Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Very low resistance ZnS/Ag/ZnS/Ag/ZnS nano-multilayer anode for organic light emitting diodes applications

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, design and simulation of conductive nanometric multilayer systems are discussed and optimum thickness of Ag and ZnS layers are calculated to reach simultaneously to high transmittance and low sheet resistance. The conductive transparent ZnS/Ag/ZnS/Ag/ZnS (ZAZAZ) nanometric multilayer systems are deposited on glass substrates at room temperature by a thermal evaporation method. The electrical, optical, and structural properties of these multilayers, such as sheet resistance, optical transmittance, and the root-mean-square surface roughness are obtained. High quality nanometric multilayer systems with sheet resistance of 2.7Ω/sq and the optical transmittance of 75.5% are obtained for the ZAZAZ system. Organic light emitting diodes (OLEDs) were fabricated and tested on the ZAZAZ anode. The ZAZAZ multilayer anode based OLED shows the performance comparable to that of the indium-tin oxide anode based OLED.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Flexible bottom-emitting white organic light-emitting diodes with semitransparent Ni/Ag/Ni anode

Ja-Ryong Koo, Seok Jae Lee, Ho Won Lee, Dong Hyung Lee, Hyung Jin Yang, Woo Young Kim, and Young Kwan Kim
Opt. Express 21(9) 11086-11094 (2013)

Highly transparent organic light-emitting diodes with a metallic top electrode: the dual role of a Cs2CO3 layer

Hyunsu Cho, Jung-Min Choi, and Seunghyup Yoo
Opt. Express 19(2) 1113-1121 (2011)

Multilayer transparent electrode for organic light-emitting diodes: tuning its optical characteristics

Hyunsu Cho, Changhun Yun, and Seunghyup Yoo
Opt. Express 18(4) 3404-3414 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved