRef]
  11. J. Rosenzweig, A. Murokh, and C. Pellegrini, “A proposed dielectric-loaded resonant laser accelerator,” Phys. Rev. Lett. 74, 2467–2470 (1995).
    [CrossRef]
  12. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
    [CrossRef]
  13. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
    [CrossRef]
  14. D. P. Biss and T. G. Brown, “Polarization-vortex-driven second-harmonic generation,” Opt. Lett. 28, 923–925(2003).
    [CrossRef]
  15. E. Y. S. Yew and C. J. R. Sheppard, “Second-harmonic generation polarization microscopy with radially and azimuthally polarized beams,” Opt. Commun. 275, 453–457 (2007).
    [CrossRef]
  16. N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett. 85, 6239–6241 (2004).
    [CrossRef]
  17. C. J. R. Sheppard and A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Appl. Opt. 43, 4322–4327 (2004).
    [CrossRef]
  18. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32, 1468–1470 (2007).
    [CrossRef]
  19. C. J. R. Sheppard, “High-aperture beams,” J. Opt. Soc. Am. A 18, 1579–1587 (2001).
    [CrossRef]
  20. R. Dorn, S. Quabis, and G. Leuchs, “The focus of light-linear polarization breaks the rotational symmetry of the focal spot,” J. Mod. Opt. 50, 1917–1928 (2003).
  21. J. H. McLeod, “The axicon: a new type of optical element,” J. Opt. Soc. Am. 44, 592 (1954).
    [CrossRef]
  22. N. Davidson, A. A. Friesem, and E. Hasman, “Holographic axilens: high resolution and long focal depth,” Opt. Lett. 16, 523–525 (1991).
    [CrossRef]
  23. M. A. Golub, V. Shurman, and I. Grossinger, “Extended focus diffractive optical element for Gaussian laser beams,” Appl. Opt. 45, 144–150 (2006).
    [CrossRef]
  24. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000).
    [CrossRef]
  25. G. H. Yuan, S. B. Wei, and X.-C. Yuan, “Nondiffracting transversally polarized beam,” Opt. Lett. 36, 3479–3481 (2011).
    [CrossRef]
  26. K. B. Rajesh and P. M. Anbarasan, “Generation of sub-wavelength and super-resolution longitudinally polarized non-diffraction beam using lens axicon,” Chin. Opt. Lett. 6, 785–787 (2008).
    [CrossRef]
  27. K. B. Rajesh, Z. Jaroszewicz, and P. M. Anbarasan, “Improvement of lens axicon’s performance for longitudinally polarized beam generation by adding a dedicated phase transmittance,” Opt. Express 18, 26799–26805 (2010).
    [CrossRef]
  28. J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom, “Optically-induced magnetization resulting from the inverse Faraday effect,” Phys. Rev. Lett. 15, 190–193 (1965).
    [CrossRef]
  29. Z. Jaroszewicz and J. Morales, “Lens axicons: systems composed of a diverging aberrated lens and a perfect converging lens,” J. Opt. Soc. Am. A 15, 2383–2390 (1998).
    [CrossRef]

2011 (2)

Q. Q. Zhang, J. G. Wang, M. W. Wang, J. Bu, S. W. Zhu, R. Wang, B. Z. Gao, and X.-C. Yuan, “A modified fractal zone plate with extended depth of focus in spectral domain optical coherence tomography,” J. Opt. 13, 055301 (2011).
[CrossRef]

G. H. Yuan, S. B. Wei, and X.-C. Yuan, “Nondiffracting transversally polarized beam,” Opt. Lett. 36, 3479–3481 (2011).
[CrossRef]

2010 (1)

K. B. Rajesh, Z. Jaroszewicz, and P. M. Anbarasan, “Improvement of lens axicon’s performance for longitudinally polarized beam generation by adding a dedicated phase transmittance,” Opt. Express 18, 26799–26805 (2010).
[CrossRef]

2008 (2)

K. B. Rajesh and P. M. Anbarasan, “Generation of sub-wavelength and super-resolution longitudinally polarized non-diffraction beam using lens axicon,” Chin. Opt. Lett. 6, 785–787 (2008).
[CrossRef]

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501–505 (2008).
[CrossRef]

2007 (3)

L. B. Liu, C. Liu, W. C. Howe, C. J. R. Sheppard, and N. G. Chen, “Binary-phase spatial filter for real-time swept-source optical coherence microscopy,” Opt. Lett. 32, 2375–2377 (2007).
[CrossRef]

E. Y. S. Yew and C. J. R. Sheppard, “Second-harmonic generation polarization microscopy with radially and azimuthally polarized beams,” Opt. Commun. 275, 453–457 (2007).
[CrossRef]

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32, 1468–1470 (2007).
[CrossRef]

2006 (3)

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31, 2450–2452 (2006).
[CrossRef]

H. F. Wang, L. P. Shi, G. Q. Yuan, X. S. Miao, W. L. Tan, and C. T. Chong, “Subwavelength and super-resolution nondiffraction beam,” Appl. Phys. Lett. 89, 171102 (2006).
[CrossRef]

M. A. Golub, V. Shurman, and I. Grossinger, “Extended focus diffractive optical element for Gaussian laser beams,” Appl. Opt. 45, 144–150 (2006).
[CrossRef]

2004 (2)

N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett. 85, 6239–6241 (2004).
[CrossRef]

C. J. R. Sheppard and A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Appl. Opt. 43, 4322–4327 (2004).
[CrossRef]

2003 (4)

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef]

D. P. Biss and T. G. Brown, “Polarization-vortex-driven second-harmonic generation,” Opt. Lett. 28, 923–925(2003).
[CrossRef]

C. C. Sun and C. K. Liu, “Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation,” Opt. Lett. 28, 99–101 (2003).
[CrossRef]

R. Dorn, S. Quabis, and G. Leuchs, “The focus of light-linear polarization breaks the rotational symmetry of the focal spot,” J. Mod. Opt. 50, 1917–1928 (2003).

2001 (2)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[CrossRef]

C. J. R. Sheppard, “High-aperture beams,” J. Opt. Soc. Am. A 18, 1579–1587 (2001).
[CrossRef]

2000 (1)

K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000).
[CrossRef]

1998 (1)

Z. Jaroszewicz and J. Morales, “Lens axicons: systems composed of a diverging aberrated lens and a perfect converging lens,” J. Opt. Soc. Am. A 15, 2383–2390 (1998).
[CrossRef]

1997 (1)

M. Erdelyi, Z. L. Horvath, G. Szabo, Z. Bor, F. K. Tittel, J. R. Cavallaro, and M. C. Smayling, “Generation of diffraction-free beams for applications in optical microlithography,” J. Vac. Sci. Technol. B 15, 287–292 (1997).
[CrossRef]

1995 (1)

J. Rosenzweig, A. Murokh, and C. Pellegrini, “A proposed dielectric-loaded resonant laser accelerator,” Phys. Rev. Lett. 74, 2467–2470 (1995).
[CrossRef]

1991 (1)

N. Davidson, A. A. Friesem, and E. Hasman, “Holographic axilens: high resolution and long focal depth,” Opt. Lett. 16, 523–525 (1991).
[CrossRef]

1990 (2)

R. D. Romea and W. D. Kimura, “Modeling of inverse Čerenkov laser acceleration with axicon laser beam focusing,” Phys. Rev. D 42, 1807–1818 (1990).
[CrossRef]

L. Cicchitelli, H. Hora, and R. Postle, “Longitudinal field components for laser beams in vacuum,” Phys. Rev. A 41, 3727–3732 (1990).
[CrossRef]

1983 (1)

J. R. Fontana and R. H. Pantell, “A high-energy laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys. 54, 4285–4288 (1983).
[CrossRef]

1965 (1)

J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom, “Optically-induced magnetization resulting from the inverse Faraday effect,” Phys. Rev. Lett. 15, 190–193 (1965).
[CrossRef]

1954 (1)

J. H. McLeod, “The axicon: a new type of optical element,” J. Opt. Soc. Am. 44, 592 (1954).
[CrossRef]

Anbarasan, P. M.

