Abstract

A detailed experimental study of dispersion and anisotropy of thermo-optic coefficients dn/dT and thermal coefficients of the optical path W=dn/dT+(n1)α is performed for tetragonal YVO4 and GdVO4 laser host crystals by a laser beam deviation method. It is supported by theoretical description of thermo-optic effects, taking into account the volumetric thermal expansion effect and the temperature dependence of electronic bandgap Eg. Linear thermal expansion coefficients α were also determined by a dilatometric technique. Thermo-optic dispersion formulas describing temperature variation of the refractive index and the thermal lens effect are derived for a wide spectral range of 0.4–2 μm. It allows us to estimate the values of Eg and dEg/dT for the studied crystals. The influence of materials parameters and pumping conditions on thermal lens properties is discussed, revealing the significant impact of anisotropic and temperature-dependent thermal conductivity.

© 2013 Optical Society of America

Full Article  |  PDF Article

Corrections

P. A. Loiko, K. V. Yumashev, V. N. Matrosov, and N. V. Kuleshov, "Dispersion and anisotropy of thermo-optic coefficients in tetragonal GdVO4 and YVO4 laser host crystals: erratum," Appl. Opt. 54, 4820-4822 (2015)
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-54-15-4820

References

  • View by:
  • |
  • |
  • |

  1. T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, and I. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4,” Appl. Phys. B 58, 373–379 (1994).
    [CrossRef]
  2. C. Maunier, J. L. Doualan, R. Moncorge, A. Speghinim, M. Bettinelli, and E. Cavalli, “Growth, spectroscopic characterization, and laser performance of Nd:LuVO4, a new infrared laser material that is suitable for diode pumping,” J. Opt. Soc. Am. B 19, 1794–1800 (2002).
    [CrossRef]
  3. V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Sherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Spectroscopy and continious-wave diode-pumped laser action of Yb3+:YVO4,” Opt. Lett. 29, 2491–2493 (2004).
    [CrossRef]
  4. H. J. Zhang, L. Zhu, X. L. Meng, Z. H. Yang, C. Q. Wang, W. T. Yu, Y. T. Chow, and M. K. Lu, “Thermal and laser properties of Nd:YVO4 crystal,” Cryst. Res. Technol. 34, 1011–1016 (1999).
    [CrossRef]
  5. H. Zhang, X. Meng, L. Zhu, and Z. Yang, “Growth and thermal properties of Nd:GdVO4 single crystal,” Mater. Res. Bull. 34, 1589–1593 (1999).
    [CrossRef]
  6. H. Zhang, J. Liu, J. Wang, C. Wang, L. Zhu, Z. Shao, X. Meng, X. Hu, and M. Jiang, “Characterization of the laser crystal Nd:GdVO4,” J. Opt. Soc. Am. B 19, 18–27 (2002).
    [CrossRef]
  7. D. E. Zelmon, J. M. Northridge, J. J. Lee, K. M. Currin, and D. Perlov, “Optical properties of Nd-doped rare-earth vanadates,” Appl. Opt. 49, 4973–4978 (2010).
    [CrossRef]
  8. L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793–797 (2003).
    [CrossRef]
  9. Y. Sato and T. Taira, “The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-one dimensional flash method,” Opt. Express 14, 10528–10536 (2006).
    [CrossRef]
  10. A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lub, “Tetragonal vanadates YVO4 and GdVO4—new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194, 201–206 (2001).
    [CrossRef]
  11. C. Kränkel, D. Fagundes-Peters, S. T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, “Continuous wave laser operation of Yb3+:YVO4,” Appl. Phys. B 79, 543–546 (2004).
    [CrossRef]
  12. V. Lupei, N. Pavel, Y. Sato, and T. Taira, “Highly efficient 1063 nm continuous-wave laser emission in Nd:GdVO4,” Opt. Lett. 28, 2366–2368 (2003).
    [CrossRef]
  13. A. M. Malyarevich, I. A. Denisov, K. V. Yumashev, V. P. Mikhailov, R. S. Conroy, and B. D. Sinclair, “V:YAG—a new passive Q-switch for diode-pumped solid-state lasers,” Appl. Phys. B 67, 555–558 (1998).
    [CrossRef]
  14. V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Q-switched Yb3+:YVO4 laser with Raman self-conversion,” Appl. Phys. B 80, 471–473 (2005).
    [CrossRef]
  15. F. He, L. Huang, M. Gong, Q. Liu, and X. Yan, “Stable acousto-optics Q-switched Nd:YVO4 laser at 500 kHz,” Laser Phys. Lett. 4, 511–514 (2007).
    [CrossRef]
  16. V. E. Kisel, A. E. Troshin, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morier-Genoud, and U. Keller, “Femtosecond pulse generation with a diode-pumped Yb3+:YVO4 laser,” Opt. Lett. 30, 1150–1152 (2005).
    [CrossRef]
  17. A. A. Lagatsky, A. R. Sarmani, C. T. A. Brown, W. Sibett, V. E. Kisel, A. G. Selivanov, I. A. Denisov, A. E. Troshin, K. V. Yumashev, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Yb3+-doped YVO4 crystal for efficient Kerr-lens mode-locking in solid-state lasers,” Opt. Lett. 30, 3234–3236 (2005).
    [CrossRef]
  18. S. Rivier, X. Mateos, J. Liu, V. Petrov, U. Griebner, M. Zorn, M. Weyers, H. Zhang, J. Wang, and M. Jiang, “Passively mode-locked Yb:LuVO4 oscillator,” Opt. Express 14, 11668–11671 (2006).
    [CrossRef]
  19. B. Braun, F. X. Kartner, G. Zhang, M. Moser, and U. Keller, “56 ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22, 381–383 (1997).
    [CrossRef]
  20. T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, “Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip lasers,” Opt. Lett. 16, 1955–1957 (1991).
    [CrossRef]
  21. C. H. Zhang, B. Q. Yao, G. Li, Q. Wang, Y. L. Ju, and Y. Z. Wang, “2041.3  nm/2054.6  nm simultaneous dual-wavelength single-longitudinal-mode Tm, Ho:YVO4 microchip laser,” Laser Phys. 20, 1564–1567 (2010).
    [CrossRef]
  22. A. J. Lee, H. M. Pask, P. Dekker, and J. A. Piper, “High efficiency, multi-watt cw yellow emission from an intracavity-doubled self-Raman laser using Nd:GdVO4,” Opt. Express 16, 21958–21963 (2008).
    [CrossRef]
  23. Y. F. Lu, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient cw laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7, 787–789 (2010).
    [CrossRef]
  24. V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO4 crystal,” Appl. Phys. B 85, 581–584 (2006).
    [CrossRef]
  25. S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153(2006).
    [CrossRef]
  26. W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006).
  27. P. K. Mukhopadhyay, A. Nautiyal, P. K. Gupta, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “Experimental determination of the thermo-optic coefficient (dn/dT) and the effective stimulated emission cross-section (σe) of an a-axis cut 1 at. % doped Nd:GdVO4 crystal at 1.06 μm wavelength,” Appl. Phys. B 77, 81–87 (2003).
    [CrossRef]
  28. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 448–459 (2007).
    [CrossRef]
  29. X. Wang, S. Tang, Y. Tang, and N. Fernelius, “Thermal and thermo-optical properties of new Nd:YxGd1−xVO4 crystals,” Proc. SPIE 5723, 147–151 (2005).
    [CrossRef]
  30. D. E. Zelmon, J. J. Lee, K. M. Currin, J. M. Northridge, and D. Perlov, “Revisiting the optical properties of Nd doped yttrium orthovanadate,” Appl. Opt. 49, 644–647 (2010).
    [CrossRef]
  31. Y. Sato and T. Taira, “Thermo-optical and -mechanical parameters of Nd:GdVO4 and Nd:YVO4,” in Conference for Lasers and Electro-Optics (IEEE, 2007).
  32. R. Soulard, A. Zinoviev, J. L. Doualan, E. Ivakin, O. Antipov, and R. Moncorgé, “Detailed characterization of pump-induced refractive index changes observed in Nd:YVO4, Nd:GdVO4 and Nd:KGW,” Opt. Express 18, 1553–1568 (2010).
    [CrossRef]
  33. P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermo-optic coefficients and thermal lensing in the Nd-doped KGd(WO4)2 laser crystals,” Appl. Opt. 49, 6651–6659 (2010).
    [CrossRef]
  34. S. Vatnik, M. C. Pujol, J. J. Carvajal, X. Mateos, M. Aguiló, F. Díaz, and V. Petrov, “Thermo-optic coefficients of monoclinic KLu(WO4)2,” Appl. Phys. B 95, 653–656 (2009).
    [CrossRef]
  35. S. Zhang, S. Zhou, H. Li, and L. Li, “Investigation of thermal expansion and compressibility of rare-earth orthovanadates using a dielectric chemical bond method,” Inorg. Chem. 47, 7863–7867 (2008).
    [CrossRef]
  36. N. R. Reddy and K. S. Nurthy, “Thermal expansion of yttrium vanadate,” J. Mater. Sci. Lett. 2, 139–140 (1983).
    [CrossRef]
  37. G. Bayer, “Thermal expansion of ABO4 compounds with zircon and scheelite structure,” J. Less-Common Met. 26, 255–262 (1972).
    [CrossRef]
  38. E. C. Subbarao, D. K. Agrawal, H. A. McKinstry, C. W. Salese, and R. Roy, “Thermal expansion of compounds of zircon structure,” J. Am. Ceram. Soc. 73, 1246–1252 (1990).
    [CrossRef]
  39. H. Zhang, X. Meng, L. Zhu, P. Wang, X. Liu, Z. Yang, J. Dawes, and P. Dekker, “Growth, morphology and characterization of Yb:YVO4 crystal,” Phys. Status Solidi A 175, 705–710 (1999).
    [CrossRef]
  40. G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, 1998).
  41. P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Thermo-optic dispersion formulas for monoclinic double tungstates K Re(WO4)2 where Re=Gd, Y, Lu, Yb,” Opt. Mater. 33, 1688–1694 (2011).
    [CrossRef]
  42. P. A. Loiko, V. V. Filippov, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermo-optic coefficients study in KGd(WO4)2 and KY(WO4)2 by a modified minimum deviation method,” Appl. Opt. 51, 2951–2957 (2012).
    [CrossRef]
  43. P. A. Studenikin, A. I. Zagumennyi, Y. D. Zavartsev, P. A. Popov, and I. A. Shcherbakov, “GdVO4 as a new medium for solid-state lasers: some optical and thermal properties of crystals doped with Cd3+, Tm3+, and Er3+ ions,” IEEE J. Quantum Electron. 25, 1162–1165 (1995).
    [CrossRef]
  44. A. I. Zagumennyi, Y. D. Zavartsev, P. A. Studenikin, V. I. Vlasov, I. A. Sherbakov, C. P. Wyss, W. Luthy, H. P. Weber, and P. A. Popov, “Thermal conductivity of a Tm3+:GdVO4 crystal and the operational characteristics of a microchip laser based on it,” IEEE J. Quantum Electron. 29, 298–300 (1999).
    [CrossRef]
  45. J. Didierjean, E. Herault, F. Balembois, and P. Georges, “Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd:doped crystals,” Opt. Express 16, 8995–9010 (2008).
    [CrossRef]
  46. J. Petit, B. Viana, P. Goldner, D. Vivien, P. Louiseau, and B. Ferrand, “Laser oscillation with low quantum defect in Yb:GdVO4, a crystal with high thermal conductivity,” Opt. Lett. 29, 833–835 (2004).
    [CrossRef]
  47. Z. Xiong, Z. G. Li, N. Moore, W. L. Huang, and G. C. Lim, “Detailed investigation of thermal effects in longitudinally diode-pumped Nd:YVO4 lasers,” IEEE J. Quantum Electron. 39, 979–986 (2003).
    [CrossRef]
  48. X. Peng, L. Xu, and A. Asundi, “Thermal lensing effects for diode-end-pumped Nd:YVO4 and Nd:YAG lasers,” Opt. Eng. 43, 2454–2461 (2004).
    [CrossRef]
  49. P. Shi, W. Chen, L. Li, and A. Gan, “Semianalytical thermal analysis on a Nd:YVO4 crystal,” Appl. Opt. 46, 4046–4051 (2007).
    [CrossRef]
  50. Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for F3/24→I11/24 and F3/24→I13/24 transitions,” Opt. Express 16, 21155–21160 (2008).
    [CrossRef]
  51. H. J. Strauss, “Thermo-optical effects in high-power end-pumped vanadate lasers,” Ph.D. thesis (Stellenbosch University, 2010).
  52. H. J. Strauss, C. Bollig, H. M. von Bergmann, and M. J. D. Esser, “Comparative study of thermal lensing in low-doped Nd:YVO4 and Nd: GdVO4 of equal doping concentration,” in Conference for Lasers and Electro-Optics (IEEE, 2009).

2012 (1)

P. A. Loiko, V. V. Filippov, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermo-optic coefficients study in KGd(WO4)2 and KY(WO4)2 by a modified minimum deviation method,” Appl. Opt. 51, 2951–2957 (2012).
[CrossRef]

2011 (1)

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Thermo-optic dispersion formulas for monoclinic double tungstates K Re(WO4)2 where Re=Gd, Y, Lu, Yb,” Opt. Mater. 33, 1688–1694 (2011).
[CrossRef]

2010 (6)

D. E. Zelmon, J. J. Lee, K. M. Currin, J. M. Northridge, and D. Perlov, “Revisiting the optical properties of Nd doped yttrium orthovanadate,” Appl. Opt. 49, 644–647 (2010).
[CrossRef]

R. Soulard, A. Zinoviev, J. L. Doualan, E. Ivakin, O. Antipov, and R. Moncorgé, “Detailed characterization of pump-induced refractive index changes observed in Nd:YVO4, Nd:GdVO4 and Nd:KGW,” Opt. Express 18, 1553–1568 (2010).
[CrossRef]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermo-optic coefficients and thermal lensing in the Nd-doped KGd(WO4)2 laser crystals,” Appl. Opt. 49, 6651–6659 (2010).
[CrossRef]

Y. F. Lu, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient cw laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7, 787–789 (2010).
[CrossRef]

C. H. Zhang, B. Q. Yao, G. Li, Q. Wang, Y. L. Ju, and Y. Z. Wang, “2041.3  nm/2054.6  nm simultaneous dual-wavelength single-longitudinal-mode Tm, Ho:YVO4 microchip laser,” Laser Phys. 20, 1564–1567 (2010).
[CrossRef]

D. E. Zelmon, J. M. Northridge, J. J. Lee, K. M. Currin, and D. Perlov, “Optical properties of Nd-doped rare-earth vanadates,” Appl. Opt. 49, 4973–4978 (2010).
[CrossRef]

2009 (1)

S. Vatnik, M. C. Pujol, J. J. Carvajal, X. Mateos, M. Aguiló, F. Díaz, and V. Petrov, “Thermo-optic coefficients of monoclinic KLu(WO4)2,” Appl. Phys. B 95, 653–656 (2009).
[CrossRef]

2008 (4)

S. Zhang, S. Zhou, H. Li, and L. Li, “Investigation of thermal expansion and compressibility of rare-earth orthovanadates using a dielectric chemical bond method,” Inorg. Chem. 47, 7863–7867 (2008).
[CrossRef]

A. J. Lee, H. M. Pask, P. Dekker, and J. A. Piper, “High efficiency, multi-watt cw yellow emission from an intracavity-doubled self-Raman laser using Nd:GdVO4,” Opt. Express 16, 21958–21963 (2008).
[CrossRef]

J. Didierjean, E. Herault, F. Balembois, and P. Georges, “Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd:doped crystals,” Opt. Express 16, 8995–9010 (2008).
[CrossRef]

Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for F3/24→I11/24 and F3/24→I13/24 transitions,” Opt. Express 16, 21155–21160 (2008).
[CrossRef]

2007 (3)

P. Shi, W. Chen, L. Li, and A. Gan, “Semianalytical thermal analysis on a Nd:YVO4 crystal,” Appl. Opt. 46, 4046–4051 (2007).
[CrossRef]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 448–459 (2007).
[CrossRef]

F. He, L. Huang, M. Gong, Q. Liu, and X. Yan, “Stable acousto-optics Q-switched Nd:YVO4 laser at 500 kHz,” Laser Phys. Lett. 4, 511–514 (2007).
[CrossRef]

2006 (4)

S. Rivier, X. Mateos, J. Liu, V. Petrov, U. Griebner, M. Zorn, M. Weyers, H. Zhang, J. Wang, and M. Jiang, “Passively mode-locked Yb:LuVO4 oscillator,” Opt. Express 14, 11668–11671 (2006).
[CrossRef]

Y. Sato and T. Taira, “The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-one dimensional flash method,” Opt. Express 14, 10528–10536 (2006).
[CrossRef]

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO4 crystal,” Appl. Phys. B 85, 581–584 (2006).
[CrossRef]

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153(2006).
[CrossRef]

2005 (4)

X. Wang, S. Tang, Y. Tang, and N. Fernelius, “Thermal and thermo-optical properties of new Nd:YxGd1−xVO4 crystals,” Proc. SPIE 5723, 147–151 (2005).
[CrossRef]

V. E. Kisel, A. E. Troshin, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morier-Genoud, and U. Keller, “Femtosecond pulse generation with a diode-pumped Yb3+:YVO4 laser,” Opt. Lett. 30, 1150–1152 (2005).
[CrossRef]

A. A. Lagatsky, A. R. Sarmani, C. T. A. Brown, W. Sibett, V. E. Kisel, A. G. Selivanov, I. A. Denisov, A. E. Troshin, K. V. Yumashev, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Yb3+-doped YVO4 crystal for efficient Kerr-lens mode-locking in solid-state lasers,” Opt. Lett. 30, 3234–3236 (2005).
[CrossRef]

V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Q-switched Yb3+:YVO4 laser with Raman self-conversion,” Appl. Phys. B 80, 471–473 (2005).
[CrossRef]

2004 (4)

C. Kränkel, D. Fagundes-Peters, S. T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, “Continuous wave laser operation of Yb3+:YVO4,” Appl. Phys. B 79, 543–546 (2004).
[CrossRef]

V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Sherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Spectroscopy and continious-wave diode-pumped laser action of Yb3+:YVO4,” Opt. Lett. 29, 2491–2493 (2004).
[CrossRef]

X. Peng, L. Xu, and A. Asundi, “Thermal lensing effects for diode-end-pumped Nd:YVO4 and Nd:YAG lasers,” Opt. Eng. 43, 2454–2461 (2004).
[CrossRef]

J. Petit, B. Viana, P. Goldner, D. Vivien, P. Louiseau, and B. Ferrand, “Laser oscillation with low quantum defect in Yb:GdVO4, a crystal with high thermal conductivity,” Opt. Lett. 29, 833–835 (2004).
[CrossRef]

2003 (4)

Z. Xiong, Z. G. Li, N. Moore, W. L. Huang, and G. C. Lim, “Detailed investigation of thermal effects in longitudinally diode-pumped Nd:YVO4 lasers,” IEEE J. Quantum Electron. 39, 979–986 (2003).
[CrossRef]

L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793–797 (2003).
[CrossRef]

V. Lupei, N. Pavel, Y. Sato, and T. Taira, “Highly efficient 1063 nm continuous-wave laser emission in Nd:GdVO4,” Opt. Lett. 28, 2366–2368 (2003).
[CrossRef]

P. K. Mukhopadhyay, A. Nautiyal, P. K. Gupta, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “Experimental determination of the thermo-optic coefficient (dn/dT) and the effective stimulated emission cross-section (σe) of an a-axis cut 1 at. % doped Nd:GdVO4 crystal at 1.06 μm wavelength,” Appl. Phys. B 77, 81–87 (2003).
[CrossRef]

2002 (2)

H. Zhang, J. Liu, J. Wang, C. Wang, L. Zhu, Z. Shao, X. Meng, X. Hu, and M. Jiang, “Characterization of the laser crystal Nd:GdVO4,” J. Opt. Soc. Am. B 19, 18–27 (2002).
[CrossRef]

C. Maunier, J. L. Doualan, R. Moncorge, A. Speghinim, M. Bettinelli, and E. Cavalli, “Growth, spectroscopic characterization, and laser performance of Nd:LuVO4, a new infrared laser material that is suitable for diode pumping,” J. Opt. Soc. Am. B 19, 1794–1800 (2002).
[CrossRef]

2001 (1)

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lub, “Tetragonal vanadates YVO4 and GdVO4—new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194, 201–206 (2001).
[CrossRef]

1999 (4)

H. J. Zhang, L. Zhu, X. L. Meng, Z. H. Yang, C. Q. Wang, W. T. Yu, Y. T. Chow, and M. K. Lu, “Thermal and laser properties of Nd:YVO4 crystal,” Cryst. Res. Technol. 34, 1011–1016 (1999).
[CrossRef]

H. Zhang, X. Meng, L. Zhu, and Z. Yang, “Growth and thermal properties of Nd:GdVO4 single crystal,” Mater. Res. Bull. 34, 1589–1593 (1999).
[CrossRef]

H. Zhang, X. Meng, L. Zhu, P. Wang, X. Liu, Z. Yang, J. Dawes, and P. Dekker, “Growth, morphology and characterization of Yb:YVO4 crystal,” Phys. Status Solidi A 175, 705–710 (1999).
[CrossRef]

A. I. Zagumennyi, Y. D. Zavartsev, P. A. Studenikin, V. I. Vlasov, I. A. Sherbakov, C. P. Wyss, W. Luthy, H. P. Weber, and P. A. Popov, “Thermal conductivity of a Tm3+:GdVO4 crystal and the operational characteristics of a microchip laser based on it,” IEEE J. Quantum Electron. 29, 298–300 (1999).
[CrossRef]

1998 (1)

A. M. Malyarevich, I. A. Denisov, K. V. Yumashev, V. P. Mikhailov, R. S. Conroy, and B. D. Sinclair, “V:YAG—a new passive Q-switch for diode-pumped solid-state lasers,” Appl. Phys. B 67, 555–558 (1998).
[CrossRef]

1997 (1)

B. Braun, F. X. Kartner, G. Zhang, M. Moser, and U. Keller, “56 ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22, 381–383 (1997).
[CrossRef]

1995 (1)

P. A. Studenikin, A. I. Zagumennyi, Y. D. Zavartsev, P. A. Popov, and I. A. Shcherbakov, “GdVO4 as a new medium for solid-state lasers: some optical and thermal properties of crystals doped with Cd3+, Tm3+, and Er3+ ions,” IEEE J. Quantum Electron. 25, 1162–1165 (1995).
[CrossRef]

1994 (1)

T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, and I. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4,” Appl. Phys. B 58, 373–379 (1994).
[CrossRef]

1991 (1)

T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, “Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip lasers,” Opt. Lett. 16, 1955–1957 (1991).
[CrossRef]

1990 (1)

E. C. Subbarao, D. K. Agrawal, H. A. McKinstry, C. W. Salese, and R. Roy, “Thermal expansion of compounds of zircon structure,” J. Am. Ceram. Soc. 73, 1246–1252 (1990).
[CrossRef]

1983 (1)

N. R. Reddy and K. S. Nurthy, “Thermal expansion of yttrium vanadate,” J. Mater. Sci. Lett. 2, 139–140 (1983).
[CrossRef]

1972 (1)

G. Bayer, “Thermal expansion of ABO4 compounds with zircon and scheelite structure,” J. Less-Common Met. 26, 255–262 (1972).
[CrossRef]

Aggarwal, R. L.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 448–459 (2007).
[CrossRef]

Agrawal, D. K.

E. C. Subbarao, D. K. Agrawal, H. A. McKinstry, C. W. Salese, and R. Roy, “Thermal expansion of compounds of zircon structure,” J. Am. Ceram. Soc. 73, 1246–1252 (1990).
[CrossRef]

Aguiló, M.

S. Vatnik, M. C. Pujol, J. J. Carvajal, X. Mateos, M. Aguiló, F. Díaz, and V. Petrov, “Thermo-optic coefficients of monoclinic KLu(WO4)2,” Appl. Phys. B 95, 653–656 (2009).
[CrossRef]

Antipov, O.

R. Soulard, A. Zinoviev, J. L. Doualan, E. Ivakin, O. Antipov, and R. Moncorgé, “Detailed characterization of pump-induced refractive index changes observed in Nd:YVO4, Nd:GdVO4 and Nd:KGW,” Opt. Express 18, 1553–1568 (2010).
[CrossRef]

Asundi, A.

X. Peng, L. Xu, and A. Asundi, “Thermal lensing effects for diode-end-pumped Nd:YVO4 and Nd:YAG lasers,” Opt. Eng. 43, 2454–2461 (2004).
[CrossRef]

Bagaev, S. N.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lub, “Tetragonal vanadates YVO4 and GdVO4—new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194, 201–206 (2001).
[CrossRef]

Balembois, F.

J. Didierjean, E. Herault, F. Balembois, and P. Georges, “Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd:doped crystals,” Opt. Express 16, 8995–9010 (2008).
[CrossRef]

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153(2006).
[CrossRef]

Barnes, J. C.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lub, “Tetragonal vanadates YVO4 and GdVO4—new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194, 201–206 (2001).
[CrossRef]

Bayer, G.

G. Bayer, “Thermal expansion of ABO4 compounds with zircon and scheelite structure,” J. Less-Common Met. 26, 255–262 (1972).
[CrossRef]

Bernhagen, M.

C. Kränkel, D. Fagundes-Peters, S. T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, “Continuous wave laser operation of Yb3+:YVO4,” Appl. Phys. B 79, 543–546 (2004).
[CrossRef]

Bettinelli, M.

C. Maunier, J. L. Doualan, R. Moncorge, A. Speghinim, M. Bettinelli, and E. Cavalli, “Growth, spectroscopic characterization, and laser performance of Nd:LuVO4, a new infrared laser material that is suitable for diode pumping,” J. Opt. Soc. Am. B 19, 1794–1800 (2002).
[CrossRef]

Bollig, C.

H. J. Strauss, C. Bollig, H. M. von Bergmann, and M. J. D. Esser, “Comparative study of thermal lensing in low-doped Nd:YVO4 and Nd: GdVO4 of equal doping concentration,” in Conference for Lasers and Electro-Optics (IEEE, 2009).

Braun, B.

B. Braun, F. X. Kartner, G. Zhang, M. Moser, and U. Keller, “56 ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22, 381–383 (1997).
[CrossRef]

Brown, C. T. A.

A. A. Lagatsky, A. R. Sarmani, C. T. A. Brown, W. Sibett, V. E. Kisel, A. G. Selivanov, I. A. Denisov, A. E. Troshin, K. V. Yumashev, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Yb3+-doped YVO4 crystal for efficient Kerr-lens mode-locking in solid-state lasers,” Opt. Lett. 30, 3234–3236 (2005).
[CrossRef]

Brunner, F.

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO4 crystal,” Appl. Phys. B 85, 581–584 (2006).
[CrossRef]

V. E. Kisel, A. E. Troshin, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morier-Genoud, and U. Keller, “Femtosecond pulse generation with a diode-pumped Yb3+:YVO4 laser,” Opt. Lett. 30, 1150–1152 (2005).
[CrossRef]

Carvajal, J. J.

