Abstract

Tapered optical fibers (TOFs) modified by 400 nm-diameter silica nanospheres have been experimentally and theoretically investigated. Responses of the modified TOFs (MTOFs) to methylene blue (MB) solution and surrounding refractive index (RI) have been compared. The higher-order modes are effectively filtered by the silica nanospheres, which is visualized by the interferometric output spectrum of the MTOF. The higher-order mode filtering makes the MTOF respond to MB solution with reduced sensitivity, which endows the MTOF with the potential for distinguishing the RI property from the absorption property of the molecules under detection.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S.-F. Cheng and L.-K. Chau, “Colloidal gold-modified optical fiber for chemical and biochemical sensing,” Anal. Chem. 75, 16–21 (2003).
    [CrossRef]
  2. J. M. Corres, I. R. Matias, M. Hernaez, J. Bravo, and F. J. Arregui, “Optical fiber humidity sensors using nanostructured coatings of SiO2 nanoparticles,” IEEE Sens. J. 8, 281–285 (2008).
    [CrossRef]
  3. S. Korposh, S. W. James, S.-W. Lee, S. Topliss, S. C. Cheung, W. J. Batty, and R. P. Tatam, “Fiber optic long period grating sensors with a nanoassembled mesoporous film of SiO2nanoparticles,” Opt. Express 18, 13227 –13238 (2010).
    [CrossRef]
  4. D. Monzón-Hernández, D. Luna-Moreno, D. M. Escobar, and J. Villatoro, “Optical microfibers decorated with PdAu nanoparticles for fast hydrogen sensing,” Sens. Actuators B 151, 219–222 (2010).
    [CrossRef]
  5. Y.-H. Su, Y.-F. Ke, S.-L. Cai, and Q.-Y. Yao, “Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell,” Light Sci. Appl. 1, e14 (2012).
    [CrossRef]
  6. G. Liu, Y. Wu, K. Li, P. Hao, P. Zhang, and M. Xuan, “Mie scattering-enhanced fiber-optic refractometer,” IEEE Photonics Technol. Lett. 24, 658–660 (2012).
    [CrossRef]
  7. D. Donlagic, “In-line higher order mode filters based on long highly uniform fiber tapers,” J. Lightwave Technol. 24, 3532–3539 (2006).
    [CrossRef]
  8. Y. Jung, G. Brambilla, and D. J. Richardson, “Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter,” Opt. Express 16, 14661–14667 (2008).
    [CrossRef]
  9. S. Moon and D. Y. Kim, “Effective single-mode transmission at wavelengths shorter than the cutoff wavelength of an optical fiber,” IEEE Photonics Technol. Lett. 17, 2604–2606 (2005).
    [CrossRef]
  10. Y. Wu, X. Deng, F. Li, and X. Zhuang, “Less-mode optic fiber evanescent wave absorbing sensor: parameter design for high sensitivity liquid detection,” Sens. Actuators B 122, 127–133 (2007).
    [CrossRef]
  11. W. Stöber and A. Fink, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26, 62–69 (1968).
    [CrossRef]
  12. T. Cass and F. S. Ligler, Immobilized Biomolecules in Analysis: A Practical Approach (Oxford University, 1999).
  13. A. W. Snyder and J. D. Love, Optical Waveguide Theory, (Chapman & Hall, 1983).
  14. P. M. Shankar, L. C. Bobb, and H. D. Krumboltz, “Coupling of modes in bent biconically tapered single-mode fibers,” J. Lightwave Technol. 9, 832–837 (1991).
    [CrossRef]
  15. S. Lacroix, R. Bourbonnais, F. Gonthier, and J. Bures, “Tapered monomode optical fibers: understanding large power transfer,” Appl. Opt. 25, 4421–4425 (1986).
    [CrossRef]
  16. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  17. B. N. Khlebtsov, V. A. Khanadeev, and N. G. Khlebtsov, “Determination of the size, concentration, and refractive index of silica nanoparticles from turbidity spectra,” Langmuir 24, 8964–8970 (2008).
    [CrossRef]

2012

Y.-H. Su, Y.-F. Ke, S.-L. Cai, and Q.-Y. Yao, “Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell,” Light Sci. Appl. 1, e14 (2012).
[CrossRef]