K. B. Rajesh, Z. Jaroszewicz, and P. M. Anbarasan, “Improvement of lens axicon’s performance for longitudinally polarized beam generation by adding a dedicated phase transmittance,” Opt. Express 18, 26799–26805 (2010).
[CrossRef]

K. B. Rajesh and P. M. Anbarasan, “Generation of sub-wavelength and super-resolution longitudinally polarized non-diffraction beam using lens axicon,” Chin. Opt. Lett. 6, 785–787 (2008).
[CrossRef]

Bachmann, A. H.

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31, 2450–2452 (2006).
[CrossRef]

Beversluis, M.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef]

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[CrossRef]

Biss, D. P.

D. P. Biss and T. G. Brown, “Polarization-vortex-driven second-harmonic generation,” Opt. Lett. 28, 923–925(2003).
[CrossRef]

Bor, Z.

M. Erdelyi, Z. L. Horvath, G. Szabo, Z. Bor, F. K. Tittel, J. R. Cavallaro, and M. C. Smayling, “Generation of diffraction-free beams for applications in optical microlithography,” J. Vac. Sci. Technol. B 15, 287–292 (1997).
[CrossRef]

Bouhelier, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef]

Brown, T. G.

D. P. Biss and T. G. Brown, “Polarization-vortex-driven second-harmonic generation,” Opt. Lett. 28, 923–925(2003).
[CrossRef]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[CrossRef]

K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000).
[CrossRef]

Bu, J.

Q. Q. Zhang, J. G. Wang, M. W. Wang, J. Bu, S. W. Zhu, R. Wang, B. Z. Gao, and X.-C. Yuan, “A modified fractal zone plate with extended depth of focus in spectral domain optical coherence tomography,” J. Opt. 13, 055301 (2011).
[CrossRef]

Cavallaro, J. R.

M. Erdelyi, Z. L. Horvath, G. Szabo, Z. Bor, F. K. Tittel, J. R. Cavallaro, and M. C. Smayling, “Generation of diffraction-free beams for applications in optical microlithography,” J. Vac. Sci. Technol. B 15, 287–292 (1997).
[CrossRef]

Chen, N. G.

L. B. Liu, C. Liu, W. C. Howe, C. J. R. Sheppard, and N. G. Chen, “Binary-phase spatial filter for real-time swept-source optical coherence microscopy,” Opt. Lett. 32, 2375–2377 (2007).
[CrossRef]

Chong, C. T.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501–505 (2008).
[CrossRef]

H. F. Wang, L. P. Shi, G. Q. Yuan, X. S. Miao, W. L. Tan, and C. T. Chong, “Subwavelength and super-resolution nondiffraction beam,” Appl. Phys. Lett. 89, 171102 (2006).
[CrossRef]

Choudhury, A.

C. J. R. Sheppard and A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Appl. Opt. 43, 4322–4327 (2004).
[CrossRef]

Cicchitelli, L.

L. Cicchitelli, H. Hora, and R. Postle, “Longitudinal field components for laser beams in vacuum,” Phys. Rev. A 41, 3727–3732 (1990).
[CrossRef]

Davidson, N.

N. Davidson, A. A. Friesem, and E. Hasman, “Holographic axilens: high resolution and long focal depth,” Opt. Lett. 16, 523–525 (1991).
[CrossRef]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “The focus of light-linear polarization breaks the rotational symmetry of the focal spot,” J. Mod. Opt. 50, 1917–1928 (2003).

Erdelyi, M.

M. Erdelyi, Z. L. Horvath, G. Szabo, Z. Bor, F. K. Tittel, J. R. Cavallaro, and M. C. Smayling, “Generation of diffraction-free beams for applications in optical microlithography,” J. Vac. Sci. Technol. B 15, 287–292 (1997).
[CrossRef]

Fontana, J. R.