S. Vatnik, M. C. Pujol, J. J. Carvajal, X. Mateos, M. Aguiló, F. Díaz, and V. Petrov, “Thermo-optic coefficients of monoclinic KLu(WO4)2,” Appl. Phys. B 95, 653–656 (2009).
[CrossRef]

Cavalli, E.

C. Maunier, J. L. Doualan, R. Moncorge, A. Speghinim, M. Bettinelli, and E. Cavalli, “Growth, spectroscopic characterization, and laser performance of Nd:LuVO4, a new infrared laser material that is suitable for diode pumping,” J. Opt. Soc. Am. B 19, 1794–1800 (2002).
[CrossRef]

Chang, Y. T.

Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for F3/24→I11/24 and F3/24→I13/24 transitions,” Opt. Express 16, 21155–21160 (2008).
[CrossRef]

Chann, B.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 448–459 (2007).
[CrossRef]

Chen, W.

P. Shi, W. Chen, L. Li, and A. Gan, “Semianalytical thermal analysis on a Nd:YVO4 crystal,” Appl. Opt. 46, 4046–4051 (2007).
[CrossRef]

Chen, Y. F.

Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for F3/24→I11/24 and F3/24→I13/24 transitions,” Opt. Express 16, 21155–21160 (2008).
[CrossRef]

Chenais, S.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153(2006).
[CrossRef]

Cheng, W. B.

Y. F. Lu, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient cw laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7, 787–789 (2010).
[CrossRef]

Chow, Y. T.

H. J. Zhang, L. Zhu, X. L. Meng, Z. H. Yang, C. Q. Wang, W. T. Yu, Y. T. Chow, and M. K. Lu, “Thermal and laser properties of Nd:YVO4 crystal,” Cryst. Res. Technol. 34, 1011–1016 (1999).
[CrossRef]

Chyba, T. H.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lub, “Tetragonal vanadates YVO4 and GdVO4—new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194, 201–206 (2001).
[CrossRef]

Conroy, R. S.

A. M. Malyarevich, I. A. Denisov, K. V. Yumashev, V. P. Mikhailov, R. S. Conroy, and B. D. Sinclair, “V:YAG—a new passive Q-switch for diode-pumped solid-state lasers,” Appl. Phys. B 67, 555–558 (1998).
[CrossRef]

Currin, K. M.

D. E. Zelmon, J. M. Northridge, J. J. Lee, K. M. Currin, and D. Perlov, “Optical properties of Nd-doped rare-earth vanadates,” Appl. Opt. 49, 4973–4978 (2010).
[CrossRef]

D. E. Zelmon, J. J. Lee, K. M. Currin, J. M. Northridge, and D. Perlov, “Revisiting the optical properties of Nd doped yttrium orthovanadate,” Appl. Opt. 49, 644–647 (2010).
[CrossRef]

Dawes, J.

H. Zhang, X. Meng, L. Zhu, P. Wang, X. Liu, Z. Yang, J. Dawes, and P. Dekker, “Growth, morphology and characterization of Yb:YVO4 crystal,” Phys. Status Solidi A 175, 705–710 (1999).
[CrossRef]

Dekker, P.

A. J. Lee, H. M. Pask, P. Dekker, and J. A. Piper, “High efficiency, multi-watt cw yellow emission from an intracavity-doubled self-Raman laser using Nd:GdVO4,” Opt. Express 16, 21958–21963 (2008).
[CrossRef]

H. Zhang, X. Meng, L. Zhu, P. Wang, X. Liu, Z. Yang, J. Dawes, and P. Dekker, “Growth, morphology and characterization of Yb:YVO4 crystal,” Phys. Status Solidi A 175, 705–710 (1999).
[CrossRef]

Denisov, I. A.

A. A. Lagatsky, A. R. Sarmani, C. T. A. Brown, W. Sibett, V. E. Kisel, A. G. Selivanov, I. A. Denisov, A. E. Troshin, K. V. Yumashev, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Yb3+-doped YVO4 crystal for efficient Kerr-lens mode-locking in solid-state lasers,” Opt. Lett. 30, 3234–3236 (2005).
[CrossRef]

A. M. Malyarevich, I. A. Denisov, K. V. Yumashev, V. P. Mikhailov, R. S. Conroy, and B. D. Sinclair, “V:YAG—a new passive Q-switch for diode-pumped solid-state lasers,” Appl. Phys. B 67, 555–558 (1998).
[CrossRef]

Díaz, F.

S. Vatnik, M. C. Pujol, J. J. Carvajal, X. Mateos, M. Aguiló, F. Díaz, and V. Petrov, “Thermo-optic coefficients of monoclinic KLu(WO4)2,” Appl. Phys. B 95, 653–656 (2009).
[CrossRef]

Didierjean, J.

J. Didierjean, E. Herault, F. Balembois, and P. Georges, “Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd:doped crystals,” Opt. Express 16, 8995–9010 (2008).
[CrossRef]

Doualan, J. L.

R. Soulard, A. Zinoviev, J. L. Doualan, E. Ivakin, O. Antipov, and R. Moncorgé, “Detailed characterization of pump-induced refractive index changes observed in Nd:YVO4, Nd:GdVO4 and Nd:KGW,” Opt. Express 18, 1553–1568 (2010).
[CrossRef]

C. Maunier, J. L. Doualan, R. Moncorge, A. Speghinim, M. Bettinelli, and E. Cavalli, “Growth, spectroscopic characterization, and laser performance of Nd:LuVO4, a new infrared laser material that is suitable for diode pumping,” J. Opt. Soc. Am. B 19, 1794–1800 (2002).
[CrossRef]

Druon, F.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153(2006).
[CrossRef]

Eichler, H. J.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lub, “Tetragonal vanadates YVO4 and GdVO4—new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194, 201–206 (2001).
[CrossRef]

Esser, M. J. D.

H. J. Strauss, C. Bollig, H. M. von Bergmann, and M. J. D. Esser, “Comparative study of thermal lensing in low-doped Nd:YVO4 and Nd: GdVO4 of equal doping concentration,” in Conference for Lasers and Electro-Optics (IEEE, 2009).

Fagundes-Peters, D.

C. Kränkel, D. Fagundes-Peters, S. T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, “Continuous wave laser operation of Yb3+:YVO4,” Appl. Phys. B 79, 543–546 (2004).
[CrossRef]

Fan, T. Y.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 448–459 (2007).
[CrossRef]

Fernelius, N.

X. Wang, S. Tang, Y. Tang, and N. Fernelius, “Thermal and thermo-optical properties of new Nd:YxGd1−xVO4 crystals,” Proc. SPIE 5723, 147–151 (2005).
[CrossRef]

Ferrand, B.

J. Petit, B. Viana, P. Goldner, D. Vivien, P. Louiseau, and B. Ferrand, “Laser oscillation with low quantum defect in Yb:GdVO4, a crystal with high thermal conductivity,” Opt. Lett. 29, 833–835 (2004).
[CrossRef]

Filippov, V. V.

P. A. Loiko, V. V. Filippov, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermo-optic coefficients study in KGd(WO4)2 and KY(WO4)2 by a modified minimum deviation method,” Appl. Opt. 51, 2951–2957 (2012).
[CrossRef]

Forget, S.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153(2006).
[CrossRef]

Fredrich, S. T.

C. Kränkel, D. Fagundes-Peters, S. T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, “Continuous wave laser operation of Yb3+:YVO4,” Appl. Phys. B 79, 543–546 (2004).
[CrossRef]

Gad, G. M. A.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lub, “Tetragonal vanadates YVO4 and GdVO4—new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194, 201–206 (2001).
[CrossRef]

Gan, A.

P. Shi, W. Chen, L. Li, and A. Gan, “Semianalytical thermal analysis on a Nd:YVO4 crystal,” Appl. Opt. 46, 4046–4051 (2007).
[CrossRef]

George, J.

P. K. Mukhopadhyay, A. Nautiyal, P. K. Gupta, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “Experimental determination of the thermo-optic coefficient (dn/dT) and the effective stimulated emission cross-section (σe) of an a-axis cut 1 at. % doped Nd:GdVO4 crystal at 1.06 μm wavelength,” Appl. Phys. B 77, 81–87 (2003).
[CrossRef]

Georges, P.

J. Didierjean, E. Herault, F. Balembois, and P. Georges, “Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd:doped crystals,” Opt. Express 16, 8995–9010 (2008).
[CrossRef]

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153(2006).
[CrossRef]

Ghosh, G.

G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, 1998).

Goldner, P.

J. Petit, B. Viana, P. Goldner, D. Vivien, P. Louiseau, and B. Ferrand, “Laser oscillation with low quantum defect in Yb:GdVO4, a crystal with high thermal conductivity,” Opt. Lett. 29, 833–835 (2004).
[CrossRef]

Gong, M.

F. He, L. Huang, M. Gong, Q. Liu, and X. Yan, “Stable acousto-optics Q-switched Nd:YVO4 laser at 500 kHz,” Laser Phys. Lett. 4, 511–514 (2007).
[CrossRef]

Griebner, U.

S. Rivier, X. Mateos, J. Liu, V. Petrov, U. Griebner, M. Zorn, M. Weyers, H. Zhang, J. Wang, and M. Jiang, “Passively mode-locked Yb:LuVO4 oscillator,” Opt. Express 14, 11668–11671 (2006).
[CrossRef]

Gupta, P. K.

P. K. Mukhopadhyay, A. Nautiyal, P. K. Gupta, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “Experimental determination of the thermo-optic coefficient (dn/dT) and the effective stimulated emission cross-section (σe) of an a-axis cut 1 at. % doped Nd:GdVO4 crystal at 1.06 μm wavelength,” Appl. Phys. B 77, 81–87 (2003).
[CrossRef]

He, F.

F. He, L. Huang, M. Gong, Q. Liu, and X. Yan, “Stable acousto-optics Q-switched Nd:YVO4 laser at 500 kHz,” Laser Phys. Lett. 4, 511–514 (2007).
[CrossRef]

Herault, E.

J. Didierjean, E. Herault, F. Balembois, and P. Georges, “Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd:doped crystals,” Opt. Express 16, 8995–9010 (2008).
[CrossRef]

Hu, X.

H. Zhang, J. Liu, J. Wang, C. Wang, L. Zhu, Z. Shao, X. Meng, X. Hu, and M. Jiang, “Characterization of the laser crystal Nd:GdVO4,” J. Opt. Soc. Am. B 19, 18–27 (2002).
[CrossRef]

Huang, L.

F. He, L. Huang, M. Gong, Q. Liu, and X. Yan, “Stable acousto-optics Q-switched Nd:YVO4 laser at 500 kHz,” Laser Phys. Lett. 4, 511–514 (2007).
[CrossRef]

Huang, L. X.

L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793–797 (2003).
[CrossRef]

Huang, W. L.

Z. Xiong, Z. G. Li, N. Moore, W. L. Huang, and G. C. Lim, “Detailed investigation of thermal effects in longitudinally diode-pumped Nd:YVO4 lasers,” IEEE J. Quantum Electron. 39, 979–986 (2003).
[CrossRef]

Huang, Y. P.

Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for F3/24→I11/24 and F3/24→I13/24 transitions,” Opt. Express 16, 21155–21160 (2008).
[CrossRef]

Huber, G.

C. Kränkel, D. Fagundes-Peters, S. T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, “Continuous wave laser operation of Yb3+:YVO4,” Appl. Phys. B 79, 543–546 (2004).
[CrossRef]

T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, and I. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4,” Appl. Phys. B 58, 373–379 (1994).
[CrossRef]

Ivakin, E.

R. Soulard, A. Zinoviev, J. L. Doualan, E. Ivakin, O. Antipov, and R. Moncorgé, “Detailed characterization of pump-induced refractive index changes observed in Nd:YVO4, Nd:GdVO4 and Nd:KGW,” Opt. Express 18, 1553–1568 (2010).
[CrossRef]

Jensen, T.

T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, and I. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4,” Appl. Phys. B 58, 373–379 (1994).
[CrossRef]

Jiang, M.

S. Rivier, X. Mateos, J. Liu, V. Petrov, U. Griebner, M. Zorn, M. Weyers, H. Zhang, J. Wang, and M. Jiang, “Passively mode-locked Yb:LuVO4 oscillator,” Opt. Express 14, 11668–11671 (2006).
[CrossRef]

H. Zhang, J. Liu, J. Wang, C. Wang, L. Zhu, Z. Shao, X. Meng, X. Hu, and M. Jiang, “Characterization of the laser crystal Nd:GdVO4,” J. Opt. Soc. Am. B 19, 18–27 (2002).
[CrossRef]

Johannsen, J.

C. Kränkel, D. Fagundes-Peters, S. T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, “Continuous wave laser operation of Yb3+:YVO4,” Appl. Phys. B 79, 543–546 (2004).
[CrossRef]

Ju, Y. L.

C. H. Zhang, B. Q. Yao, G. Li, Q. Wang, Y. L. Ju, and Y. Z. Wang, “2041.3  nm/2054.6  nm simultaneous dual-wavelength single-longitudinal-mode Tm, Ho:YVO4 microchip laser,” Laser Phys. 20, 1564–1567 (2010).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lub, “Tetragonal vanadates YVO4 and GdVO4—new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194, 201–206 (2001).
[CrossRef]

Kartner, F. X.

B. Braun, F. X. Kartner, G. Zhang, M. Moser, and U. Keller, “56 ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22, 381–383 (1997).
[CrossRef]

Keller, U.

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO4 crystal,” Appl. Phys. B 85, 581–584 (2006).
[CrossRef]

V. E. Kisel, A. E. Troshin, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morier-Genoud, and U. Keller, “Femtosecond pulse generation with a diode-pumped Yb3+:YVO4 laser,” Opt. Lett. 30, 1150–1152 (2005).
[CrossRef]

B. Braun, F. X. Kartner, G. Zhang, M. Moser, and U. Keller, “56 ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22, 381–383 (1997).
[CrossRef]

Kisel, V. E.