G. Liu, Y. Wu, K. Li, P. Hao, P. Zhang, and M. Xuan, “Mie scattering-enhanced fiber-optic refractometer,” IEEE Photonics Technol. Lett. 24, 658–660 (2012).
[CrossRef]

2010

S. Korposh, S. W. James, S.-W. Lee, S. Topliss, S. C. Cheung, W. J. Batty, and R. P. Tatam, “Fiber optic long period grating sensors with a nanoassembled mesoporous film of SiO2nanoparticles,” Opt. Express 18, 13227 –13238 (2010).
[CrossRef]

D. Monzón-Hernández, D. Luna-Moreno, D. M. Escobar, and J. Villatoro, “Optical microfibers decorated with PdAu nanoparticles for fast hydrogen sensing,” Sens. Actuators B 151, 219–222 (2010).
[CrossRef]

2008

J. M. Corres, I. R. Matias, M. Hernaez, J. Bravo, and F. J. Arregui, “Optical fiber humidity sensors using nanostructured coatings of SiO2 nanoparticles,” IEEE Sens. J. 8, 281–285 (2008).
[CrossRef]

Y. Jung, G. Brambilla, and D. J. Richardson, “Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter,” Opt. Express 16, 14661–14667 (2008).
[CrossRef]

B. N. Khlebtsov, V. A. Khanadeev, and N. G. Khlebtsov, “Determination of the size, concentration, and refractive index of silica nanoparticles from turbidity spectra,” Langmuir 24, 8964–8970 (2008).
[CrossRef]

2007

Y. Wu, X. Deng, F. Li, and X. Zhuang, “Less-mode optic fiber evanescent wave absorbing sensor: parameter design for high sensitivity liquid detection,” Sens. Actuators B 122, 127–133 (2007).
[CrossRef]

2006

D. Donlagic, “In-line higher order mode filters based on long highly uniform fiber tapers,” J. Lightwave Technol. 24, 3532–3539 (2006).
[CrossRef]

2005

S. Moon and D. Y. Kim, “Effective single-mode transmission at wavelengths shorter than the cutoff wavelength of an optical fiber,” IEEE Photonics Technol. Lett. 17, 2604–2606 (2005).
[CrossRef]

2003

S.-F. Cheng and L.-K. Chau, “Colloidal gold-modified optical fiber for chemical and biochemical sensing,” Anal. Chem. 75, 16–21 (2003).
[CrossRef]

1991

P. M. Shankar, L. C. Bobb, and H. D. Krumboltz, “Coupling of modes in bent biconically tapered single-mode fibers,” J. Lightwave Technol. 9, 832–837 (1991).
[CrossRef]

1986

S. Lacroix, R. Bourbonnais, F. Gonthier, and J. Bures, “Tapered monomode optical fibers: understanding large power transfer,” Appl. Opt. 25, 4421–4425 (1986).
[CrossRef]

1968

W. Stöber and A. Fink, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26, 62–69 (1968).
[CrossRef]

Arregui, F. J.

J. M. Corres, I. R. Matias, M. Hernaez, J. Bravo, and F. J. Arregui, “Optical fiber humidity sensors using nanostructured coatings of SiO2 nanoparticles,” IEEE Sens. J. 8, 281–285 (2008).
[CrossRef]

Batty, W. J.

S. Korposh, S. W. James, S.-W. Lee, S. Topliss, S. C. Cheung, W. J. Batty, and R. P. Tatam, “Fiber optic long period grating sensors with a nanoassembled mesoporous film of SiO2nanoparticles,” Opt. Express 18, 13227 –13238 (2010).
[CrossRef]

Bobb, L. C.

P. M. Shankar, L. C. Bobb, and H. D. Krumboltz, “Coupling of modes in bent biconically tapered single-mode fibers,” J. Lightwave Technol. 9, 832–837 (1991).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Bourbonnais, R.

S. Lacroix, R. Bourbonnais, F. Gonthier, and J. Bures, “Tapered monomode optical fibers: understanding large power transfer,” Appl. Opt. 25, 4421–4425 (1986).
[CrossRef]

Brambilla, G.

Y. Jung, G. Brambilla, and D. J. Richardson, “Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter,” Opt. Express 16, 14661–14667 (2008).
[CrossRef]

Bravo, J.

J. M. Corres, I. R. Matias, M. Hernaez, J. Bravo, and F. J. Arregui, “Optical fiber humidity sensors using nanostructured coatings of SiO2 nanoparticles,” IEEE Sens. J. 8, 281–285 (2008).
[CrossRef]

Bures, J.

S. Lacroix, R. Bourbonnais, F. Gonthier, and J. Bures, “Tapered monomode optical fibers: understanding large power transfer,” Appl. Opt. 25, 4421–4425 (1986).
[CrossRef]

Cai, S.-L.

Y.-H. Su, Y.-F. Ke, S.-L. Cai, and Q.-Y. Yao, “Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell,” Light Sci. Appl. 1, e14 (2012).
[CrossRef]

Cass, T.

T. Cass and F. S. Ligler, Immobilized Biomolecules in Analysis: A Practical Approach (Oxford University, 1999).

Chau, L.-K.

S.-F. Cheng and L.-K. Chau, “Colloidal gold-modified optical fiber for chemical and biochemical sensing,” Anal. Chem. 75, 16–21 (2003).
[CrossRef]

Cheng, S.-F.

S.-F. Cheng and L.-K. Chau, “Colloidal gold-modified optical fiber for chemical and biochemical sensing,” Anal. Chem. 75, 16–21 (2003).
[CrossRef]

Cheung, S. C.

S. Korposh, S. W. James, S.-W. Lee, S. Topliss, S. C. Cheung, W. J. Batty, and R. P. Tatam, “Fiber optic long period grating sensors with a nanoassembled mesoporous film of SiO2nanoparticles,” Opt. Express 18, 13227 –13238 (2010).
[CrossRef]

Corres, J. M.

J. M. Corres, I. R. Matias, M. Hernaez, J. Bravo, and F. J. Arregui, “Optical fiber humidity sensors using nanostructured coatings of SiO2 nanoparticles,” IEEE Sens. J. 8, 281–285 (2008).
[CrossRef]

Deng, X.

Y. Wu, X. Deng, F. Li, and X. Zhuang, “Less-mode optic fiber evanescent wave absorbing sensor: parameter design for high sensitivity liquid detection,” Sens. Actuators B 122, 127–133 (2007).
[CrossRef]

Donlagic, D.

D. Donlagic, “In-line higher order mode filters based on long highly uniform fiber tapers,” J. Lightwave Technol. 24, 3532–3539 (2006).
[CrossRef]

Escobar, D. M.

D. Monzón-Hernández, D. Luna-Moreno, D. M. Escobar, and J. Villatoro, “Optical microfibers decorated with PdAu nanoparticles for fast hydrogen sensing,” Sens. Actuators B 151, 219–222 (2010).
[CrossRef]

Fink, A.

W. Stöber and A. Fink, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26, 62–69 (1968).
[CrossRef]

Gonthier, F.

S. Lacroix, R. Bourbonnais, F. Gonthier, and J. Bures, “Tapered monomode optical fibers: understanding large power transfer,” Appl. Opt. 25, 4421–4425 (1986).
[CrossRef]

Hao, P.

G. Liu, Y. Wu, K. Li, P. Hao, P. Zhang, and M. Xuan, “Mie scattering-enhanced fiber-optic refractometer,” IEEE Photonics Technol. Lett. 24, 658–660 (2012).
[CrossRef]

Hernaez, M.

J. M. Corres, I. R. Matias, M. Hernaez, J. Bravo, and F. J. Arregui, “Optical fiber humidity sensors using nanostructured coatings of SiO2 nanoparticles,” IEEE Sens. J. 8, 281–285 (2008).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

James, S. W.

S. Korposh, S. W. James, S.-W. Lee, S. Topliss, S. C. Cheung, W. J. Batty, and R. P. Tatam, “Fiber optic long period grating sensors with a nanoassembled mesoporous film of SiO2nanoparticles,” Opt. Express 18, 13227 –13238 (2010).
[CrossRef]

Jung, Y.

Y. Jung, G. Brambilla, and D. J. Richardson, “Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter,” Opt. Express 16, 14661–14667 (2008).
[CrossRef]

Ke, Y.-F.

Y.-H. Su, Y.-F. Ke, S.-L. Cai, and Q.-Y. Yao, “Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell,” Light Sci. Appl. 1, e14 (2012).
[CrossRef]

Khanadeev, V. A.