J. R. Fontana and R. H. Pantell, “A high-energy laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys. 54, 4285–4288 (1983).
[CrossRef]

Friesem, A. A.

N. Davidson, A. A. Friesem, and E. Hasman, “Holographic axilens: high resolution and long focal depth,” Opt. Lett. 16, 523–525 (1991).
[CrossRef]

Gao, B. Z.

Q. Q. Zhang, J. G. Wang, M. W. Wang, J. Bu, S. W. Zhu, R. Wang, B. Z. Gao, and X.-C. Yuan, “A modified fractal zone plate with extended depth of focus in spectral domain optical coherence tomography,” J. Opt. 13, 055301 (2011).
[CrossRef]

Golub, M. A.

M. A. Golub, V. Shurman, and I. Grossinger, “Extended focus diffractive optical element for Gaussian laser beams,” Appl. Opt. 45, 144–150 (2006).
[CrossRef]

Grossinger, I.

M. A. Golub, V. Shurman, and I. Grossinger, “Extended focus diffractive optical element for Gaussian laser beams,” Appl. Opt. 45, 144–150 (2006).
[CrossRef]

Hartschuh, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef]

Hasman, E.

N. Davidson, A. A. Friesem, and E. Hasman, “Holographic axilens: high resolution and long focal depth,” Opt. Lett. 16, 523–525 (1991).
[CrossRef]

Hayazawa, N.

N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett. 85, 6239–6241 (2004).
[CrossRef]

Hora, H.

L. Cicchitelli, H. Hora, and R. Postle, “Longitudinal field components for laser beams in vacuum,” Phys. Rev. A 41, 3727–3732 (1990).
[CrossRef]

Horvath, Z. L.

M. Erdelyi, Z. L. Horvath, G. Szabo, Z. Bor, F. K. Tittel, J. R. Cavallaro, and M. C. Smayling, “Generation of diffraction-free beams for applications in optical microlithography,” J. Vac. Sci. Technol. B 15, 287–292 (1997).
[CrossRef]

Howe, W. C.

L. B. Liu, C. Liu, W. C. Howe, C. J. R. Sheppard, and N. G. Chen, “Binary-phase spatial filter for real-time swept-source optical coherence microscopy,” Opt. Lett. 32, 2375–2377 (2007).
[CrossRef]

Jackel, S.

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32, 1468–1470 (2007).
[CrossRef]

Jaroszewicz, Z.

K. B. Rajesh, Z. Jaroszewicz, and P. M. Anbarasan, “Improvement of lens axicon’s performance for longitudinally polarized beam generation by adding a dedicated phase transmittance,” Opt. Express 18, 26799–26805 (2010).
[CrossRef]

Z. Jaroszewicz and J. Morales, “Lens axicons: systems composed of a diverging aberrated lens and a perfect converging lens,” J. Opt. Soc. Am. A 15, 2383–2390 (1998).
[CrossRef]

Kawata, S.

N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett. 85, 6239–6241 (2004).
[CrossRef]

Kimura, W. D.

R. D. Romea and W. D. Kimura, “Modeling of inverse Čerenkov laser acceleration with axicon laser beam focusing,” Phys. Rev. D 42, 1807–1818 (1990).
[CrossRef]

Lasser, T.

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31, 2450–2452 (2006).
[CrossRef]

Leitgeb, R. A.

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31, 2450–2452 (2006).
[CrossRef]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “The focus of light-linear polarization breaks the rotational symmetry of the focal spot,” J. Mod. Opt. 50, 1917–1928 (2003).

Liu, C.

L. B. Liu, C. Liu, W. C. Howe, C. J. R. Sheppard, and N. G. Chen, “Binary-phase spatial filter for real-time swept-source optical coherence microscopy,” Opt. Lett. 32, 2375–2377 (2007).
[CrossRef]

Liu, C. K.

C. C. Sun and C. K. Liu, “Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation,” Opt. Lett. 28, 99–101 (2003).
[CrossRef]

Liu, L. B.