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO4 crystal,” Appl. Phys. B 85, 581–584 (2006).
[CrossRef]

A. A. Lagatsky, A. R. Sarmani, C. T. A. Brown, W. Sibett, V. E. Kisel, A. G. Selivanov, I. A. Denisov, A. E. Troshin, K. V. Yumashev, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Yb3+-doped YVO4 crystal for efficient Kerr-lens mode-locking in solid-state lasers,” Opt. Lett. 30, 3234–3236 (2005).
[CrossRef]

V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Q-switched Yb3+:YVO4 laser with Raman self-conversion,” Appl. Phys. B 80, 471–473 (2005).
[CrossRef]

V. E. Kisel, A. E. Troshin, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morier-Genoud, and U. Keller, “Femtosecond pulse generation with a diode-pumped Yb3+:YVO4 laser,” Opt. Lett. 30, 1150–1152 (2005).
[CrossRef]

V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Sherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Spectroscopy and continious-wave diode-pumped laser action of Yb3+:YVO4,” Opt. Lett. 29, 2491–2493 (2004).
[CrossRef]

Kobayashi, T.

T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, “Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip lasers,” Opt. Lett. 16, 1955–1957 (1991).
[CrossRef]

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006).

Kouta, H.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lub, “Tetragonal vanadates YVO4 and GdVO4—new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194, 201–206 (2001).
[CrossRef]

Kränkel, C.

C. Kränkel, D. Fagundes-Peters, S. T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, “Continuous wave laser operation of Yb3+:YVO4,” Appl. Phys. B 79, 543–546 (2004).
[CrossRef]

Kuleshov, N. V.

P. A. Loiko, V. V. Filippov, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermo-optic coefficients study in KGd(WO4)2 and KY(WO4)2 by a modified minimum deviation method,” Appl. Opt. 51, 2951–2957 (2012).
[CrossRef]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Thermo-optic dispersion formulas for monoclinic double tungstates K Re(WO4)2 where Re=Gd, Y, Lu, Yb,” Opt. Mater. 33, 1688–1694 (2011).
[CrossRef]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermo-optic coefficients and thermal lensing in the Nd-doped KGd(WO4)2 laser crystals,” Appl. Opt. 49, 6651–6659 (2010).
[CrossRef]

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO4 crystal,” Appl. Phys. B 85, 581–584 (2006).
[CrossRef]

V. E. Kisel, A. E. Troshin, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morier-Genoud, and U. Keller, “Femtosecond pulse generation with a diode-pumped Yb3+:YVO4 laser,” Opt. Lett. 30, 1150–1152 (2005).
[CrossRef]

V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Q-switched Yb3+:YVO4 laser with Raman self-conversion,” Appl. Phys. B 80, 471–473 (2005).
[CrossRef]

A. A. Lagatsky, A. R. Sarmani, C. T. A. Brown, W. Sibett, V. E. Kisel, A. G. Selivanov, I. A. Denisov, A. E. Troshin, K. V. Yumashev, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Yb3+-doped YVO4 crystal for efficient Kerr-lens mode-locking in solid-state lasers,” Opt. Lett. 30, 3234–3236 (2005).
[CrossRef]

V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Sherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Spectroscopy and continious-wave diode-pumped laser action of Yb3+:YVO4,” Opt. Lett. 29, 2491–2493 (2004).
[CrossRef]

Kupchenko, M. I.

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO4 crystal,” Appl. Phys. B 85, 581–584 (2006).
[CrossRef]

A. A. Lagatsky, A. R. Sarmani, C. T. A. Brown, W. Sibett, V. E. Kisel, A. G. Selivanov, I. A. Denisov, A. E. Troshin, K. V. Yumashev, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Yb3+-doped YVO4 crystal for efficient Kerr-lens mode-locking in solid-state lasers,” Opt. Lett. 30, 3234–3236 (2005).
[CrossRef]

V. E. Kisel, A. E. Troshin, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morier-Genoud, and U. Keller, “Femtosecond pulse generation with a diode-pumped Yb3+:YVO4 laser,” Opt. Lett. 30, 1150–1152 (2005).
[CrossRef]

V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Q-switched Yb3+:YVO4 laser with Raman self-conversion,” Appl. Phys. B 80, 471–473 (2005).
[CrossRef]

V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Sherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Spectroscopy and continious-wave diode-pumped laser action of Yb3+:YVO4,” Opt. Lett. 29, 2491–2493 (2004).
[CrossRef]

Kuwano, Y.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lub, “Tetragonal vanadates YVO4 and GdVO4—new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194, 201–206 (2001).
[CrossRef]

Lagatsky, A. A.

A. A. Lagatsky, A. R. Sarmani, C. T. A. Brown, W. Sibett, V. E. Kisel, A. G. Selivanov, I. A. Denisov, A. E. Troshin, K. V. Yumashev, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Yb3+-doped YVO4 crystal for efficient Kerr-lens mode-locking in solid-state lasers,” Opt. Lett. 30, 3234–3236 (2005).
[CrossRef]

Lee, A. J.

A. J. Lee, H. M. Pask, P. Dekker, and J. A. Piper, “High efficiency, multi-watt cw yellow emission from an intracavity-doubled self-Raman laser using Nd:GdVO4,” Opt. Express 16, 21958–21963 (2008).
[CrossRef]

Lee, J. J.

D. E. Zelmon, J. J. Lee, K. M. Currin, J. M. Northridge, and D. Perlov, “Revisiting the optical properties of Nd doped yttrium orthovanadate,” Appl. Opt. 49, 644–647 (2010).
[CrossRef]

D. E. Zelmon, J. M. Northridge, J. J. Lee, K. M. Currin, and D. Perlov, “Optical properties of Nd-doped rare-earth vanadates,” Appl. Opt. 49, 4973–4978 (2010).
[CrossRef]

Li, G.

C. H. Zhang, B. Q. Yao, G. Li, Q. Wang, Y. L. Ju, and Y. Z. Wang, “2041.3  nm/2054.6  nm simultaneous dual-wavelength single-longitudinal-mode Tm, Ho:YVO4 microchip laser,” Laser Phys. 20, 1564–1567 (2010).
[CrossRef]

Li, H.

S. Zhang, S. Zhou, H. Li, and L. Li, “Investigation of thermal expansion and compressibility of rare-earth orthovanadates using a dielectric chemical bond method,” Inorg. Chem. 47, 7863–7867 (2008).
[CrossRef]

Li, L.

S. Zhang, S. Zhou, H. Li, and L. Li, “Investigation of thermal expansion and compressibility of rare-earth orthovanadates using a dielectric chemical bond method,” Inorg. Chem. 47, 7863–7867 (2008).
[CrossRef]

P. Shi, W. Chen, L. Li, and A. Gan, “Semianalytical thermal analysis on a Nd:YVO4 crystal,” Appl. Opt. 46, 4046–4051 (2007).
[CrossRef]

Li, Z. G.

Z. Xiong, Z. G. Li, N. Moore, W. L. Huang, and G. C. Lim, “Detailed investigation of thermal effects in longitudinally diode-pumped Nd:YVO4 lasers,” IEEE J. Quantum Electron. 39, 979–986 (2003).
[CrossRef]

Lim, G. C.

Z. Xiong, Z. G. Li, N. Moore, W. L. Huang, and G. C. Lim, “Detailed investigation of thermal effects in longitudinally diode-pumped Nd:YVO4 lasers,” IEEE J. Quantum Electron. 39, 979–986 (2003).
[CrossRef]

Liu, J.

S. Rivier, X. Mateos, J. Liu, V. Petrov, U. Griebner, M. Zorn, M. Weyers, H. Zhang, J. Wang, and M. Jiang, “Passively mode-locked Yb:LuVO4 oscillator,” Opt. Express 14, 11668–11671 (2006).
[CrossRef]

H. Zhang, J. Liu, J. Wang, C. Wang, L. Zhu, Z. Shao, X. Meng, X. Hu, and M. Jiang, “Characterization of the laser crystal Nd:GdVO4,” J. Opt. Soc. Am. B 19, 18–27 (2002).
[CrossRef]

Liu, Q.

F. He, L. Huang, M. Gong, Q. Liu, and X. Yan, “Stable acousto-optics Q-switched Nd:YVO4 laser at 500 kHz,” Laser Phys. Lett. 4, 511–514 (2007).
[CrossRef]

Liu, X.

H. Zhang, X. Meng, L. Zhu, P. Wang, X. Liu, Z. Yang, J. Dawes, and P. Dekker, “Growth, morphology and characterization of Yb:YVO4 crystal,” Phys. Status Solidi A 175, 705–710 (1999).
[CrossRef]

Loiko, P. A.

P. A. Loiko, V. V. Filippov, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermo-optic coefficients study in KGd(WO4)2 and KY(WO4)2 by a modified minimum deviation method,” Appl. Opt. 51, 2951–2957 (2012).
[CrossRef]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Thermo-optic dispersion formulas for monoclinic double tungstates K Re(WO4)2 where Re=Gd, Y, Lu, Yb,” Opt. Mater. 33, 1688–1694 (2011).
[CrossRef]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermo-optic coefficients and thermal lensing in the Nd-doped KGd(WO4)2 laser crystals,” Appl. Opt. 49, 6651–6659 (2010).
[CrossRef]

Louiseau, P.

J. Petit, B. Viana, P. Goldner, D. Vivien, P. Louiseau, and B. Ferrand, “Laser oscillation with low quantum defect in Yb:GdVO4, a crystal with high thermal conductivity,” Opt. Lett. 29, 833–835 (2004).
[CrossRef]

Lu, J.

Y. F. Lu, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient cw laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7, 787–789 (2010).
[CrossRef]

Lu, M. K.

H. J. Zhang, L. Zhu, X. L. Meng, Z. H. Yang, C. Q. Wang, W. T. Yu, Y. T. Chow, and M. K. Lu, “Thermal and laser properties of Nd:YVO4 crystal,” Cryst. Res. Technol. 34, 1011–1016 (1999).
[CrossRef]

Lu, Y. F.

Y. F. Lu, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient cw laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7, 787–789 (2010).
[CrossRef]

Lub, J.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lub, “Tetragonal vanadates YVO4 and GdVO4—new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194, 201–206 (2001).
[CrossRef]

Lupei, V.

V. Lupei, N. Pavel, Y. Sato, and T. Taira, “Highly efficient 1063 nm continuous-wave laser emission in Nd:GdVO4,” Opt. Lett. 28, 2366–2368 (2003).
[CrossRef]

Luthy, W.

A. I. Zagumennyi, Y. D. Zavartsev, P. A. Studenikin, V. I. Vlasov, I. A. Sherbakov, C. P. Wyss, W. Luthy, H. P. Weber, and P. A. Popov, “Thermal conductivity of a Tm3+:GdVO4 crystal and the operational characteristics of a microchip laser based on it,” IEEE J. Quantum Electron. 29, 298–300 (1999).
[CrossRef]

Malyarevich, A. M.

A. M. Malyarevich, I. A. Denisov, K. V. Yumashev, V. P. Mikhailov, R. S. Conroy, and B. D. Sinclair, “V:YAG—a new passive Q-switch for diode-pumped solid-state lasers,” Appl. Phys. B 67, 555–558 (1998).
[CrossRef]

Mateos, X.

S. Vatnik, M. C. Pujol, J. J. Carvajal, X. Mateos, M. Aguiló, F. Díaz, and V. Petrov, “Thermo-optic coefficients of monoclinic KLu(WO4)2,” Appl. Phys. B 95, 653–656 (2009).
[CrossRef]

S. Rivier, X. Mateos, J. Liu, V. Petrov, U. Griebner, M. Zorn, M. Weyers, H. Zhang, J. Wang, and M. Jiang, “Passively mode-locked Yb:LuVO4 oscillator,” Opt. Express 14, 11668–11671 (2006).
[CrossRef]

Matrosov, V. N.

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO4 crystal,” Appl. Phys. B 85, 581–584 (2006).
[CrossRef]

A. A. Lagatsky, A. R. Sarmani, C. T. A. Brown, W. Sibett, V. E. Kisel, A. G. Selivanov, I. A. Denisov, A. E. Troshin, K. V. Yumashev, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Yb3+-doped YVO4 crystal for efficient Kerr-lens mode-locking in solid-state lasers,” Opt. Lett. 30, 3234–3236 (2005).
[CrossRef]

V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Q-switched Yb3+:YVO4 laser with Raman self-conversion,” Appl. Phys. B 80, 471–473 (2005).
[CrossRef]

V. E. Kisel, A. E. Troshin, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morier-Genoud, and U. Keller, “Femtosecond pulse generation with a diode-pumped Yb3+:YVO4 laser,” Opt. Lett. 30, 1150–1152 (2005).
[CrossRef]

V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Sherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Spectroscopy and continious-wave diode-pumped laser action of Yb3+:YVO4,” Opt. Lett. 29, 2491–2493 (2004).
[CrossRef]

Matrosova, T. A.

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO4 crystal,” Appl. Phys. B 85, 581–584 (2006).
[CrossRef]

V. E. Kisel, A. E. Troshin, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morier-Genoud, and U. Keller, “Femtosecond pulse generation with a diode-pumped Yb3+:YVO4 laser,” Opt. Lett. 30, 1150–1152 (2005).
[CrossRef]

V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Q-switched Yb3+:YVO4 laser with Raman self-conversion,” Appl. Phys. B 80, 471–473 (2005).
[CrossRef]

A. A. Lagatsky, A. R. Sarmani, C. T. A. Brown, W. Sibett, V. E. Kisel, A. G. Selivanov, I. A. Denisov, A. E. Troshin, K. V. Yumashev, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Yb3+-doped YVO4 crystal for efficient Kerr-lens mode-locking in solid-state lasers,” Opt. Lett. 30, 3234–3236 (2005).
[CrossRef]

V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Sherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Spectroscopy and continious-wave diode-pumped laser action of Yb3+:YVO4,” Opt. Lett. 29, 2491–2493 (2004).
[CrossRef]

Maunier, C.

C. Maunier, J. L. Doualan, R. Moncorge, A. Speghinim, M. Bettinelli, and E. Cavalli, “Growth, spectroscopic characterization, and laser performance of Nd:LuVO4, a new infrared laser material that is suitable for diode pumping,” J. Opt. Soc. Am. B 19, 1794–1800 (2002).
[CrossRef]

McKinstry, H. A.

E. C. Subbarao, D. K. Agrawal, H. A. McKinstry, C. W. Salese, and R. Roy, “Thermal expansion of compounds of zircon structure,” J. Am. Ceram. Soc. 73, 1246–1252 (1990).
[CrossRef]

Meng, X.

H. Zhang, J. Liu, J. Wang, C. Wang, L. Zhu, Z. Shao, X. Meng, X. Hu, and M. Jiang, “Characterization of the laser crystal Nd:GdVO4,” J. Opt. Soc. Am. B 19, 18–27 (2002).
[CrossRef]

H. Zhang, X. Meng, L. Zhu, and Z. Yang, “Growth and thermal properties of Nd:GdVO4 single crystal,” Mater. Res. Bull. 34, 1589–1593 (1999).
[CrossRef]

H. Zhang, X. Meng, L. Zhu, P. Wang, X. Liu, Z. Yang, J. Dawes, and P. Dekker, “Growth, morphology and characterization of Yb:YVO4 crystal,” Phys. Status Solidi A 175, 705–710 (1999).
[CrossRef]

Meng, X. L.

L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793–797 (2003).
[CrossRef]

H. J. Zhang, L. Zhu, X. L. Meng, Z. H. Yang, C. Q. Wang, W. T. Yu, Y. T. Chow, and M. K. Lu, “Thermal and laser properties of Nd:YVO4 crystal,” Cryst. Res. Technol. 34, 1011–1016 (1999).
[CrossRef]

Meyn, J. P.

T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, and I. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4,” Appl. Phys. B 58, 373–379 (1994).
[CrossRef]

Mikhailov, V. P.

A. M. Malyarevich, I. A. Denisov, K. V. Yumashev, V. P. Mikhailov, R. S. Conroy, and B. D. Sinclair, “V:YAG—a new passive Q-switch for diode-pumped solid-state lasers,” Appl. Phys. B 67, 555–558 (1998).
[CrossRef]

Moncorge, R.

C. Maunier, J. L. Doualan, R. Moncorge, A. Speghinim, M. Bettinelli, and E. Cavalli, “Growth, spectroscopic characterization, and laser performance of Nd:LuVO4, a new infrared laser material that is suitable for diode pumping,” J. Opt. Soc. Am. B 19, 1794–1800 (2002).
[CrossRef]

Moncorgé, R.

R. Soulard, A. Zinoviev, J. L. Doualan, E. Ivakin, O. Antipov, and R. Moncorgé, “Detailed characterization of pump-induced refractive index changes observed in Nd:YVO4, Nd:GdVO4 and Nd:KGW,” Opt. Express 18, 1553–1568 (2010).
[CrossRef]

Mond, M.

C. Kränkel, D. Fagundes-Peters, S. T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, “Continuous wave laser operation of Yb3+:YVO4,” Appl. Phys. B 79, 543–546 (2004).
[CrossRef]

Moore, N.

Z. Xiong, Z. G. Li, N. Moore, W. L. Huang, and G. C. Lim, “Detailed investigation of thermal effects in longitudinally diode-pumped Nd:YVO4 lasers,” IEEE J. Quantum Electron. 39, 979–986 (2003).
[CrossRef]

Morier-Genoud, F.

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO4 crystal,” Appl. Phys. B 85, 581–584 (2006).
[CrossRef]

V. E. Kisel, A. E. Troshin, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morier-Genoud, and U. Keller, “Femtosecond pulse generation with a diode-pumped Yb3+:YVO4 laser,” Opt. Lett. 30, 1150–1152 (2005).
[CrossRef]

Moser, M.

B. Braun, F. X. Kartner, G. Zhang, M. Moser, and U. Keller, “56 ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22, 381–383 (1997).
[CrossRef]

Mukai, A.

T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, “Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip lasers,” Opt. Lett. 16, 1955–1957 (1991).
[CrossRef]

Mukhopadhyay, P. K.

P. K. Mukhopadhyay, A. Nautiyal, P. K. Gupta, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “Experimental determination of the thermo-optic coefficient (dn/dT) and the effective stimulated emission cross-section (σe) of an a-axis cut 1 at. % doped Nd:GdVO4 crystal at 1.06 μm wavelength,” Appl. Phys. B 77, 81–87 (2003).
[CrossRef]

Murai, T.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lub, “Tetragonal vanadates YVO4 and GdVO4—new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194, 201–206 (2001).
[CrossRef]

Nathan, T. P. S.

P. K. Mukhopadhyay, A. Nautiyal, P. K. Gupta, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “Experimental determination of the thermo-optic coefficient (dn/dT) and the effective stimulated emission cross-section (σe) of an a-axis cut 1 at. % doped Nd:GdVO4 crystal at 1.06 μm wavelength,” Appl. Phys. B 77, 81–87 (2003).
[CrossRef]

Nautiyal, A.

P. K. Mukhopadhyay, A. Nautiyal, P. K. Gupta, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “Experimental determination of the thermo-optic coefficient (dn/dT) and the effective stimulated emission cross-section (σe) of an a-axis cut 1 at. % doped Nd:GdVO4 crystal at 1.06 μm wavelength,” Appl. Phys. B 77, 81–87 (2003).
[CrossRef]

Northridge, J. M.

D. E. Zelmon, J. J. Lee, K. M. Currin, J. M. Northridge, and D. Perlov, “Revisiting the optical properties of Nd doped yttrium orthovanadate,” Appl. Opt. 49, 644–647 (2010).
[CrossRef]

D. E. Zelmon, J. M. Northridge, J. J. Lee, K. M. Currin, and D. Perlov, “Optical properties of Nd-doped rare-earth vanadates,” Appl. Opt. 49, 4973–4978 (2010).
[CrossRef]

Nozawa, Y.

T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, “Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip lasers,” Opt. Lett. 16, 1955–1957 (1991).
[CrossRef]

Nurthy, K. S.

N. R. Reddy and K. S. Nurthy, “Thermal expansion of yttrium vanadate,” J. Mater. Sci. Lett. 2, 139–140 (1983).
[CrossRef]

Ochoa, J. R.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 448–459 (2007).
[CrossRef]

Ostroumov, V. G.

T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, and I. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4,” Appl. Phys. B 58, 373–379 (1994).
[CrossRef]

Paschotta, R.

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO4 crystal,” Appl. Phys. B 85, 581–584 (2006).
[CrossRef]

V. E. Kisel, A. E. Troshin, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morier-Genoud, and U. Keller, “Femtosecond pulse generation with a diode-pumped Yb3+:YVO4 laser,” Opt. Lett. 30, 1150–1152 (2005).
[CrossRef]

Pask, H. M.

A. J. Lee, H. M. Pask, P. Dekker, and J. A. Piper, “High efficiency, multi-watt cw yellow emission from an intracavity-doubled self-Raman laser using Nd:GdVO4,” Opt. Express 16, 21958–21963 (2008).
[CrossRef]

Pavel, N.

V. Lupei, N. Pavel, Y. Sato, and T. Taira, “Highly efficient 1063 nm continuous-wave laser emission in Nd:GdVO4,” Opt. Lett. 28, 2366–2368 (2003).
[CrossRef]

Pavlyuk, A. A.

P. A. Loiko, V. V. Filippov, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermo-optic coefficients study in KGd(WO4)2 and KY(WO4)2 by a modified minimum deviation method,” Appl. Opt. 51, 2951–2957 (2012).
[CrossRef]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Thermo-optic dispersion formulas for monoclinic double tungstates K Re(WO4)2 where Re=Gd, Y, Lu, Yb,” Opt. Mater. 33, 1688–1694 (2011).
[CrossRef]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermo-optic coefficients and thermal lensing in the Nd-doped KGd(WO4)2 laser crystals,” Appl. Opt. 49, 6651–6659 (2010).
[CrossRef]

Peng, X.

X. Peng, L. Xu, and A. Asundi, “Thermal lensing effects for diode-end-pumped Nd:YVO4 and Nd:YAG lasers,” Opt. Eng. 43, 2454–2461 (2004).
[CrossRef]

Perlov, D.

D. E. Zelmon, J. J. Lee, K. M. Currin, J. M. Northridge, and D. Perlov, “Revisiting the optical properties of Nd doped yttrium orthovanadate,” Appl. Opt. 49, 644–647 (2010).
[CrossRef]

D. E. Zelmon, J. M. Northridge, J. J. Lee, K. M. Currin, and D. Perlov, “Optical properties of Nd-doped rare-earth vanadates,” Appl. Opt. 49, 4973–4978 (2010).
[CrossRef]

Petit, J.

J. Petit, B. Viana, P. Goldner, D. Vivien, P. Louiseau, and B. Ferrand, “Laser oscillation with low quantum defect in Yb:GdVO4, a crystal with high thermal conductivity,” Opt. Lett. 29, 833–835 (2004).
[CrossRef]

Petrov, V.

S. Vatnik, M. C. Pujol, J. J. Carvajal, X. Mateos, M. Aguiló, F. Díaz, and V. Petrov, “Thermo-optic coefficients of monoclinic KLu(WO4)2,” Appl. Phys. B 95, 653–656 (2009).
[CrossRef]

S. Rivier, X. Mateos, J. Liu, V. Petrov, U. Griebner, M. Zorn, M. Weyers, H. Zhang, J. Wang, and M. Jiang, “Passively mode-locked Yb:LuVO4 oscillator,” Opt. Express 14, 11668–11671 (2006).
[CrossRef]

Piper, J. A.

A. J. Lee, H. M. Pask, P. Dekker, and J. A. Piper, “High efficiency, multi-watt cw yellow emission from an intracavity-doubled self-Raman laser using Nd:GdVO4,” Opt. Express 16, 21958–21963 (2008).
[CrossRef]

Popov, P. A.

A. I. Zagumennyi, Y. D. Zavartsev, P. A. Studenikin, V. I. Vlasov, I. A. Sherbakov, C. P. Wyss, W. Luthy, H. P. Weber, and P. A. Popov, “Thermal conductivity of a Tm3+:GdVO4 crystal and the operational characteristics of a microchip laser based on it,” IEEE J. Quantum Electron. 29, 298–300 (1999).
[CrossRef]

P. A. Studenikin, A. I. Zagumennyi, Y. D. Zavartsev, P. A. Popov, and I. A. Shcherbakov, “GdVO4 as a new medium for solid-state lasers: some optical and thermal properties of crystals doped with Cd3+, Tm3+, and Er3+ ions,” IEEE J. Quantum Electron. 25, 1162–1165 (1995).
[CrossRef]

Pujol, M. C.

S. Vatnik, M. C. Pujol, J. J. Carvajal, X. Mateos, M. Aguiló, F. Díaz, and V. Petrov, “Thermo-optic coefficients of monoclinic KLu(WO4)2,” Appl. Phys. B 95, 653–656 (2009).
[CrossRef]

Qin, L. J.

L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793–797 (2003).
[CrossRef]

Rachkovskaya, G. E.

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Thermo-optic dispersion formulas for monoclinic double tungstates K Re(WO4)2 where Re=Gd, Y, Lu, Yb,” Opt. Mater. 33, 1688–1694 (2011).
[CrossRef]

Ranganathan, K.

P. K. Mukhopadhyay, A. Nautiyal, P. K. Gupta, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “Experimental determination of the thermo-optic coefficient (dn/dT) and the effective stimulated emission cross-section (σe) of an a-axis cut 1 at. % doped Nd:GdVO4 crystal at 1.06 μm wavelength,” Appl. Phys. B 77, 81–87 (2003).
[CrossRef]

Reddy, N. R.

N. R. Reddy and K. S. Nurthy, “Thermal expansion of yttrium vanadate,” J. Mater. Sci. Lett. 2, 139–140 (1983).
[CrossRef]

Ripin, D. J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 448–459 (2007).
[CrossRef]

Rivier, S.

S. Rivier, X. Mateos, J. Liu, V. Petrov, U. Griebner, M. Zorn, M. Weyers, H. Zhang, J. Wang, and M. Jiang, “Passively mode-locked Yb:LuVO4 oscillator,” Opt. Express 14, 11668–11671 (2006).
[CrossRef]

Roy, R.

E. C. Subbarao, D. K. Agrawal, H. A. McKinstry, C. W. Salese, and R. Roy, “Thermal expansion of compounds of zircon structure,” J. Am. Ceram. Soc. 73, 1246–1252 (1990).
[CrossRef]

Salese, C. W.

E. C. Subbarao, D. K. Agrawal, H. A. McKinstry, C. W. Salese, and R. Roy, “Thermal expansion of compounds of zircon structure,” J. Am. Ceram. Soc. 73, 1246–1252 (1990).
[CrossRef]

Sarmani, A. R.