B. N. Khlebtsov, V. A. Khanadeev, and N. G. Khlebtsov, “Determination of the size, concentration, and refractive index of silica nanoparticles from turbidity spectra,” Langmuir 24, 8964–8970 (2008).
[CrossRef]

Khlebtsov, B. N.

B. N. Khlebtsov, V. A. Khanadeev, and N. G. Khlebtsov, “Determination of the size, concentration, and refractive index of silica nanoparticles from turbidity spectra,” Langmuir 24, 8964–8970 (2008).
[CrossRef]

Khlebtsov, N. G.

B. N. Khlebtsov, V. A. Khanadeev, and N. G. Khlebtsov, “Determination of the size, concentration, and refractive index of silica nanoparticles from turbidity spectra,” Langmuir 24, 8964–8970 (2008).
[CrossRef]

Kim, D. Y.

S. Moon and D. Y. Kim, “Effective single-mode transmission at wavelengths shorter than the cutoff wavelength of an optical fiber,” IEEE Photonics Technol. Lett. 17, 2604–2606 (2005).
[CrossRef]

Korposh, S.

S. Korposh, S. W. James, S.-W. Lee, S. Topliss, S. C. Cheung, W. J. Batty, and R. P. Tatam, “Fiber optic long period grating sensors with a nanoassembled mesoporous film of SiO2nanoparticles,” Opt. Express 18, 13227 –13238 (2010).
[CrossRef]

Krumboltz, H. D.

P. M. Shankar, L. C. Bobb, and H. D. Krumboltz, “Coupling of modes in bent biconically tapered single-mode fibers,” J. Lightwave Technol. 9, 832–837 (1991).
[CrossRef]

Lacroix, S.

S. Lacroix, R. Bourbonnais, F. Gonthier, and J. Bures, “Tapered monomode optical fibers: understanding large power transfer,” Appl. Opt. 25, 4421–4425 (1986).
[CrossRef]

Lee, S.-W.

S. Korposh, S. W. James, S.-W. Lee, S. Topliss, S. C. Cheung, W. J. Batty, and R. P. Tatam, “Fiber optic long period grating sensors with a nanoassembled mesoporous film of SiO2nanoparticles,” Opt. Express 18, 13227 –13238 (2010).
[CrossRef]

Li, F.

Y. Wu, X. Deng, F. Li, and X. Zhuang, “Less-mode optic fiber evanescent wave absorbing sensor: parameter design for high sensitivity liquid detection,” Sens. Actuators B 122, 127–133 (2007).
[CrossRef]

Li, K.

G. Liu, Y. Wu, K. Li, P. Hao, P. Zhang, and M. Xuan, “Mie scattering-enhanced fiber-optic refractometer,” IEEE Photonics Technol. Lett. 24, 658–660 (2012).
[CrossRef]

Ligler, F. S.

T. Cass and F. S. Ligler, Immobilized Biomolecules in Analysis: A Practical Approach (Oxford University, 1999).

Liu, G.

G. Liu, Y. Wu, K. Li, P. Hao, P. Zhang, and M. Xuan, “Mie scattering-enhanced fiber-optic refractometer,” IEEE Photonics Technol. Lett. 24, 658–660 (2012).
[CrossRef]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory, (Chapman & Hall, 1983).

Luna-Moreno, D.

D. Monzón-Hernández, D. Luna-Moreno, D. M. Escobar, and J. Villatoro, “Optical microfibers decorated with PdAu nanoparticles for fast hydrogen sensing,” Sens. Actuators B 151, 219–222 (2010).
[CrossRef]

Matias, I. R.

J. M. Corres, I. R. Matias, M. Hernaez, J. Bravo, and F. J. Arregui, “Optical fiber humidity sensors using nanostructured coatings of SiO2 nanoparticles,” IEEE Sens. J. 8, 281–285 (2008).
[CrossRef]

Monzón-Hernández, D.

D. Monzón-Hernández, D. Luna-Moreno, D. M. Escobar, and J. Villatoro, “Optical microfibers decorated with PdAu nanoparticles for fast hydrogen sensing,” Sens. Actuators B 151, 219–222 (2010).
[CrossRef]

Moon, S.