L. B. Liu, C. Liu, W. C. Howe, C. J. R. Sheppard, and N. G. Chen, “Binary-phase spatial filter for real-time swept-source optical coherence microscopy,” Opt. Lett. 32, 2375–2377 (2007).
[CrossRef]

Lukyanchuk, B.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501–505 (2008).
[CrossRef]

Lumer, Y.

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32, 1468–1470 (2007).
[CrossRef]

Machavariani, G.

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32, 1468–1470 (2007).
[CrossRef]

Malmstrom, L. D.

J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom, “Optically-induced magnetization resulting from the inverse Faraday effect,” Phys. Rev. Lett. 15, 190–193 (1965).
[CrossRef]

McLeod, J. H.

J. H. McLeod, “The axicon: a new type of optical element,” J. Opt. Soc. Am. 44, 592 (1954).
[CrossRef]

Meir, A.

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32, 1468–1470 (2007).
[CrossRef]

Miao, X. S.

H. F. Wang, L. P. Shi, G. Q. Yuan, X. S. Miao, W. L. Tan, and C. T. Chong, “Subwavelength and super-resolution nondiffraction beam,” Appl. Phys. Lett. 89, 171102 (2006).
[CrossRef]

Morales, J.

Z. Jaroszewicz and J. Morales, “Lens axicons: systems composed of a diverging aberrated lens and a perfect converging lens,” J. Opt. Soc. Am. A 15, 2383–2390 (1998).
[CrossRef]

Moshe, I.

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32, 1468–1470 (2007).
[CrossRef]

Murokh, A.

J. Rosenzweig, A. Murokh, and C. Pellegrini, “A proposed dielectric-loaded resonant laser accelerator,” Phys. Rev. Lett. 74, 2467–2470 (1995).
[CrossRef]

Novotny, L.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[CrossRef]

Pantell, R. H.

J. R. Fontana and R. H. Pantell, “A high-energy laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys. 54, 4285–4288 (1983).
[CrossRef]

Pellegrini, C.

J. Rosenzweig, A. Murokh, and C. Pellegrini, “A proposed dielectric-loaded resonant laser accelerator,” Phys. Rev. Lett. 74, 2467–2470 (1995).
[CrossRef]

Pershan, P. S.

J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom, “Optically-induced magnetization resulting from the inverse Faraday effect,” Phys. Rev. Lett. 15, 190–193 (1965).
[CrossRef]

Postle, R.

L. Cicchitelli, H. Hora, and R. Postle, “Longitudinal field components for laser beams in vacuum,” Phys. Rev. A 41, 3727–3732 (1990).
[CrossRef]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “The focus of light-linear polarization breaks the rotational symmetry of the focal spot,” J. Mod. Opt. 50, 1917–1928 (2003).

Rajesh, K. B.

K. B. Rajesh, Z. Jaroszewicz, and P. M. Anbarasan, “Improvement of lens axicon’s performance for longitudinally polarized beam generation by adding a dedicated phase transmittance,” Opt. Express 18, 26799–26805 (2010).
[CrossRef]

K. B. Rajesh and P. M. Anbarasan, “Generation of sub-wavelength and super-resolution longitudinally polarized non-diffraction beam using lens axicon,” Chin. Opt. Lett. 6, 785–787 (2008).
[CrossRef]

Romea, R. D.

R. D. Romea and W. D. Kimura, “Modeling of inverse Čerenkov laser acceleration with axicon laser beam focusing,” Phys. Rev. D 42, 1807–1818 (1990).
[CrossRef]

Rosenzweig, J.

J. Rosenzweig, A. Murokh, and C. Pellegrini, “A proposed dielectric-loaded resonant laser accelerator,” Phys. Rev. Lett. 74, 2467–2470 (1995).
[CrossRef]

Saito, Y.

N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett. 85, 6239–6241 (2004).
[CrossRef]

Sheppard, C.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501–505 (2008).
[CrossRef]

Sheppard, C. J. R.

L. B. Liu, C. Liu, W. C. Howe, C. J. R. Sheppard, and N. G. Chen, “Binary-phase spatial filter for real-time swept-source optical coherence microscopy,” Opt. Lett. 32, 2375–2377 (2007).
[CrossRef]

E. Y. S. Yew and C. J. R. Sheppard, “Second-harmonic generation polarization microscopy with radially and azimuthally polarized beams,” Opt. Commun. 275, 453–457 (2007).
[CrossRef]

C. J. R. Sheppard and A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Appl. Opt. 43, 4322–4327 (2004).
[CrossRef]

C. J. R. Sheppard, “High-aperture beams,” J. Opt. Soc. Am. A 18, 1579–1587 (2001).
[CrossRef]

Shi, L. P.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501–505 (2008).
[CrossRef]

H. F. Wang, L. P. Shi, G. Q. Yuan, X. S. Miao, W. L. Tan, and C. T. Chong, “Subwavelength and super-resolution nondiffraction beam,” Appl. Phys. Lett. 89, 171102 (2006).
[CrossRef]

Shurman, V.

M. A. Golub, V. Shurman, and I. Grossinger, “Extended focus diffractive optical element for Gaussian laser beams,” Appl. Opt. 45, 144–150 (2006).
[CrossRef]

Smayling, M. C.

M. Erdelyi, Z. L. Horvath, G. Szabo, Z. Bor, F. K. Tittel, J. R. Cavallaro, and M. C. Smayling, “Generation of diffraction-free beams for applications in optical microlithography,” J. Vac. Sci. Technol. B 15, 287–292 (1997).
[CrossRef]

Steinmann, L.

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31, 2450–2452 (2006).
[CrossRef]

Sun, C. C.

C. C. Sun and C. K. Liu, “Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation,” Opt. Lett. 28, 99–101 (2003).
[CrossRef]

Szabo, G.

M. Erdelyi, Z. L. Horvath, G. Szabo, Z. Bor, F. K. Tittel, J. R. Cavallaro, and M. C. Smayling, “Generation of diffraction-free beams for applications in optical microlithography,” J. Vac. Sci. Technol. B 15, 287–292 (1997).
[CrossRef]

Tan, W. L.

H. F. Wang, L. P. Shi, G. Q. Yuan, X. S. Miao, W. L. Tan, and C. T. Chong, “Subwavelength and super-resolution nondiffraction beam,” Appl. Phys. Lett. 89, 171102 (2006).
[CrossRef]

Tittel, F. K.

M. Erdelyi, Z. L. Horvath, G. Szabo, Z. Bor, F. K. Tittel, J. R. Cavallaro, and M. C. Smayling, “Generation of diffraction-free beams for applications in optical microlithography,” J. Vac. Sci. Technol. B 15, 287–292 (1997).
[CrossRef]

van der Ziel, J. P.

J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom, “Optically-induced magnetization resulting from the inverse Faraday effect,” Phys. Rev. Lett. 15, 190–193 (1965).
[CrossRef]

Villiger, M.

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31, 2450–2452 (2006).
[CrossRef]

Wang, H. F.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501–505 (2008).
[CrossRef]

H. F. Wang, L. P. Shi, G. Q. Yuan, X. S. Miao, W. L. Tan, and C. T. Chong, “Subwavelength and super-resolution nondiffraction beam,” Appl. Phys. Lett. 89, 171102 (2006).
[CrossRef]

Wang, J. G.

Q. Q. Zhang, J. G. Wang, M. W. Wang, J. Bu, S. W. Zhu, R. Wang, B. Z. Gao, and X.-C. Yuan, “A modified fractal zone plate with extended depth of focus in spectral domain optical coherence tomography,” J. Opt. 13, 055301 (2011).
[CrossRef]

Wang, M. W.

Q. Q. Zhang, J. G. Wang, M. W. Wang, J. Bu, S. W. Zhu, R. Wang, B. Z. Gao, and X.-C. Yuan, “A modified fractal zone plate with extended depth of focus in spectral domain optical coherence tomography,” J. Opt. 13, 055301 (2011).
[CrossRef]

Wang, R.