A. A. Lagatsky, A. R. Sarmani, C. T. A. Brown, W. Sibett, V. E. Kisel, A. G. Selivanov, I. A. Denisov, A. E. Troshin, K. V. Yumashev, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Yb3+-doped YVO4 crystal for efficient Kerr-lens mode-locking in solid-state lasers,” Opt. Lett. 30, 3234–3236 (2005).
[CrossRef]

Sato, Y.

Y. Sato and T. Taira, “The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-one dimensional flash method,” Opt. Express 14, 10528–10536 (2006).
[CrossRef]

V. Lupei, N. Pavel, Y. Sato, and T. Taira, “Highly efficient 1063 nm continuous-wave laser emission in Nd:GdVO4,” Opt. Lett. 28, 2366–2368 (2003).
[CrossRef]

Y. Sato and T. Taira, “Thermo-optical and -mechanical parameters of Nd:GdVO4 and Nd:YVO4,” in Conference for Lasers and Electro-Optics (IEEE, 2007).

Selivanov, A. G.

A. A. Lagatsky, A. R. Sarmani, C. T. A. Brown, W. Sibett, V. E. Kisel, A. G. Selivanov, I. A. Denisov, A. E. Troshin, K. V. Yumashev, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Yb3+-doped YVO4 crystal for efficient Kerr-lens mode-locking in solid-state lasers,” Opt. Lett. 30, 3234–3236 (2005).
[CrossRef]

Shao, Z.

H. Zhang, J. Liu, J. Wang, C. Wang, L. Zhu, Z. Shao, X. Meng, X. Hu, and M. Jiang, “Characterization of the laser crystal Nd:GdVO4,” J. Opt. Soc. Am. B 19, 18–27 (2002).
[CrossRef]

Sharma, S. K.

P. K. Mukhopadhyay, A. Nautiyal, P. K. Gupta, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “Experimental determination of the thermo-optic coefficient (dn/dT) and the effective stimulated emission cross-section (σe) of an a-axis cut 1 at. % doped Nd:GdVO4 crystal at 1.06 μm wavelength,” Appl. Phys. B 77, 81–87 (2003).
[CrossRef]

Shcherbakov, I. A.

P. A. Studenikin, A. I. Zagumennyi, Y. D. Zavartsev, P. A. Popov, and I. A. Shcherbakov, “GdVO4 as a new medium for solid-state lasers: some optical and thermal properties of crystals doped with Cd3+, Tm3+, and Er3+ ions,” IEEE J. Quantum Electron. 25, 1162–1165 (1995).
[CrossRef]

T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, and I. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4,” Appl. Phys. B 58, 373–379 (1994).
[CrossRef]

Shcherbitsky, V. G.

V. E. Kisel, A. E. Troshin, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morier-Genoud, and U. Keller, “Femtosecond pulse generation with a diode-pumped Yb3+:YVO4 laser,” Opt. Lett. 30, 1150–1152 (2005).
[CrossRef]

V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Q-switched Yb3+:YVO4 laser with Raman self-conversion,” Appl. Phys. B 80, 471–473 (2005).
[CrossRef]

Shen, H. Y.

L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793–797 (2003).
[CrossRef]

Sherbakov, I. A.

A. I. Zagumennyi, Y. D. Zavartsev, P. A. Studenikin, V. I. Vlasov, I. A. Sherbakov, C. P. Wyss, W. Luthy, H. P. Weber, and P. A. Popov, “Thermal conductivity of a Tm3+:GdVO4 crystal and the operational characteristics of a microchip laser based on it,” IEEE J. Quantum Electron. 29, 298–300 (1999).
[CrossRef]

Sherbitsky, V. G.

V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Sherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Spectroscopy and continious-wave diode-pumped laser action of Yb3+:YVO4,” Opt. Lett. 29, 2491–2493 (2004).
[CrossRef]

Shi, P.

P. Shi, W. Chen, L. Li, and A. Gan, “Semianalytical thermal analysis on a Nd:YVO4 crystal,” Appl. Opt. 46, 4046–4051 (2007).
[CrossRef]

Sibett, W.

A. A. Lagatsky, A. R. Sarmani, C. T. A. Brown, W. Sibett, V. E. Kisel, A. G. Selivanov, I. A. Denisov, A. E. Troshin, K. V. Yumashev, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Yb3+-doped YVO4 crystal for efficient Kerr-lens mode-locking in solid-state lasers,” Opt. Lett. 30, 3234–3236 (2005).
[CrossRef]

Sinclair, B. D.

A. M. Malyarevich, I. A. Denisov, K. V. Yumashev, V. P. Mikhailov, R. S. Conroy, and B. D. Sinclair, “V:YAG—a new passive Q-switch for diode-pumped solid-state lasers,” Appl. Phys. B 67, 555–558 (1998).
[CrossRef]

Soulard, R.

R. Soulard, A. Zinoviev, J. L. Doualan, E. Ivakin, O. Antipov, and R. Moncorgé, “Detailed characterization of pump-induced refractive index changes observed in Nd:YVO4, Nd:GdVO4 and Nd:KGW,” Opt. Express 18, 1553–1568 (2010).
[CrossRef]

Speghinim, A.

C. Maunier, J. L. Doualan, R. Moncorge, A. Speghinim, M. Bettinelli, and E. Cavalli, “Growth, spectroscopic characterization, and laser performance of Nd:LuVO4, a new infrared laser material that is suitable for diode pumping,” J. Opt. Soc. Am. B 19, 1794–1800 (2002).
[CrossRef]

Spitzberg, J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 448–459 (2007).
[CrossRef]

Strauss, H. J.

H. J. Strauss, “Thermo-optical effects in high-power end-pumped vanadate lasers,” Ph.D. thesis (Stellenbosch University, 2010).

H. J. Strauss, C. Bollig, H. M. von Bergmann, and M. J. D. Esser, “Comparative study of thermal lensing in low-doped Nd:YVO4 and Nd: GdVO4 of equal doping concentration,” in Conference for Lasers and Electro-Optics (IEEE, 2009).

Studenikin, P. A.

A. I. Zagumennyi, Y. D. Zavartsev, P. A. Studenikin, V. I. Vlasov, I. A. Sherbakov, C. P. Wyss, W. Luthy, H. P. Weber, and P. A. Popov, “Thermal conductivity of a Tm3+:GdVO4 crystal and the operational characteristics of a microchip laser based on it,” IEEE J. Quantum Electron. 29, 298–300 (1999).
[CrossRef]

P. A. Studenikin, A. I. Zagumennyi, Y. D. Zavartsev, P. A. Popov, and I. A. Shcherbakov, “GdVO4 as a new medium for solid-state lasers: some optical and thermal properties of crystals doped with Cd3+, Tm3+, and Er3+ ions,” IEEE J. Quantum Electron. 25, 1162–1165 (1995).
[CrossRef]

Su, K. W.

Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for F3/24→I11/24 and F3/24→I13/24 transitions,” Opt. Express 16, 21155–21160 (2008).
[CrossRef]

Subbarao, E. C.

E. C. Subbarao, D. K. Agrawal, H. A. McKinstry, C. W. Salese, and R. Roy, “Thermal expansion of compounds of zircon structure,” J. Am. Ceram. Soc. 73, 1246–1252 (1990).
[CrossRef]

Sun, G. C.

Y. F. Lu, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient cw laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7, 787–789 (2010).
[CrossRef]

Taira, T.

Y. Sato and T. Taira, “The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-one dimensional flash method,” Opt. Express 14, 10528–10536 (2006).
[CrossRef]

V. Lupei, N. Pavel, Y. Sato, and T. Taira, “Highly efficient 1063 nm continuous-wave laser emission in Nd:GdVO4,” Opt. Lett. 28, 2366–2368 (2003).
[CrossRef]

T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, “Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip lasers,” Opt. Lett. 16, 1955–1957 (1991).
[CrossRef]

Y. Sato and T. Taira, “Thermo-optical and -mechanical parameters of Nd:GdVO4 and Nd:YVO4,” in Conference for Lasers and Electro-Optics (IEEE, 2007).

Tang, S.

X. Wang, S. Tang, Y. Tang, and N. Fernelius, “Thermal and thermo-optical properties of new Nd:YxGd1−xVO4 crystals,” Proc. SPIE 5723, 147–151 (2005).
[CrossRef]

Tang, Y.

X. Wang, S. Tang, Y. Tang, and N. Fernelius, “Thermal and thermo-optical properties of new Nd:YxGd1−xVO4 crystals,” Proc. SPIE 5723, 147–151 (2005).
[CrossRef]

Tilleman, M.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 448–459 (2007).
[CrossRef]

Tolstik, N. A.

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO4 crystal,” Appl. Phys. B 85, 581–584 (2006).
[CrossRef]

V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Q-switched Yb3+:YVO4 laser with Raman self-conversion,” Appl. Phys. B 80, 471–473 (2005).
[CrossRef]

V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Sherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Spectroscopy and continious-wave diode-pumped laser action of Yb3+:YVO4,” Opt. Lett. 29, 2491–2493 (2004).
[CrossRef]

Troshin, A. E.

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO4 crystal,” Appl. Phys. B 85, 581–584 (2006).
[CrossRef]

V. E. Kisel, A. E. Troshin, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morier-Genoud, and U. Keller, “Femtosecond pulse generation with a diode-pumped Yb3+:YVO4 laser,” Opt. Lett. 30, 1150–1152 (2005).
[CrossRef]

V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Q-switched Yb3+:YVO4 laser with Raman self-conversion,” Appl. Phys. B 80, 471–473 (2005).
[CrossRef]

A. A. Lagatsky, A. R. Sarmani, C. T. A. Brown, W. Sibett, V. E. Kisel, A. G. Selivanov, I. A. Denisov, A. E. Troshin, K. V. Yumashev, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Yb3+-doped YVO4 crystal for efficient Kerr-lens mode-locking in solid-state lasers,” Opt. Lett. 30, 3234–3236 (2005).
[CrossRef]

V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Sherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Spectroscopy and continious-wave diode-pumped laser action of Yb3+:YVO4,” Opt. Lett. 29, 2491–2493 (2004).
[CrossRef]

Uecker, R.

C. Kränkel, D. Fagundes-Peters, S. T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, “Continuous wave laser operation of Yb3+:YVO4,” Appl. Phys. B 79, 543–546 (2004).
[CrossRef]

Ueda, K.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lub, “Tetragonal vanadates YVO4 and GdVO4—new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194, 201–206 (2001).
[CrossRef]

Vatnik, S.

S. Vatnik, M. C. Pujol, J. J. Carvajal, X. Mateos, M. Aguiló, F. Díaz, and V. Petrov, “Thermo-optic coefficients of monoclinic KLu(WO4)2,” Appl. Phys. B 95, 653–656 (2009).
[CrossRef]

Viana, B.

J. Petit, B. Viana, P. Goldner, D. Vivien, P. Louiseau, and B. Ferrand, “Laser oscillation with low quantum defect in Yb:GdVO4, a crystal with high thermal conductivity,” Opt. Lett. 29, 833–835 (2004).
[CrossRef]

Vivien, D.

J. Petit, B. Viana, P. Goldner, D. Vivien, P. Louiseau, and B. Ferrand, “Laser oscillation with low quantum defect in Yb:GdVO4, a crystal with high thermal conductivity,” Opt. Lett. 29, 833–835 (2004).
[CrossRef]

Vlasov, V. I.

A. I. Zagumennyi, Y. D. Zavartsev, P. A. Studenikin, V. I. Vlasov, I. A. Sherbakov, C. P. Wyss, W. Luthy, H. P. Weber, and P. A. Popov, “Thermal conductivity of a Tm3+:GdVO4 crystal and the operational characteristics of a microchip laser based on it,” IEEE J. Quantum Electron. 29, 298–300 (1999).
[CrossRef]

von Bergmann, H. M.

H. J. Strauss, C. Bollig, H. M. von Bergmann, and M. J. D. Esser, “Comparative study of thermal lensing in low-doped Nd:YVO4 and Nd: GdVO4 of equal doping concentration,” in Conference for Lasers and Electro-Optics (IEEE, 2009).

Wang, C.

H. Zhang, J. Liu, J. Wang, C. Wang, L. Zhu, Z. Shao, X. Meng, X. Hu, and M. Jiang, “Characterization of the laser crystal Nd:GdVO4,” J. Opt. Soc. Am. B 19, 18–27 (2002).
[CrossRef]

Wang, C. Q.

H. J. Zhang, L. Zhu, X. L. Meng, Z. H. Yang, C. Q. Wang, W. T. Yu, Y. T. Chow, and M. K. Lu, “Thermal and laser properties of Nd:YVO4 crystal,” Cryst. Res. Technol. 34, 1011–1016 (1999).
[CrossRef]

Wang, J.

S. Rivier, X. Mateos, J. Liu, V. Petrov, U. Griebner, M. Zorn, M. Weyers, H. Zhang, J. Wang, and M. Jiang, “Passively mode-locked Yb:LuVO4 oscillator,” Opt. Express 14, 11668–11671 (2006).
[CrossRef]

H. Zhang, J. Liu, J. Wang, C. Wang, L. Zhu, Z. Shao, X. Meng, X. Hu, and M. Jiang, “Characterization of the laser crystal Nd:GdVO4,” J. Opt. Soc. Am. B 19, 18–27 (2002).
[CrossRef]

Wang, P.

H. Zhang, X. Meng, L. Zhu, P. Wang, X. Liu, Z. Yang, J. Dawes, and P. Dekker, “Growth, morphology and characterization of Yb:YVO4 crystal,” Phys. Status Solidi A 175, 705–710 (1999).
[CrossRef]

Wang, Q.

C. H. Zhang, B. Q. Yao, G. Li, Q. Wang, Y. L. Ju, and Y. Z. Wang, “2041.3  nm/2054.6  nm simultaneous dual-wavelength single-longitudinal-mode Tm, Ho:YVO4 microchip laser,” Laser Phys. 20, 1564–1567 (2010).
[CrossRef]

Wang, X.