S. Moon and D. Y. Kim, “Effective single-mode transmission at wavelengths shorter than the cutoff wavelength of an optical fiber,” IEEE Photonics Technol. Lett. 17, 2604–2606 (2005).
[CrossRef]

Richardson, D. J.

Y. Jung, G. Brambilla, and D. J. Richardson, “Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter,” Opt. Express 16, 14661–14667 (2008).
[CrossRef]

Shankar, P. M.

P. M. Shankar, L. C. Bobb, and H. D. Krumboltz, “Coupling of modes in bent biconically tapered single-mode fibers,” J. Lightwave Technol. 9, 832–837 (1991).
[CrossRef]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory, (Chapman & Hall, 1983).

Stöber, W.

W. Stöber and A. Fink, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26, 62–69 (1968).
[CrossRef]

Su, Y.-H.

Y.-H. Su, Y.-F. Ke, S.-L. Cai, and Q.-Y. Yao, “Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell,” Light Sci. Appl. 1, e14 (2012).
[CrossRef]

Tatam, R. P.

S. Korposh, S. W. James, S.-W. Lee, S. Topliss, S. C. Cheung, W. J. Batty, and R. P. Tatam, “Fiber optic long period grating sensors with a nanoassembled mesoporous film of SiO2nanoparticles,” Opt. Express 18, 13227 –13238 (2010).
[CrossRef]

Topliss, S.

S. Korposh, S. W. James, S.-W. Lee, S. Topliss, S. C. Cheung, W. J. Batty, and R. P. Tatam, “Fiber optic long period grating sensors with a nanoassembled mesoporous film of SiO2nanoparticles,” Opt. Express 18, 13227 –13238 (2010).
[CrossRef]

Villatoro, J.

D. Monzón-Hernández, D. Luna-Moreno, D. M. Escobar, and J. Villatoro, “Optical microfibers decorated with PdAu nanoparticles for fast hydrogen sensing,” Sens. Actuators B 151, 219–222 (2010).
[CrossRef]

Wu, Y.

G. Liu, Y. Wu, K. Li, P. Hao, P. Zhang, and M. Xuan, “Mie scattering-enhanced fiber-optic refractometer,” IEEE Photonics Technol. Lett. 24, 658–660 (2012).
[CrossRef]

Y. Wu, X. Deng, F. Li, and X. Zhuang, “Less-mode optic fiber evanescent wave absorbing sensor: parameter design for high sensitivity liquid detection,” Sens. Actuators B 122, 127–133 (2007).
[CrossRef]

Xuan, M.

G. Liu, Y. Wu, K. Li, P. Hao, P. Zhang, and M. Xuan, “Mie scattering-enhanced fiber-optic refractometer,” IEEE Photonics Technol. Lett. 24, 658–660 (2012).
[CrossRef]

Yao, Q.-Y.

Y.-H. Su, Y.-F. Ke, S.-L. Cai, and Q.-Y. Yao, “Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell,” Light Sci. Appl. 1, e14 (2012).
[CrossRef]

Zhang, P.

G. Liu, Y. Wu, K. Li, P. Hao, P. Zhang, and M. Xuan, “Mie scattering-enhanced fiber-optic refractometer,” IEEE Photonics Technol. Lett. 24, 658–660 (2012).
[CrossRef]

Zhuang, X.

Y. Wu, X. Deng, F. Li, and X. Zhuang, “Less-mode optic fiber evanescent wave absorbing sensor: parameter design for high sensitivity liquid detection,” Sens. Actuators B 122, 127–133 (2007).
[CrossRef]

Anal. Chem.

S.-F. Cheng and L.-K. Chau, “Colloidal gold-modified optical fiber for chemical and biochemical sensing,” Anal. Chem. 75, 16–21 (2003).
[CrossRef]

Appl. Opt.

S. Lacroix, R. Bourbonnais, F. Gonthier, and J. Bures, “Tapered monomode optical fibers: understanding large power transfer,” Appl. Opt. 25, 4421–4425 (1986).
[CrossRef]

IEEE Photonics Technol. Lett.

G. Liu, Y. Wu, K. Li, P. Hao, P. Zhang, and M. Xuan, “Mie scattering-enhanced fiber-optic refractometer,” IEEE Photonics Technol. Lett. 24, 658–660 (2012).
[CrossRef]

S. Moon and D. Y. Kim, “Effective single-mode transmission at wavelengths shorter than the cutoff wavelength of an optical fiber,” IEEE Photonics Technol. Lett. 17, 2604–2606 (2005).
[CrossRef]

IEEE Sens. J.

J. M. Corres, I. R. Matias, M. Hernaez, J. Bravo, and F. J. Arregui, “Optical fiber humidity sensors using nanostructured coatings of SiO2 nanoparticles,” IEEE Sens. J. 8, 281–285 (2008).
[CrossRef]

J. Colloid Interface Sci.

W. Stöber and A. Fink, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26, 62–69 (1968).
[CrossRef]

J. Lightwave Technol.

P. M. Shankar, L. C. Bobb, and H. D. Krumboltz, “Coupling of modes in bent biconically tapered single-mode fibers,” J. Lightwave Technol. 9, 832–837 (1991).
[CrossRef]

D. Donlagic, “In-line higher order mode filters based on long highly uniform fiber tapers,” J. Lightwave Technol. 24, 3532–3539 (2006).
[CrossRef]

Langmuir

B. N. Khlebtsov, V. A. Khanadeev, and N. G. Khlebtsov, “Determination of the size, concentration, and refractive index of silica nanoparticles from turbidity spectra,” Langmuir 24, 8964–8970 (2008).
[CrossRef]

Light Sci. Appl.

Y.-H. Su, Y.-F. Ke, S.-L. Cai, and Q.-Y. Yao, “Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell,” Light Sci. Appl. 1, e14 (2012).
[CrossRef]

Opt. Express

Y. Jung, G. Brambilla, and D. J. Richardson, “Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter,” Opt. Express 16, 14661–14667 (2008).
[CrossRef]

S. Korposh, S. W. James, S.-W. Lee, S. Topliss, S. C. Cheung, W. J. Batty, and R. P. Tatam, “Fiber optic long period grating sensors with a nanoassembled mesoporous film of SiO2nanoparticles,” Opt. Express 18, 13227 –13238 (2010).
[CrossRef]

Sens. Actuators B

D. Monzón-Hernández, D. Luna-Moreno, D. M. Escobar, and J. Villatoro, “Optical microfibers decorated with PdAu nanoparticles for fast hydrogen sensing,” Sens. Actuators B 151, 219–222 (2010).
[CrossRef]

Y. Wu, X. Deng, F. Li, and X. Zhuang, “Less-mode optic fiber evanescent wave absorbing sensor: parameter design for high sensitivity liquid detection,” Sens. Actuators B 122, 127–133 (2007).
[CrossRef]

Other

T. Cass and F. S. Ligler, Immobilized Biomolecules in Analysis: A Practical Approach (Oxford University, 1999).

A. W. Snyder and J. D. Love, Optical Waveguide Theory, (Chapman & Hall, 1983).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup. The top schematic shows the configuration and the bottom image illustrates the detailed structure of the silicon chamber supporting the TOF.

Fig. 2.
Fig. 2.

Optical microscope images of the waist of (a) TOF and (b) MTOF. Long-time exposure micrographs of the waist of (c) TOF and (d) MTOF guiding wide-bandwidth light. (e) Close view of the immobilization of 400 nm-diameter silica nanospheres onto the fiber surface.

Fig. 3.
Fig. 3.

Normalized spectral responses of (a) TOF and MTOF with a 3 μm-thick waist immersed in water, (b) a TOF with a 5 μm-thick waist immersed in glycerin aqueous solutions with different refractive indices, and (c) a TOF with varying waist diameter immersed in water. D, waist diameter; unit, μm. (d) Absorbancy of TOF and MTOF with respect to the MB concentration.

Fig. 4.
Fig. 4.

(a) Stepwise model showing the mode coupling for abrupt tapers. (b) Excited modal power fraction in the waist by the HE11 mode from the input section with respect to waist radius.

Fig. 5.
Fig. 5.

(a) Schematic representing the scattering of modes by a silica nanosphere. (b) Calculated transmission (PRj/PSj) of mode as a function of the number of silica nanospheres. (c) Calculated (bottom red curve) oscillatory spectral response due to beating between HE11 and HE12 modes, and the experimental result (top blue curve) shown in Fig. 3(a) is plotted again for comparison.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

PRj=PSjexp(ηjQscaN),

Metrics