Q. Q. Zhang, J. G. Wang, M. W. Wang, J. Bu, S. W. Zhu, R. Wang, B. Z. Gao, and X.-C. Yuan, “A modified fractal zone plate with extended depth of focus in spectral domain optical coherence tomography,” J. Opt. 13, 055301 (2011).
[CrossRef]

Wei, S. B.

G. H. Yuan, S. B. Wei, and X.-C. Yuan, “Nondiffracting transversally polarized beam,” Opt. Lett. 36, 3479–3481 (2011).
[CrossRef]

Yew, E. Y. S.

E. Y. S. Yew and C. J. R. Sheppard, “Second-harmonic generation polarization microscopy with radially and azimuthally polarized beams,” Opt. Commun. 275, 453–457 (2007).
[CrossRef]

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[CrossRef]

K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000).
[CrossRef]

Yuan, G. H.

G. H. Yuan, S. B. Wei, and X.-C. Yuan, “Nondiffracting transversally polarized beam,” Opt. Lett. 36, 3479–3481 (2011).
[CrossRef]

Yuan, G. Q.

H. F. Wang, L. P. Shi, G. Q. Yuan, X. S. Miao, W. L. Tan, and C. T. Chong, “Subwavelength and super-resolution nondiffraction beam,” Appl. Phys. Lett. 89, 171102 (2006).
[CrossRef]

Yuan, X.-C.

Q. Q. Zhang, J. G. Wang, M. W. Wang, J. Bu, S. W. Zhu, R. Wang, B. Z. Gao, and X.-C. Yuan, “A modified fractal zone plate with extended depth of focus in spectral domain optical coherence tomography,” J. Opt. 13, 055301 (2011).
[CrossRef]

G. H. Yuan, S. B. Wei, and X.-C. Yuan, “Nondiffracting transversally polarized beam,” Opt. Lett. 36, 3479–3481 (2011).
[CrossRef]

Zhang, Q. Q.

Q. Q. Zhang, J. G. Wang, M. W. Wang, J. Bu, S. W. Zhu, R. Wang, B. Z. Gao, and X.-C. Yuan, “A modified fractal zone plate with extended depth of focus in spectral domain optical coherence tomography,” J. Opt. 13, 055301 (2011).
[CrossRef]

Zhu, S. W.

Q. Q. Zhang, J. G. Wang, M. W. Wang, J. Bu, S. W. Zhu, R. Wang, B. Z. Gao, and X.-C. Yuan, “A modified fractal zone plate with extended depth of focus in spectral domain optical coherence tomography,” J. Opt. 13, 055301 (2011).
[CrossRef]

Appl. Opt. (2)

C. J. R. Sheppard and A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Appl. Opt. 43, 4322–4327 (2004).
[CrossRef]

M. A. Golub, V. Shurman, and I. Grossinger, “Extended focus diffractive optical element for Gaussian laser beams,” Appl. Opt. 45, 144–150 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett. 85, 6239–6241 (2004).
[CrossRef]

H. F. Wang, L. P. Shi, G. Q. Yuan, X. S. Miao, W. L. Tan, and C. T. Chong, “Subwavelength and super-resolution nondiffraction beam,” Appl. Phys. Lett. 89, 171102 (2006).
[CrossRef]

Chin. Opt. Lett. (1)

K. B. Rajesh and P. M. Anbarasan, “Generation of sub-wavelength and super-resolution longitudinally polarized non-diffraction beam using lens axicon,” Chin. Opt. Lett. 6, 785–787 (2008).
[CrossRef]

J. Appl. Phys. (1)

J. R. Fontana and R. H. Pantell, “A high-energy laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys. 54, 4285–4288 (1983).
[CrossRef]

J. Mod. Opt. (1)

R. Dorn, S. Quabis, and G. Leuchs, “The focus of light-linear polarization breaks the rotational symmetry of the focal spot,” J. Mod. Opt. 50, 1917–1928 (2003).