X. Wang, S. Tang, Y. Tang, and N. Fernelius, “Thermal and thermo-optical properties of new Nd:YxGd1−xVO4 crystals,” Proc. SPIE 5723, 147–151 (2005).
[CrossRef]

Wang, Y. Z.

C. H. Zhang, B. Q. Yao, G. Li, Q. Wang, Y. L. Ju, and Y. Z. Wang, “2041.3  nm/2054.6  nm simultaneous dual-wavelength single-longitudinal-mode Tm, Ho:YVO4 microchip laser,” Laser Phys. 20, 1564–1567 (2010).
[CrossRef]

Weber, H. P.

A. I. Zagumennyi, Y. D. Zavartsev, P. A. Studenikin, V. I. Vlasov, I. A. Sherbakov, C. P. Wyss, W. Luthy, H. P. Weber, and P. A. Popov, “Thermal conductivity of a Tm3+:GdVO4 crystal and the operational characteristics of a microchip laser based on it,” IEEE J. Quantum Electron. 29, 298–300 (1999).
[CrossRef]

Weyers, M.

S. Rivier, X. Mateos, J. Liu, V. Petrov, U. Griebner, M. Zorn, M. Weyers, H. Zhang, J. Wang, and M. Jiang, “Passively mode-locked Yb:LuVO4 oscillator,” Opt. Express 14, 11668–11671 (2006).
[CrossRef]

Wyss, C. P.

A. I. Zagumennyi, Y. D. Zavartsev, P. A. Studenikin, V. I. Vlasov, I. A. Sherbakov, C. P. Wyss, W. Luthy, H. P. Weber, and P. A. Popov, “Thermal conductivity of a Tm3+:GdVO4 crystal and the operational characteristics of a microchip laser based on it,” IEEE J. Quantum Electron. 29, 298–300 (1999).
[CrossRef]

Xia, H. R.

L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793–797 (2003).
[CrossRef]

Xiong, Z.

Y. F. Lu, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient cw laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7, 787–789 (2010).
[CrossRef]

Z. Xiong, Z. G. Li, N. Moore, W. L. Huang, and G. C. Lim, “Detailed investigation of thermal effects in longitudinally diode-pumped Nd:YVO4 lasers,” IEEE J. Quantum Electron. 39, 979–986 (2003).
[CrossRef]

Xu, B. C.

L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793–797 (2003).
[CrossRef]

Xu, L.

X. Peng, L. Xu, and A. Asundi, “Thermal lensing effects for diode-end-pumped Nd:YVO4 and Nd:YAG lasers,” Opt. Eng. 43, 2454–2461 (2004).
[CrossRef]

Xu, L. J.

Y. F. Lu, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient cw laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7, 787–789 (2010).
[CrossRef]

Yan, X.

F. He, L. Huang, M. Gong, Q. Liu, and X. Yan, “Stable acousto-optics Q-switched Nd:YVO4 laser at 500 kHz,” Laser Phys. Lett. 4, 511–514 (2007).
[CrossRef]

Yang, Z.

H. Zhang, X. Meng, L. Zhu, and Z. Yang, “Growth and thermal properties of Nd:GdVO4 single crystal,” Mater. Res. Bull. 34, 1589–1593 (1999).
[CrossRef]

H. Zhang, X. Meng, L. Zhu, P. Wang, X. Liu, Z. Yang, J. Dawes, and P. Dekker, “Growth, morphology and characterization of Yb:YVO4 crystal,” Phys. Status Solidi A 175, 705–710 (1999).
[CrossRef]

Yang, Z. H.

H. J. Zhang, L. Zhu, X. L. Meng, Z. H. Yang, C. Q. Wang, W. T. Yu, Y. T. Chow, and M. K. Lu, “Thermal and laser properties of Nd:YVO4 crystal,” Cryst. Res. Technol. 34, 1011–1016 (1999).
[CrossRef]

Yao, B. Q.

C. H. Zhang, B. Q. Yao, G. Li, Q. Wang, Y. L. Ju, and Y. Z. Wang, “2041.3  nm/2054.6  nm simultaneous dual-wavelength single-longitudinal-mode Tm, Ho:YVO4 microchip laser,” Laser Phys. 20, 1564–1567 (2010).
[CrossRef]

Yu, W. T.

H. J. Zhang, L. Zhu, X. L. Meng, Z. H. Yang, C. Q. Wang, W. T. Yu, Y. T. Chow, and M. K. Lu, “Thermal and laser properties of Nd:YVO4 crystal,” Cryst. Res. Technol. 34, 1011–1016 (1999).
[CrossRef]

Yumashev, K. V.

P. A. Loiko, V. V. Filippov, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermo-optic coefficients study in KGd(WO4)2 and KY(WO4)2 by a modified minimum deviation method,” Appl. Opt. 51, 2951–2957 (2012).
[CrossRef]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Thermo-optic dispersion formulas for monoclinic double tungstates K Re(WO4)2 where Re=Gd, Y, Lu, Yb,” Opt. Mater. 33, 1688–1694 (2011).
[CrossRef]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermo-optic coefficients and thermal lensing in the Nd-doped KGd(WO4)2 laser crystals,” Appl. Opt. 49, 6651–6659 (2010).
[CrossRef]

A. A. Lagatsky, A. R. Sarmani, C. T. A. Brown, W. Sibett, V. E. Kisel, A. G. Selivanov, I. A. Denisov, A. E. Troshin, K. V. Yumashev, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Yb3+-doped YVO4 crystal for efficient Kerr-lens mode-locking in solid-state lasers,” Opt. Lett. 30, 3234–3236 (2005).
[CrossRef]

A. M. Malyarevich, I. A. Denisov, K. V. Yumashev, V. P. Mikhailov, R. S. Conroy, and B. D. Sinclair, “V:YAG—a new passive Q-switch for diode-pumped solid-state lasers,” Appl. Phys. B 67, 555–558 (1998).
[CrossRef]

Zagumennyi, A. I.

A. I. Zagumennyi, Y. D. Zavartsev, P. A. Studenikin, V. I. Vlasov, I. A. Sherbakov, C. P. Wyss, W. Luthy, H. P. Weber, and P. A. Popov, “Thermal conductivity of a Tm3+:GdVO4 crystal and the operational characteristics of a microchip laser based on it,” IEEE J. Quantum Electron. 29, 298–300 (1999).
[CrossRef]

P. A. Studenikin, A. I. Zagumennyi, Y. D. Zavartsev, P. A. Popov, and I. A. Shcherbakov, “GdVO4 as a new medium for solid-state lasers: some optical and thermal properties of crystals doped with Cd3+, Tm3+, and Er3+ ions,” IEEE J. Quantum Electron. 25, 1162–1165 (1995).
[CrossRef]

T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, and I. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4,” Appl. Phys. B 58, 373–379 (1994).
[CrossRef]

Zavartsev, Y. D.

A. I. Zagumennyi, Y. D. Zavartsev, P. A. Studenikin, V. I. Vlasov, I. A. Sherbakov, C. P. Wyss, W. Luthy, H. P. Weber, and P. A. Popov, “Thermal conductivity of a Tm3+:GdVO4 crystal and the operational characteristics of a microchip laser based on it,” IEEE J. Quantum Electron. 29, 298–300 (1999).
[CrossRef]

P. A. Studenikin, A. I. Zagumennyi, Y. D. Zavartsev, P. A. Popov, and I. A. Shcherbakov, “GdVO4 as a new medium for solid-state lasers: some optical and thermal properties of crystals doped with Cd3+, Tm3+, and Er3+ ions,” IEEE J. Quantum Electron. 25, 1162–1165 (1995).
[CrossRef]

Zelmon, D. E.

D. E. Zelmon, J. J. Lee, K. M. Currin, J. M. Northridge, and D. Perlov, “Revisiting the optical properties of Nd doped yttrium orthovanadate,” Appl. Opt. 49, 644–647 (2010).
[CrossRef]

D. E. Zelmon, J. M. Northridge, J. J. Lee, K. M. Currin, and D. Perlov, “Optical properties of Nd-doped rare-earth vanadates,” Appl. Opt. 49, 4973–4978 (2010).
[CrossRef]

Zhang, C. H.

C. H. Zhang, B. Q. Yao, G. Li, Q. Wang, Y. L. Ju, and Y. Z. Wang, “2041.3  nm/2054.6  nm simultaneous dual-wavelength single-longitudinal-mode Tm, Ho:YVO4 microchip laser,” Laser Phys. 20, 1564–1567 (2010).
[CrossRef]

Zhang, G.

B. Braun, F. X. Kartner, G. Zhang, M. Moser, and U. Keller, “56 ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22, 381–383 (1997).
[CrossRef]

Zhang, H.

S. Rivier, X. Mateos, J. Liu, V. Petrov, U. Griebner, M. Zorn, M. Weyers, H. Zhang, J. Wang, and M. Jiang, “Passively mode-locked Yb:LuVO4 oscillator,” Opt. Express 14, 11668–11671 (2006).
[CrossRef]

H. Zhang, J. Liu, J. Wang, C. Wang, L. Zhu, Z. Shao, X. Meng, X. Hu, and M. Jiang, “Characterization of the laser crystal Nd:GdVO4,” J. Opt. Soc. Am. B 19, 18–27 (2002).
[CrossRef]

H. Zhang, X. Meng, L. Zhu, and Z. Yang, “Growth and thermal properties of Nd:GdVO4 single crystal,” Mater. Res. Bull. 34, 1589–1593 (1999).
[CrossRef]

H. Zhang, X. Meng, L. Zhu, P. Wang, X. Liu, Z. Yang, J. Dawes, and P. Dekker, “Growth, morphology and characterization of Yb:YVO4 crystal,” Phys. Status Solidi A 175, 705–710 (1999).
[CrossRef]

Zhang, H. J.

H. J. Zhang, L. Zhu, X. L. Meng, Z. H. Yang, C. Q. Wang, W. T. Yu, Y. T. Chow, and M. K. Lu, “Thermal and laser properties of Nd:YVO4 crystal,” Cryst. Res. Technol. 34, 1011–1016 (1999).
[CrossRef]

Zhang, S.

S. Zhang, S. Zhou, H. Li, and L. Li, “Investigation of thermal expansion and compressibility of rare-earth orthovanadates using a dielectric chemical bond method,” Inorg. Chem. 47, 7863–7867 (2008).
[CrossRef]

Zhao, P.

L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793–797 (2003).
[CrossRef]

Zhao, Z. M.

Y. F. Lu, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient cw laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7, 787–789 (2010).
[CrossRef]

Zheng, G.

L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793–797 (2003).
[CrossRef]

Zhou, S.

S. Zhang, S. Zhou, H. Li, and L. Li, “Investigation of thermal expansion and compressibility of rare-earth orthovanadates using a dielectric chemical bond method,” Inorg. Chem. 47, 7863–7867 (2008).
[CrossRef]

Zhu, L.

L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793–797 (2003).
[CrossRef]

H. Zhang, J. Liu, J. Wang, C. Wang, L. Zhu, Z. Shao, X. Meng, X. Hu, and M. Jiang, “Characterization of the laser crystal Nd:GdVO4,” J. Opt. Soc. Am. B 19, 18–27 (2002).
[CrossRef]

H. Zhang, X. Meng, L. Zhu, and Z. Yang, “Growth and thermal properties of Nd:GdVO4 single crystal,” Mater. Res. Bull. 34, 1589–1593 (1999).
[CrossRef]

H. J. Zhang, L. Zhu, X. L. Meng, Z. H. Yang, C. Q. Wang, W. T. Yu, Y. T. Chow, and M. K. Lu, “Thermal and laser properties of Nd:YVO4 crystal,” Cryst. Res. Technol. 34, 1011–1016 (1999).
[CrossRef]

H. Zhang, X. Meng, L. Zhu, P. Wang, X. Liu, Z. Yang, J. Dawes, and P. Dekker, “Growth, morphology and characterization of Yb:YVO4 crystal,” Phys. Status Solidi A 175, 705–710 (1999).
[CrossRef]

Zinoviev, A.

R. Soulard, A. Zinoviev, J. L. Doualan, E. Ivakin, O. Antipov, and R. Moncorgé, “Detailed characterization of pump-induced refractive index changes observed in Nd:YVO4, Nd:GdVO4 and Nd:KGW,” Opt. Express 18, 1553–1568 (2010).
[CrossRef]

Zorn, M.

S. Rivier, X. Mateos, J. Liu, V. Petrov, U. Griebner, M. Zorn, M. Weyers, H. Zhang, J. Wang, and M. Jiang, “Passively mode-locked Yb:LuVO4 oscillator,” Opt. Express 14, 11668–11671 (2006).
[CrossRef]

Appl. Opt. (5)

D. E. Zelmon, J. M. Northridge, J. J. Lee, K. M. Currin, and D. Perlov, “Optical properties of Nd-doped rare-earth vanadates,” Appl. Opt. 49, 4973–4978 (2010).
[CrossRef]

D. E. Zelmon, J. J. Lee, K. M. Currin, J. M. Northridge, and D. Perlov, “Revisiting the optical properties of Nd doped yttrium orthovanadate,” Appl. Opt. 49, 644–647 (2010).
[CrossRef]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermo-optic coefficients and thermal lensing in the Nd-doped KGd(WO4)2 laser crystals,” Appl. Opt. 49, 6651–6659 (2010).
[CrossRef]

P. A. Loiko, V. V. Filippov, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermo-optic coefficients study in KGd(WO4)2 and KY(WO4)2 by a modified minimum deviation method,” Appl. Opt. 51, 2951–2957 (2012).
[CrossRef]

P. Shi, W. Chen, L. Li, and A. Gan, “Semianalytical thermal analysis on a Nd:YVO4 crystal,” Appl. Opt. 46, 4046–4051 (2007).
[CrossRef]

Appl. Phys. B (7)

S. Vatnik, M. C. Pujol, J. J. Carvajal, X. Mateos, M. Aguiló, F. Díaz, and V. Petrov, “Thermo-optic coefficients of monoclinic KLu(WO4)2,” Appl. Phys. B 95, 653–656 (2009).
[CrossRef]

P. K. Mukhopadhyay, A. Nautiyal, P. K. Gupta, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “Experimental determination of the thermo-optic coefficient (dn/dT) and the effective stimulated emission cross-section (σe) of an a-axis cut 1 at. % doped Nd:GdVO4 crystal at 1.06 μm wavelength,” Appl. Phys. B 77, 81–87 (2003).
[CrossRef]

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO4 crystal,” Appl. Phys. B 85, 581–584 (2006).
[CrossRef]

T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, and I. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4,” Appl. Phys. B 58, 373–379 (1994).
[CrossRef]

A. M. Malyarevich, I. A. Denisov, K. V. Yumashev, V. P. Mikhailov, R. S. Conroy, and B. D. Sinclair, “V:YAG—a new passive Q-switch for diode-pumped solid-state lasers,” Appl. Phys. B 67, 555–558 (1998).
[CrossRef]

V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Q-switched Yb3+:YVO4 laser with Raman self-conversion,” Appl. Phys. B 80, 471–473 (2005).
[CrossRef]

C. Kränkel, D. Fagundes-Peters, S. T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, “Continuous wave laser operation of Yb3+:YVO4,” Appl. Phys. B 79, 543–546 (2004).
[CrossRef]

Cryst. Res. Technol. (2)

H. J. Zhang, L. Zhu, X. L. Meng, Z. H. Yang, C. Q. Wang, W. T. Yu, Y. T. Chow, and M. K. Lu, “Thermal and laser properties of Nd:YVO4 crystal,” Cryst. Res. Technol. 34, 1011–1016 (1999).
[CrossRef]

L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793–797 (2003).
[CrossRef]

IEEE J. Quantum Electron. (3)

P. A. Studenikin, A. I. Zagumennyi, Y. D. Zavartsev, P. A. Popov, and I. A. Shcherbakov, “GdVO4 as a new medium for solid-state lasers: some optical and thermal properties of crystals doped with Cd3+, Tm3+, and Er3+ ions,” IEEE J. Quantum Electron. 25, 1162–1165 (1995).
[CrossRef]

A. I. Zagumennyi, Y. D. Zavartsev, P. A. Studenikin, V. I. Vlasov, I. A. Sherbakov, C. P. Wyss, W. Luthy, H. P. Weber, and P. A. Popov, “Thermal conductivity of a Tm3+:GdVO4 crystal and the operational characteristics of a microchip laser based on it,” IEEE J. Quantum Electron. 29, 298–300 (1999).
[CrossRef]

Z. Xiong, Z. G. Li, N. Moore, W. L. Huang, and G. C. Lim, “Detailed investigation of thermal effects in longitudinally diode-pumped Nd:YVO4 lasers,” IEEE J. Quantum Electron. 39, 979–986 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 448–459 (2007).
[CrossRef]

Inorg. Chem. (1)

S. Zhang, S. Zhou, H. Li, and L. Li, “Investigation of thermal expansion and compressibility of rare-earth orthovanadates using a dielectric chemical bond method,” Inorg. Chem. 47, 7863–7867 (2008).
[CrossRef]

J. Am. Ceram. Soc. (1)

E. C. Subbarao, D. K. Agrawal, H. A. McKinstry, C. W. Salese, and R. Roy, “Thermal expansion of compounds of zircon structure,” J. Am. Ceram. Soc. 73, 1246–1252 (1990).
[CrossRef]

J. Less-Common Met. (1)

G. Bayer, “Thermal expansion of ABO4 compounds with zircon and scheelite structure,” J. Less-Common Met. 26, 255–262 (1972).
[CrossRef]

J. Mater. Sci. Lett. (1)

N. R. Reddy and K. S. Nurthy, “Thermal expansion of yttrium vanadate,” J. Mater. Sci. Lett. 2, 139–140 (1983).
[CrossRef]

J. Opt. Soc. Am. B (2)

H. Zhang, J. Liu, J. Wang, C. Wang, L. Zhu, Z. Shao, X. Meng, X. Hu, and M. Jiang, “Characterization of the laser crystal Nd:GdVO4,” J. Opt. Soc. Am. B 19, 18–27 (2002).
[CrossRef]

C. Maunier, J. L. Doualan, R. Moncorge, A. Speghinim, M. Bettinelli, and E. Cavalli, “Growth, spectroscopic characterization, and laser performance of Nd:LuVO4, a new infrared laser material that is suitable for diode pumping,” J. Opt. Soc. Am. B 19, 1794–1800 (2002).
[CrossRef]

Laser Phys. (1)

C. H. Zhang, B. Q. Yao, G. Li, Q. Wang, Y. L. Ju, and Y. Z. Wang, “2041.3  nm/2054.6  nm simultaneous dual-wavelength single-longitudinal-mode Tm, Ho:YVO4 microchip laser,” Laser Phys. 20, 1564–1567 (2010).
[CrossRef]

Laser Phys. Lett. (2)

Y. F. Lu, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient cw laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7, 787–789 (2010).
[CrossRef]

F. He, L. Huang, M. Gong, Q. Liu, and X. Yan, “Stable acousto-optics Q-switched Nd:YVO4 laser at 500 kHz,” Laser Phys. Lett. 4, 511–514 (2007).
[CrossRef]

Mater. Res. Bull. (1)

H. Zhang, X. Meng, L. Zhu, and Z. Yang, “Growth and thermal properties of Nd:GdVO4 single crystal,” Mater. Res. Bull. 34, 1589–1593 (1999).
[CrossRef]

Opt. Commun. (1)

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lub, “Tetragonal vanadates YVO4 and GdVO4—new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194, 201–206 (2001).
[CrossRef]

Opt. Eng. (1)

X. Peng, L. Xu, and A. Asundi, “Thermal lensing effects for diode-end-pumped Nd:YVO4 and Nd:YAG lasers,” Opt. Eng. 43, 2454–2461 (2004).
[CrossRef]

Opt. Express (6)

J. Didierjean, E. Herault, F. Balembois, and P. Georges, “Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd:doped crystals,” Opt. Express 16, 8995–9010 (2008).
[CrossRef]

Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for F3/24→I11/24 and F3/24→I13/24 transitions,” Opt. Express 16, 21155–21160 (2008).
[CrossRef]

Y. Sato and T. Taira, “The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-one dimensional flash method,” Opt. Express 14, 10528–10536 (2006).
[CrossRef]

S. Rivier, X. Mateos, J. Liu, V. Petrov, U. Griebner, M. Zorn, M. Weyers, H. Zhang, J. Wang, and M. Jiang, “Passively mode-locked Yb:LuVO4 oscillator,” Opt. Express 14, 11668–11671 (2006).
[CrossRef]

R. Soulard, A. Zinoviev, J. L. Doualan, E. Ivakin, O. Antipov, and R. Moncorgé, “Detailed characterization of pump-induced refractive index changes observed in Nd:YVO4, Nd:GdVO4 and Nd:KGW,” Opt. Express 18, 1553–1568 (2010).
[CrossRef]

A. J. Lee, H. M. Pask, P. Dekker, and J. A. Piper, “High efficiency, multi-watt cw yellow emission from an intracavity-doubled self-Raman laser using Nd:GdVO4,” Opt. Express 16, 21958–21963 (2008).
[CrossRef]

Opt. Lett. (7)

B. Braun, F. X. Kartner, G. Zhang, M. Moser, and U. Keller, “56 ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22, 381–383 (1997).
[CrossRef]

T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, “Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip lasers,” Opt. Lett. 16, 1955–1957 (1991).
[CrossRef]

V. Lupei, N. Pavel, Y. Sato, and T. Taira, “Highly efficient 1063 nm continuous-wave laser emission in Nd:GdVO4,” Opt. Lett. 28, 2366–2368 (2003).
[CrossRef]

V. E. Kisel, A. E. Troshin, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morier-Genoud, and U. Keller, “Femtosecond pulse generation with a diode-pumped Yb3+:YVO4 laser,” Opt. Lett. 30, 1150–1152 (2005).
[CrossRef]

A. A. Lagatsky, A. R. Sarmani, C. T. A. Brown, W. Sibett, V. E. Kisel, A. G. Selivanov, I. A. Denisov, A. E. Troshin, K. V. Yumashev, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Yb3+-doped YVO4 crystal for efficient Kerr-lens mode-locking in solid-state lasers,” Opt. Lett. 30, 3234–3236 (2005).
[CrossRef]

V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Sherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Spectroscopy and continious-wave diode-pumped laser action of Yb3+:YVO4,” Opt. Lett. 29, 2491–2493 (2004).
[CrossRef]

J. Petit, B. Viana, P. Goldner, D. Vivien, P. Louiseau, and B. Ferrand, “Laser oscillation with low quantum defect in Yb:GdVO4, a crystal with high thermal conductivity,” Opt. Lett. 29, 833–835 (2004).
[CrossRef]

Opt. Mater. (1)

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Thermo-optic dispersion formulas for monoclinic double tungstates K Re(WO4)2 where Re=Gd, Y, Lu, Yb,” Opt. Mater. 33, 1688–1694 (2011).
[CrossRef]

Phys. Status Solidi A (1)

H. Zhang, X. Meng, L. Zhu, P. Wang, X. Liu, Z. Yang, J. Dawes, and P. Dekker, “Growth, morphology and characterization of Yb:YVO4 crystal,” Phys. Status Solidi A 175, 705–710 (1999).
[CrossRef]

Proc. SPIE (1)

X. Wang, S. Tang, Y. Tang, and N. Fernelius, “Thermal and thermo-optical properties of new Nd:YxGd1−xVO4 crystals,” Proc. SPIE 5723, 147–151 (2005).
[CrossRef]

Prog. Quantum Electron. (1)

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153(2006).
[CrossRef]

Other (5)

W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006).

Y. Sato and T. Taira, “Thermo-optical and -mechanical parameters of Nd:GdVO4 and Nd:YVO4,” in Conference for Lasers and Electro-Optics (IEEE, 2007).

G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, 1998).

H. J. Strauss, “Thermo-optical effects in high-power end-pumped vanadate lasers,” Ph.D. thesis (Stellenbosch University, 2010).

H. J. Strauss, C. Bollig, H. M. von Bergmann, and M. J. D. Esser, “Comparative study of thermal lensing in low-doped Nd:YVO4 and Nd: GdVO4 of equal doping concentration,” in Conference for Lasers and Electro-Optics (IEEE, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Measured values of thermal coefficients of the optical path W = d n / d T + ( n 1 ) α for a -cut ( k c ) and c -cut ( k c ) GdVO 4 and YVO 4 laser host crystals; light polarizations are E c and E c ; curves represent the modeling of experimental data.

Fig. 2.
Fig. 2.

Dispersion curves for principal thermo-optic coefficients d n o / d T and d n e / d T for GdVO 4 and YVO 4 laser host crystals; points are the experimental data.

Fig. 3.
Fig. 3.

Thermal coefficients of the optical path W = d n o / d T + ( n o 1 ) α ( k ) and thermal expansion coefficient α ( k ) for different light propagation directions k in the a c plane for GdVO 4 and YVO 4 laser host crystals. Light wavelength is 1 μm ; light polarization is E c .

Fig. 4.
Fig. 4.

Dependence of thermal lens sensitivity factor M = d D / d P abs on the pump beam radius for a -cut tetragonal vanadates YVO 4 and GdVO 4 (for two available light polarizations, π and σ ); laser wavelength is 1.06 μm, pump wavelength is 0.81 μm.

Tables (2)

Tables Icon

Table 1. Measured Values of Thermal Coefficient of the Optical Path W and Thermo-Optic Coefficient d n / d T [ 10 6 K 1 ] for Tetragonal Vanadates YVO 4 and GdVO 4 a

Tables Icon

Table 2. Principal Refractive Indices n o ( n e ) , Principal and “Generalized” Thermo-Optic Coefficients d n o / d T ( d n e / d T ) and Δ ( a -Cut Crystal, π -Polarization) [ 10 6 K 1 ] for YVO 4 and GdVO 4 Laser Host Crystalsa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d n o / d T = 2.11 + 1.074 / λ 2 0.028 / λ 4 + 0.042 / λ 6 , d n e / d T = 0.22 + 0.879 / λ 2 0.049 / λ 4 + 0.041 / λ 6 ( for YVO 4 ) ; d n o / d T = 2.74 + 1.054 / λ 2 + 0.003 / λ 4 + 0.033 / λ 6 , d n e / d T = 0.85 + 0.976 / λ 2 0.015 / λ 4 + 0.036 / λ 6 ( for GdVO 4 ) .
D = P abs η h κ π ω p 2 ( d n / d T + ( n 1 ) ( 1 + ν ) α ) .
Δ ( a - cut , σ - pol. ) = 4.64 + 1.154 / λ 2 0.036 / λ 4 + 0.043 / λ 6 , Δ ( a - cut , π - pol. ) = 2.66 + 0.982 / λ 2 0.057 / λ 4 + 0.042 / λ 6 ( for YVO 4 ) ; Δ ( a - cut , σ - pol. ) = 4.13 + 1.089 / λ 2 + 0.001 / λ 4 + 0.033 / λ 6 , Δ ( a - cut , π - pol. ) = 2.54 + 1.030 / λ 2 0.018 / λ 4 + 0.036 / λ 6 ( for GdVO 4 ) .

Metrics