J. Opt. (1)

Q. Q. Zhang, J. G. Wang, M. W. Wang, J. Bu, S. W. Zhu, R. Wang, B. Z. Gao, and X.-C. Yuan, “A modified fractal zone plate with extended depth of focus in spectral domain optical coherence tomography,” J. Opt. 13, 055301 (2011).
[CrossRef]

J. Opt. Soc. Am. (1)

J. H. McLeod, “The axicon: a new type of optical element,” J. Opt. Soc. Am. 44, 592 (1954).
[CrossRef]

J. Opt. Soc. Am. A (2)

C. J. R. Sheppard, “High-aperture beams,” J. Opt. Soc. Am. A 18, 1579–1587 (2001).
[CrossRef]

Z. Jaroszewicz and J. Morales, “Lens axicons: systems composed of a diverging aberrated lens and a perfect converging lens,” J. Opt. Soc. Am. A 15, 2383–2390 (1998).
[CrossRef]

J. Vac. Sci. Technol. B (1)

M. Erdelyi, Z. L. Horvath, G. Szabo, Z. Bor, F. K. Tittel, J. R. Cavallaro, and M. C. Smayling, “Generation of diffraction-free beams for applications in optical microlithography,” J. Vac. Sci. Technol. B 15, 287–292 (1997).
[CrossRef]

Nat. Photonics (1)

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501–505 (2008).
[CrossRef]

Opt. Commun. (1)

E. Y. S. Yew and C. J. R. Sheppard, “Second-harmonic generation polarization microscopy with radially and azimuthally polarized beams,” Opt. Commun. 275, 453–457 (2007).
[CrossRef]

Opt. Express (2)

K. B. Rajesh, Z. Jaroszewicz, and P. M. Anbarasan, “Improvement of lens axicon’s performance for longitudinally polarized beam generation by adding a dedicated phase transmittance,” Opt. Express 18, 26799–26805 (2010).
[CrossRef]

K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000).
[CrossRef]

Opt. Lett. (7)

G. H. Yuan, S. B. Wei, and X.-C. Yuan, “Nondiffracting transversally polarized beam,” Opt. Lett. 36, 3479–3481 (2011).
[CrossRef]

N. Davidson, A. A. Friesem, and E. Hasman, “Holographic axilens: high resolution and long focal depth,” Opt. Lett. 16, 523–525 (1991).
[CrossRef]

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32, 1468–1470 (2007).
[CrossRef]

D. P. Biss and T. G. Brown, “Polarization-vortex-driven second-harmonic generation,” Opt. Lett. 28, 923–925(2003).
[CrossRef]

L. B. Liu, C. Liu, W. C. Howe, C. J. R. Sheppard, and N. G. Chen, “Binary-phase spatial filter for real-time swept-source optical coherence microscopy,” Opt. Lett. 32, 2375–2377 (2007).
[CrossRef]

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31, 2450–2452 (2006).
[CrossRef]

C. C. Sun and C. K. Liu, “Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation,” Opt. Lett. 28, 99–101 (2003).
[CrossRef]

Phys. Rev. A (1)

L. Cicchitelli, H. Hora, and R. Postle, “Longitudinal field components for laser beams in vacuum,” Phys. Rev. A 41, 3727–3732 (1990).
[CrossRef]

Phys. Rev. D (1)

R. D. Romea and W. D. Kimura, “Modeling of inverse Čerenkov laser acceleration with axicon laser beam focusing,” Phys. Rev. D 42, 1807–1818 (1990).
[CrossRef]

Phys. Rev. Lett. (4)

J. Rosenzweig, A. Murokh, and C. Pellegrini, “A proposed dielectric-loaded resonant laser accelerator,” Phys. Rev. Lett. 74, 2467–2470 (1995).
[CrossRef]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[CrossRef]

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef]

J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom, “Optically-induced magnetization resulting from the inverse Faraday effect,” Phys. Rev. Lett. 15, 190–193 (1965).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics