Abstract

The Amsterdam discrete dipole approximation (ADDA) is used to study the effects of an inhomogeneous refractive index in the surrounding medium of a microspherical resonator on the quality and position of the whispering gallery modes (WGMs). The model consists of a polystyrene microsphere with a refractive index, n, of 1.587 surrounded by water (n=1.333) and an inhomogeneity (n=1.5) on top of the microsphere. The effect of the area of the inhomogeneity on the WGMs is modeled using the ADDA code and compared with Lorenz–Mie code. WGMs of various quantum dot embedded microspheres mounted on atomic force microscope cantilevers are experimentally measured and shown to be consistent with the model.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Pollinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
    [CrossRef]
  2. L. N. He, K. Ozdemir, J. G. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nature Nanotechnol. 6, 428–432 (2011).
    [CrossRef]
  3. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [CrossRef]
  4. H. T. Beier, G. L. Cote, and K. E. Meissner, “Whispering gallery mode biosensors consisting of quantum dot-embedded microspheres,” Ann. Biomed. Eng. 37, 1974–1983 (2009).
    [CrossRef]
  5. A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev. 4, 457–482 (2010).
    [CrossRef]
  6. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
    [CrossRef]
  7. S. Arnold and F. Vollmer, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
    [CrossRef]
  8. J. Topolancik and F. Vollmer, “Photoinduced transformations in bacteriorhodopsin membrane monitored with optical microcavities,” Biophys. J. 92, 2223–2229 (2007).
    [CrossRef]
  9. H. C. Ren, F. Vollmer, S. Arnold, and A. Libchaber, “High-Q microsphere biosensor—analysis for adsorption of rodlike bacteria,” Opt. Express 15, 17410–17423 (2007).
    [CrossRef]
  10. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
    [CrossRef]
  11. I. Teraoka, S. Arnold, and F. Vollmer, “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Am. B 20, 1937–1946 (2003).
    [CrossRef]
  12. I. Teraoka and S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” Opt. Soc. Am. B 23, 1381–1389 (2006).
    [CrossRef]
  13. M. Noto, D. Keng, I. Teraoka, and S. Arnold, “Detection of protein orientation on the silica microsphere surface using transverse electric/transverse magnetic whispering gallery modes,” Biophys. J. 92, 4466–4472 (2007).
    [CrossRef]
  14. I. Teraoka and S. Arnold, “Dielectric property of particles at interface in random sequential adsorption and its application to whispering gallery mode resonance-shift sensors,” J. Appl. Phys. 101, 023505 (2007).
    [CrossRef]
  15. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
    [CrossRef]
  16. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
    [CrossRef]
  17. G. Mie, “Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,” Ann. Phys. 330, 377–445 (1908).
    [CrossRef]
  18. M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996).
    [CrossRef]
  19. J. M. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (Wiley, 2002).
  20. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed., Artech House Antennas and Propagation Library (Artech House, 2000).
  21. M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microwave Theor. Tech. 55, 1209–1218 (2007).
    [CrossRef]
  22. A. V. Boriskin, S. V. Boriskina, A. Rolland, R. Sauleau, and A. I. Nosich, “Test of the FDTD accuracy in the analysis of the scattering resonances associated with high-Q whispering-gallery modes of a circular cylinder,” J. Opt. Soc. Am. A 25, 1169–1173 (2008).
    [CrossRef]
  23. J. Parsons, C. P. Burrows, J. R. Sambles, and W. L. Barnes, “A comparison of techniques used to simulate the scattering of electromagnetic radiation by metallic nanostructures,” J. Mod. Opt. 57, 356–365 (2010).
    [CrossRef]
  24. K. Busch, M. Konig, and J. Niegemann, “Discontinuous Galerkin methods in nanophotonics,” Laser Photon. Rev. 5, 773–809 (2011).
    [CrossRef]
  25. R. Rodriguez-Oliveros and J. A. Sanchez-Gil, “Localized surface-plasmon resonances on single and coupled nanoparticles through surface integral equations for flexible surfaces,” Opt. Express 19, 12208–12219 (2011).
    [CrossRef]
  26. G. Tang, R. L. Panetta, and P. Yang, “Application of a discontinuous Galerkin time domain method to simulation of optical properties of dielectric particles,” Appl. Opt. 49, 2827–2840 (2010).
    [CrossRef]
  27. W. L. Barnes, “Comparing experiment and theory in plasmonics,” J. Opt. A 11, 114002 (2009).
    [CrossRef]
  28. M. A. Yurkin and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transfer 112, 2234–2247(2011).
    [CrossRef]
  29. http://code.google.com/p/a-dda .
  30. S. Amini, Z. Sun, G. A. Meininger, and K. E. Meissner, “Combining nanoscale optical phenomena with atomic force microscopy for cellular studies,” Proc. SPIE 8225, 82251R (2012).
    [CrossRef]
  31. S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92, 211108 (2008).
    [CrossRef]
  32. E. E. Lees, M. J. Gunzburg, T. L. Nguyen, G. J. Howlett, J. Rothacker, E. C. Nice, A. H. A. Clayton, and P. Mulvaney, “Experimental determination of quantum dot size distributions, ligand packing densities, and bioconjugation using analytical ultracentrifugation,” Nano Lett. 8, 2883–2890 (2008).
    [CrossRef]
  33. X. G. Peng and Z. A. Peng, “Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor,” J. Am Chem. Soc. 123, 183–184 (2001).
    [CrossRef]
  34. Z. Sun, A. Juriani, G. A. Meininger, and K. E. Meissner, “Probing cell surface interactions using atomic force microscope cantilevers functionalized for quantum dot-enabled Forster resonance energy transfer,” J. Biomed. Opt. 14, 040502 (2009).
    [CrossRef]
  35. http://sc.tamu.edu .
  36. G. Gouesbet, J. A. Lock, and G. Grehan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011).
    [CrossRef]

2012 (1)

S. Amini, Z. Sun, G. A. Meininger, and K. E. Meissner, “Combining nanoscale optical phenomena with atomic force microscopy for cellular studies,” Proc. SPIE 8225, 82251R (2012).
[CrossRef]

2011 (5)

G. Gouesbet, J. A. Lock, and G. Grehan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011).
[CrossRef]

K. Busch, M. Konig, and J. Niegemann, “Discontinuous Galerkin methods in nanophotonics,” Laser Photon. Rev. 5, 773–809 (2011).
[CrossRef]

R. Rodriguez-Oliveros and J. A. Sanchez-Gil, “Localized surface-plasmon resonances on single and coupled nanoparticles through surface integral equations for flexible surfaces,” Opt. Express 19, 12208–12219 (2011).
[CrossRef]

M. A. Yurkin and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transfer 112, 2234–2247(2011).
[CrossRef]

L. N. He, K. Ozdemir, J. G. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nature Nanotechnol. 6, 428–432 (2011).
[CrossRef]

2010 (3)

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev. 4, 457–482 (2010).
[CrossRef]

J. Parsons, C. P. Burrows, J. R. Sambles, and W. L. Barnes, “A comparison of techniques used to simulate the scattering of electromagnetic radiation by metallic nanostructures,” J. Mod. Opt. 57, 356–365 (2010).
[CrossRef]

G. Tang, R. L. Panetta, and P. Yang, “Application of a discontinuous Galerkin time domain method to simulation of optical properties of dielectric particles,” Appl. Opt. 49, 2827–2840 (2010).
[CrossRef]

2009 (4)

W. L. Barnes, “Comparing experiment and theory in plasmonics,” J. Opt. A 11, 114002 (2009).
[CrossRef]

Z. Sun, A. Juriani, G. A. Meininger, and K. E. Meissner, “Probing cell surface interactions using atomic force microscope cantilevers functionalized for quantum dot-enabled Forster resonance energy transfer,” J. Biomed. Opt. 14, 040502 (2009).
[CrossRef]

M. Pollinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[CrossRef]

H. T. Beier, G. L. Cote, and K. E. Meissner, “Whispering gallery mode biosensors consisting of quantum dot-embedded microspheres,” Ann. Biomed. Eng. 37, 1974–1983 (2009).
[CrossRef]

2008 (4)

S. Arnold and F. Vollmer, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[CrossRef]

S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92, 211108 (2008).
[CrossRef]

E. E. Lees, M. J. Gunzburg, T. L. Nguyen, G. J. Howlett, J. Rothacker, E. C. Nice, A. H. A. Clayton, and P. Mulvaney, “Experimental determination of quantum dot size distributions, ligand packing densities, and bioconjugation using analytical ultracentrifugation,” Nano Lett. 8, 2883–2890 (2008).
[CrossRef]

A. V. Boriskin, S. V. Boriskina, A. Rolland, R. Sauleau, and A. I. Nosich, “Test of the FDTD accuracy in the analysis of the scattering resonances associated with high-Q whispering-gallery modes of a circular cylinder,” J. Opt. Soc. Am. A 25, 1169–1173 (2008).
[CrossRef]

2007 (5)

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microwave Theor. Tech. 55, 1209–1218 (2007).
[CrossRef]

J. Topolancik and F. Vollmer, “Photoinduced transformations in bacteriorhodopsin membrane monitored with optical microcavities,” Biophys. J. 92, 2223–2229 (2007).
[CrossRef]

H. C. Ren, F. Vollmer, S. Arnold, and A. Libchaber, “High-Q microsphere biosensor—analysis for adsorption of rodlike bacteria,” Opt. Express 15, 17410–17423 (2007).
[CrossRef]

M. Noto, D. Keng, I. Teraoka, and S. Arnold, “Detection of protein orientation on the silica microsphere surface using transverse electric/transverse magnetic whispering gallery modes,” Biophys. J. 92, 4466–4472 (2007).
[CrossRef]

I. Teraoka and S. Arnold, “Dielectric property of particles at interface in random sequential adsorption and its application to whispering gallery mode resonance-shift sensors,” J. Appl. Phys. 101, 023505 (2007).
[CrossRef]

2006 (1)

I. Teraoka and S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” Opt. Soc. Am. B 23, 1381–1389 (2006).
[CrossRef]

2003 (3)

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[CrossRef]

I. Teraoka, S. Arnold, and F. Vollmer, “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Am. B 20, 1937–1946 (2003).
[CrossRef]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef]

2002 (1)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[CrossRef]

2001 (1)

X. G. Peng and Z. A. Peng, “Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor,” J. Am Chem. Soc. 123, 183–184 (2001).
[CrossRef]

1996 (1)

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996).
[CrossRef]

1994 (1)

B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
[CrossRef]

1973 (1)

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[CrossRef]

1908 (1)

G. Mie, “Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,” Ann. Phys. 330, 377–445 (1908).
[CrossRef]

Amini, S.

S. Amini, Z. Sun, G. A. Meininger, and K. E. Meissner, “Combining nanoscale optical phenomena with atomic force microscopy for cellular studies,” Proc. SPIE 8225, 82251R (2012).
[CrossRef]

Arnold, S.

S. Arnold and F. Vollmer, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[CrossRef]

H. C. Ren, F. Vollmer, S. Arnold, and A. Libchaber, “High-Q microsphere biosensor—analysis for adsorption of rodlike bacteria,” Opt. Express 15, 17410–17423 (2007).
[CrossRef]

M. Noto, D. Keng, I. Teraoka, and S. Arnold, “Detection of protein orientation on the silica microsphere surface using transverse electric/transverse magnetic whispering gallery modes,” Biophys. J. 92, 4466–4472 (2007).
[CrossRef]

I. Teraoka and S. Arnold, “Dielectric property of particles at interface in random sequential adsorption and its application to whispering gallery mode resonance-shift sensors,” J. Appl. Phys. 101, 023505 (2007).
[CrossRef]

I. Teraoka and S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” Opt. Soc. Am. B 23, 1381–1389 (2006).
[CrossRef]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[CrossRef]

I. Teraoka, S. Arnold, and F. Vollmer, “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Am. B 20, 1937–1946 (2003).
[CrossRef]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[CrossRef]

Barnes, W. L.

J. Parsons, C. P. Burrows, J. R. Sambles, and W. L. Barnes, “A comparison of techniques used to simulate the scattering of electromagnetic radiation by metallic nanostructures,” J. Mod. Opt. 57, 356–365 (2010).
[CrossRef]

W. L. Barnes, “Comparing experiment and theory in plasmonics,” J. Opt. A 11, 114002 (2009).
[CrossRef]

Beckham, R. E.

S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92, 211108 (2008).
[CrossRef]

Beier, H. T.

H. T. Beier, G. L. Cote, and K. E. Meissner, “Whispering gallery mode biosensors consisting of quantum dot-embedded microspheres,” Ann. Biomed. Eng. 37, 1974–1983 (2009).
[CrossRef]

Boriskin, A. V.

A. V. Boriskin, S. V. Boriskina, A. Rolland, R. Sauleau, and A. I. Nosich, “Test of the FDTD accuracy in the analysis of the scattering resonances associated with high-Q whispering-gallery modes of a circular cylinder,” J. Opt. Soc. Am. A 25, 1169–1173 (2008).
[CrossRef]

Boriskina, S. V.

A. V. Boriskin, S. V. Boriskina, A. Rolland, R. Sauleau, and A. I. Nosich, “Test of the FDTD accuracy in the analysis of the scattering resonances associated with high-Q whispering-gallery modes of a circular cylinder,” J. Opt. Soc. Am. A 25, 1169–1173 (2008).
[CrossRef]

Braun, D.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[CrossRef]

Burrows, C. P.

J. Parsons, C. P. Burrows, J. R. Sambles, and W. L. Barnes, “A comparison of techniques used to simulate the scattering of electromagnetic radiation by metallic nanostructures,” J. Mod. Opt. 57, 356–365 (2010).
[CrossRef]

Busch, K.

K. Busch, M. Konig, and J. Niegemann, “Discontinuous Galerkin methods in nanophotonics,” Laser Photon. Rev. 5, 773–809 (2011).
[CrossRef]

Chiasera, A.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev. 4, 457–482 (2010).
[CrossRef]

Clayton, A. H. A.

E. E. Lees, M. J. Gunzburg, T. L. Nguyen, G. J. Howlett, J. Rothacker, E. C. Nice, A. H. A. Clayton, and P. Mulvaney, “Experimental determination of quantum dot size distributions, ligand packing densities, and bioconjugation using analytical ultracentrifugation,” Nano Lett. 8, 2883–2890 (2008).
[CrossRef]

Conti, G. N.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev. 4, 457–482 (2010).
[CrossRef]

Cote, G. L.

H. T. Beier, G. L. Cote, and K. E. Meissner, “Whispering gallery mode biosensors consisting of quantum dot-embedded microspheres,” Ann. Biomed. Eng. 37, 1974–1983 (2009).
[CrossRef]

Draine, B. T.

B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
[CrossRef]

Dumeige, Y.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev. 4, 457–482 (2010).
[CrossRef]

Feron, P.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev. 4, 457–482 (2010).
[CrossRef]

Ferrari, M.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev. 4, 457–482 (2010).
[CrossRef]

Flatau, P. J.

B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
[CrossRef]

Gouesbet, G.

G. Gouesbet, J. A. Lock, and G. Grehan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011).
[CrossRef]

Grehan, G.

G. Gouesbet, J. A. Lock, and G. Grehan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011).
[CrossRef]

Gunzburg, M. J.

E. E. Lees, M. J. Gunzburg, T. L. Nguyen, G. J. Howlett, J. Rothacker, E. C. Nice, A. H. A. Clayton, and P. Mulvaney, “Experimental determination of quantum dot size distributions, ligand packing densities, and bioconjugation using analytical ultracentrifugation,” Nano Lett. 8, 2883–2890 (2008).
[CrossRef]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed., Artech House Antennas and Propagation Library (Artech House, 2000).

He, L. N.

L. N. He, K. Ozdemir, J. G. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nature Nanotechnol. 6, 428–432 (2011).
[CrossRef]

Hoekstra, A. G.

M. A. Yurkin and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transfer 112, 2234–2247(2011).
[CrossRef]

Holler, S.

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[CrossRef]

Howlett, G. J.

E. E. Lees, M. J. Gunzburg, T. L. Nguyen, G. J. Howlett, J. Rothacker, E. C. Nice, A. H. A. Clayton, and P. Mulvaney, “Experimental determination of quantum dot size distributions, ligand packing densities, and bioconjugation using analytical ultracentrifugation,” Nano Lett. 8, 2883–2890 (2008).
[CrossRef]

Jestin, Y.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev. 4, 457–482 (2010).
[CrossRef]

Jin, J. M.

J. M. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (Wiley, 2002).

Juriani, A.

Z. Sun, A. Juriani, G. A. Meininger, and K. E. Meissner, “Probing cell surface interactions using atomic force microscope cantilevers functionalized for quantum dot-enabled Forster resonance energy transfer,” J. Biomed. Opt. 14, 040502 (2009).
[CrossRef]

Keng, D.

M. Noto, D. Keng, I. Teraoka, and S. Arnold, “Detection of protein orientation on the silica microsphere surface using transverse electric/transverse magnetic whispering gallery modes,” Biophys. J. 92, 4466–4472 (2007).
[CrossRef]

Khoshsima, M.

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[CrossRef]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[CrossRef]

Kim, W.

L. N. He, K. Ozdemir, J. G. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nature Nanotechnol. 6, 428–432 (2011).
[CrossRef]

Konig, M.

K. Busch, M. Konig, and J. Niegemann, “Discontinuous Galerkin methods in nanophotonics,” Laser Photon. Rev. 5, 773–809 (2011).
[CrossRef]

Lees, E. E.

E. E. Lees, M. J. Gunzburg, T. L. Nguyen, G. J. Howlett, J. Rothacker, E. C. Nice, A. H. A. Clayton, and P. Mulvaney, “Experimental determination of quantum dot size distributions, ligand packing densities, and bioconjugation using analytical ultracentrifugation,” Nano Lett. 8, 2883–2890 (2008).
[CrossRef]

Libchaber, A.

H. C. Ren, F. Vollmer, S. Arnold, and A. Libchaber, “High-Q microsphere biosensor—analysis for adsorption of rodlike bacteria,” Opt. Express 15, 17410–17423 (2007).
[CrossRef]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[CrossRef]

Lock, J. A.

G. Gouesbet, J. A. Lock, and G. Grehan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011).
[CrossRef]

Mackowski, D. W.

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996).
[CrossRef]

Meininger, G. A.

S. Amini, Z. Sun, G. A. Meininger, and K. E. Meissner, “Combining nanoscale optical phenomena with atomic force microscopy for cellular studies,” Proc. SPIE 8225, 82251R (2012).
[CrossRef]

Z. Sun, A. Juriani, G. A. Meininger, and K. E. Meissner, “Probing cell surface interactions using atomic force microscope cantilevers functionalized for quantum dot-enabled Forster resonance energy transfer,” J. Biomed. Opt. 14, 040502 (2009).
[CrossRef]

Meissner, K. E.

S. Amini, Z. Sun, G. A. Meininger, and K. E. Meissner, “Combining nanoscale optical phenomena with atomic force microscopy for cellular studies,” Proc. SPIE 8225, 82251R (2012).
[CrossRef]

Z. Sun, A. Juriani, G. A. Meininger, and K. E. Meissner, “Probing cell surface interactions using atomic force microscope cantilevers functionalized for quantum dot-enabled Forster resonance energy transfer,” J. Biomed. Opt. 14, 040502 (2009).
[CrossRef]

H. T. Beier, G. L. Cote, and K. E. Meissner, “Whispering gallery mode biosensors consisting of quantum dot-embedded microspheres,” Ann. Biomed. Eng. 37, 1974–1983 (2009).
[CrossRef]

S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92, 211108 (2008).
[CrossRef]

Mie, G.

G. Mie, “Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,” Ann. Phys. 330, 377–445 (1908).
[CrossRef]

Mishchenko, M. I.

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996).
[CrossRef]

Mulvaney, P.

E. E. Lees, M. J. Gunzburg, T. L. Nguyen, G. J. Howlett, J. Rothacker, E. C. Nice, A. H. A. Clayton, and P. Mulvaney, “Experimental determination of quantum dot size distributions, ligand packing densities, and bioconjugation using analytical ultracentrifugation,” Nano Lett. 8, 2883–2890 (2008).
[CrossRef]

Nguyen, T. L.

E. E. Lees, M. J. Gunzburg, T. L. Nguyen, G. J. Howlett, J. Rothacker, E. C. Nice, A. H. A. Clayton, and P. Mulvaney, “Experimental determination of quantum dot size distributions, ligand packing densities, and bioconjugation using analytical ultracentrifugation,” Nano Lett. 8, 2883–2890 (2008).
[CrossRef]

Nice, E. C.

E. E. Lees, M. J. Gunzburg, T. L. Nguyen, G. J. Howlett, J. Rothacker, E. C. Nice, A. H. A. Clayton, and P. Mulvaney, “Experimental determination of quantum dot size distributions, ligand packing densities, and bioconjugation using analytical ultracentrifugation,” Nano Lett. 8, 2883–2890 (2008).
[CrossRef]

Niegemann, J.

K. Busch, M. Konig, and J. Niegemann, “Discontinuous Galerkin methods in nanophotonics,” Laser Photon. Rev. 5, 773–809 (2011).
[CrossRef]

Nosich, A. I.

A. V. Boriskin, S. V. Boriskina, A. Rolland, R. Sauleau, and A. I. Nosich, “Test of the FDTD accuracy in the analysis of the scattering resonances associated with high-Q whispering-gallery modes of a circular cylinder,” J. Opt. Soc. Am. A 25, 1169–1173 (2008).
[CrossRef]

Noto, M.

M. Noto, D. Keng, I. Teraoka, and S. Arnold, “Detection of protein orientation on the silica microsphere surface using transverse electric/transverse magnetic whispering gallery modes,” Biophys. J. 92, 4466–4472 (2007).
[CrossRef]

O’Shea, D.

M. Pollinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[CrossRef]

Oxborrow, M.

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microwave Theor. Tech. 55, 1209–1218 (2007).
[CrossRef]

Ozdemir, K.

L. N. He, K. Ozdemir, J. G. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nature Nanotechnol. 6, 428–432 (2011).
[CrossRef]

Panetta, R. L.

G. Tang, R. L. Panetta, and P. Yang, “Application of a discontinuous Galerkin time domain method to simulation of optical properties of dielectric particles,” Appl. Opt. 49, 2827–2840 (2010).
[CrossRef]

Pang, S.

S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92, 211108 (2008).
[CrossRef]

Parsons, J.

J. Parsons, C. P. Burrows, J. R. Sambles, and W. L. Barnes, “A comparison of techniques used to simulate the scattering of electromagnetic radiation by metallic nanostructures,” J. Mod. Opt. 57, 356–365 (2010).
[CrossRef]

Pelli, S.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev. 4, 457–482 (2010).
[CrossRef]

Peng, X. G.

X. G. Peng and Z. A. Peng, “Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor,” J. Am Chem. Soc. 123, 183–184 (2001).
[CrossRef]

Peng, Z. A.

X. G. Peng and Z. A. Peng, “Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor,” J. Am Chem. Soc. 123, 183–184 (2001).
[CrossRef]

Pennypacker, C. R.

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[CrossRef]

Pollinger, M.

M. Pollinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[CrossRef]

Purcell, E. M.

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[CrossRef]

Rauschenbeutel, A.

M. Pollinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[CrossRef]

Ren, H. C.

H. C. Ren, F. Vollmer, S. Arnold, and A. Libchaber, “High-Q microsphere biosensor—analysis for adsorption of rodlike bacteria,” Opt. Express 15, 17410–17423 (2007).
[CrossRef]

Righini, G. C.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev. 4, 457–482 (2010).
[CrossRef]

Rodriguez-Oliveros, R.

R. Rodriguez-Oliveros and J. A. Sanchez-Gil, “Localized surface-plasmon resonances on single and coupled nanoparticles through surface integral equations for flexible surfaces,” Opt. Express 19, 12208–12219 (2011).
[CrossRef]

Rolland, A.

A. V. Boriskin, S. V. Boriskina, A. Rolland, R. Sauleau, and A. I. Nosich, “Test of the FDTD accuracy in the analysis of the scattering resonances associated with high-Q whispering-gallery modes of a circular cylinder,” J. Opt. Soc. Am. A 25, 1169–1173 (2008).
[CrossRef]

Rothacker, J.

E. E. Lees, M. J. Gunzburg, T. L. Nguyen, G. J. Howlett, J. Rothacker, E. C. Nice, A. H. A. Clayton, and P. Mulvaney, “Experimental determination of quantum dot size distributions, ligand packing densities, and bioconjugation using analytical ultracentrifugation,” Nano Lett. 8, 2883–2890 (2008).
[CrossRef]

Sambles, J. R.

J. Parsons, C. P. Burrows, J. R. Sambles, and W. L. Barnes, “A comparison of techniques used to simulate the scattering of electromagnetic radiation by metallic nanostructures,” J. Mod. Opt. 57, 356–365 (2010).
[CrossRef]

Sanchez-Gil, J. A.

R. Rodriguez-Oliveros and J. A. Sanchez-Gil, “Localized surface-plasmon resonances on single and coupled nanoparticles through surface integral equations for flexible surfaces,” Opt. Express 19, 12208–12219 (2011).
[CrossRef]

Sauleau, R.

A. V. Boriskin, S. V. Boriskina, A. Rolland, R. Sauleau, and A. I. Nosich, “Test of the FDTD accuracy in the analysis of the scattering resonances associated with high-Q whispering-gallery modes of a circular cylinder,” J. Opt. Soc. Am. A 25, 1169–1173 (2008).
[CrossRef]

Soria, S.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev. 4, 457–482 (2010).
[CrossRef]

Sun, Z.

S. Amini, Z. Sun, G. A. Meininger, and K. E. Meissner, “Combining nanoscale optical phenomena with atomic force microscopy for cellular studies,” Proc. SPIE 8225, 82251R (2012).
[CrossRef]

Z. Sun, A. Juriani, G. A. Meininger, and K. E. Meissner, “Probing cell surface interactions using atomic force microscope cantilevers functionalized for quantum dot-enabled Forster resonance energy transfer,” J. Biomed. Opt. 14, 040502 (2009).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed., Artech House Antennas and Propagation Library (Artech House, 2000).

Tang, G.

G. Tang, R. L. Panetta, and P. Yang, “Application of a discontinuous Galerkin time domain method to simulation of optical properties of dielectric particles,” Appl. Opt. 49, 2827–2840 (2010).
[CrossRef]

Teraoka, I.

I. Teraoka and S. Arnold, “Dielectric property of particles at interface in random sequential adsorption and its application to whispering gallery mode resonance-shift sensors,” J. Appl. Phys. 101, 023505 (2007).
[CrossRef]

M. Noto, D. Keng, I. Teraoka, and S. Arnold, “Detection of protein orientation on the silica microsphere surface using transverse electric/transverse magnetic whispering gallery modes,” Biophys. J. 92, 4466–4472 (2007).
[CrossRef]

I. Teraoka and S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” Opt. Soc. Am. B 23, 1381–1389 (2006).
[CrossRef]

I. Teraoka, S. Arnold, and F. Vollmer, “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Am. B 20, 1937–1946 (2003).
[CrossRef]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[CrossRef]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[CrossRef]

Topolancik, J.

J. Topolancik and F. Vollmer, “Photoinduced transformations in bacteriorhodopsin membrane monitored with optical microcavities,” Biophys. J. 92, 2223–2229 (2007).
[CrossRef]

Travis, L. D.

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996).
[CrossRef]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef]

Vollmer, F.

S. Arnold and F. Vollmer, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[CrossRef]

J. Topolancik and F. Vollmer, “Photoinduced transformations in bacteriorhodopsin membrane monitored with optical microcavities,” Biophys. J. 92, 2223–2229 (2007).
[CrossRef]

H. C. Ren, F. Vollmer, S. Arnold, and A. Libchaber, “High-Q microsphere biosensor—analysis for adsorption of rodlike bacteria,” Opt. Express 15, 17410–17423 (2007).
[CrossRef]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[CrossRef]

I. Teraoka, S. Arnold, and F. Vollmer, “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Am. B 20, 1937–1946 (2003).
[CrossRef]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[CrossRef]

Warken, F.

M. Pollinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[CrossRef]

Yang, L.

L. N. He, K. Ozdemir, J. G. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nature Nanotechnol. 6, 428–432 (2011).
[CrossRef]

Yang, P.

G. Tang, R. L. Panetta, and P. Yang, “Application of a discontinuous Galerkin time domain method to simulation of optical properties of dielectric particles,” Appl. Opt. 49, 2827–2840 (2010).
[CrossRef]

Yurkin, M. A.

M. A. Yurkin and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transfer 112, 2234–2247(2011).
[CrossRef]

Zhu, J. G.

L. N. He, K. Ozdemir, J. G. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nature Nanotechnol. 6, 428–432 (2011).
[CrossRef]

Ann. Biomed. Eng. (1)

H. T. Beier, G. L. Cote, and K. E. Meissner, “Whispering gallery mode biosensors consisting of quantum dot-embedded microspheres,” Ann. Biomed. Eng. 37, 1974–1983 (2009).
[CrossRef]

Ann. Phys. (1)

G. Mie, “Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,” Ann. Phys. 330, 377–445 (1908).
[CrossRef]

Appl. Opt. (1)

G. Tang, R. L. Panetta, and P. Yang, “Application of a discontinuous Galerkin time domain method to simulation of optical properties of dielectric particles,” Appl. Opt. 49, 2827–2840 (2010).
[CrossRef]

Appl. Phys. Lett. (2)

S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92, 211108 (2008).
[CrossRef]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[CrossRef]

Astrophys. J. (1)

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[CrossRef]

Biophys. J. (2)

J. Topolancik and F. Vollmer, “Photoinduced transformations in bacteriorhodopsin membrane monitored with optical microcavities,” Biophys. J. 92, 2223–2229 (2007).
[CrossRef]

M. Noto, D. Keng, I. Teraoka, and S. Arnold, “Detection of protein orientation on the silica microsphere surface using transverse electric/transverse magnetic whispering gallery modes,” Biophys. J. 92, 4466–4472 (2007).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (1)

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microwave Theor. Tech. 55, 1209–1218 (2007).
[CrossRef]

J. Am Chem. Soc. (1)

X. G. Peng and Z. A. Peng, “Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor,” J. Am Chem. Soc. 123, 183–184 (2001).
[CrossRef]

J. Appl. Phys. (1)

I. Teraoka and S. Arnold, “Dielectric property of particles at interface in random sequential adsorption and its application to whispering gallery mode resonance-shift sensors,” J. Appl. Phys. 101, 023505 (2007).
[CrossRef]

J. Biomed. Opt. (1)

Z. Sun, A. Juriani, G. A. Meininger, and K. E. Meissner, “Probing cell surface interactions using atomic force microscope cantilevers functionalized for quantum dot-enabled Forster resonance energy transfer,” J. Biomed. Opt. 14, 040502 (2009).
[CrossRef]

J. Mod. Opt. (1)

J. Parsons, C. P. Burrows, J. R. Sambles, and W. L. Barnes, “A comparison of techniques used to simulate the scattering of electromagnetic radiation by metallic nanostructures,” J. Mod. Opt. 57, 356–365 (2010).
[CrossRef]

J. Opt. A (1)

W. L. Barnes, “Comparing experiment and theory in plasmonics,” J. Opt. A 11, 114002 (2009).
[CrossRef]

J. Opt. Soc. Am. A (2)

A. V. Boriskin, S. V. Boriskina, A. Rolland, R. Sauleau, and A. I. Nosich, “Test of the FDTD accuracy in the analysis of the scattering resonances associated with high-Q whispering-gallery modes of a circular cylinder,” J. Opt. Soc. Am. A 25, 1169–1173 (2008).
[CrossRef]

B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

I. Teraoka, S. Arnold, and F. Vollmer, “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Am. B 20, 1937–1946 (2003).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (3)

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996).
[CrossRef]

M. A. Yurkin and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transfer 112, 2234–2247(2011).
[CrossRef]

G. Gouesbet, J. A. Lock, and G. Grehan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011).
[CrossRef]

Laser Photon. Rev. (2)

K. Busch, M. Konig, and J. Niegemann, “Discontinuous Galerkin methods in nanophotonics,” Laser Photon. Rev. 5, 773–809 (2011).
[CrossRef]

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev. 4, 457–482 (2010).
[CrossRef]

Nano Lett. (1)

E. E. Lees, M. J. Gunzburg, T. L. Nguyen, G. J. Howlett, J. Rothacker, E. C. Nice, A. H. A. Clayton, and P. Mulvaney, “Experimental determination of quantum dot size distributions, ligand packing densities, and bioconjugation using analytical ultracentrifugation,” Nano Lett. 8, 2883–2890 (2008).
[CrossRef]

Nat. Methods (1)

S. Arnold and F. Vollmer, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[CrossRef]

Nature (1)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef]

Nature Nanotechnol. (1)

L. N. He, K. Ozdemir, J. G. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nature Nanotechnol. 6, 428–432 (2011).
[CrossRef]

Opt. Express (2)

H. C. Ren, F. Vollmer, S. Arnold, and A. Libchaber, “High-Q microsphere biosensor—analysis for adsorption of rodlike bacteria,” Opt. Express 15, 17410–17423 (2007).
[CrossRef]

R. Rodriguez-Oliveros and J. A. Sanchez-Gil, “Localized surface-plasmon resonances on single and coupled nanoparticles through surface integral equations for flexible surfaces,” Opt. Express 19, 12208–12219 (2011).
[CrossRef]

Opt. Lett. (1)

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[CrossRef]

Opt. Soc. Am. B (1)

I. Teraoka and S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” Opt. Soc. Am. B 23, 1381–1389 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

M. Pollinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[CrossRef]

Proc. SPIE (1)

S. Amini, Z. Sun, G. A. Meininger, and K. E. Meissner, “Combining nanoscale optical phenomena with atomic force microscopy for cellular studies,” Proc. SPIE 8225, 82251R (2012).
[CrossRef]

Other (4)

http://sc.tamu.edu .

http://code.google.com/p/a-dda .

J. M. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (Wiley, 2002).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed., Artech House Antennas and Propagation Library (Artech House, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Scattering efficiency validation data for L–M code versus ADDA code for two free microspheres (no epoxy present) with radii of 4.5 and 5.01 μm. For the computation of the modes, the refractive indices of the microspheres and water were 1.587 and 1.333, respectively. The mean percentage error (MPE) is 0.3%. Each of the dots represents a single wavelength, and the dashed line is a reference (x=y).

Fig. 2.
Fig. 2.

Schematic of the microsphere and epoxy. The schematic has rotational symmetry around the origin line of angle θ, which is the epoxy angle.

Fig. 3.
Fig. 3.

Modeled WGMs using ADDA code for different epoxy angles and when there is no epoxy present. For all of the curves, water was considered to be the surrounding medium. All curves are drawn in a range to contain four peaks that are TM-71, TE-71, TM-70 and TE-70, from left to right.

Fig. 4.
Fig. 4.

Scattering efficiencies for various effective refractive indices using the L–M code. The modes are drawn for different effective refractive indices (ne), and the corresponding epoxy angle (θ) is shown for each one in the legend.

Fig. 5.
Fig. 5.

WGMs from a 10 μm polystyrene microsphere embedded with 550 nm CdSe/ZnS QDs in water. The microsphere was excited at 400 nm. The modes can be seen in pairs with smaller and larger intensity peaks corresponding to TM and TE modes, respectively.

Fig. 6.
Fig. 6.

WGMs from mounted samples with (a) θ12°; (b) θ13°; (c) θ18°; (d) θ31°. The SEM images of the microspheres for each curve are shown on the right side. The scale bar for all SEM images is 2 μm. The samples are all 10 μm polystyrene microspheres embedded with 550 nm CdSe/ZnS QDs and are mounted on tipless AFM cantilevers.

Fig. 7.
Fig. 7.

Shift (left) and quality factor (right) of mode 71 as a function of epoxy angle (θ). Both models show an increase in the shift with an increased angle. The position of the mode is not clear for the TM mode in the ADDA model at 25°. At 25°, the modes are almost diminished in the ADDA model, so the calculation of the Q-factor is not possible.

Fig. 8.
Fig. 8.

Scattering efficiency calculated from L–M using effective refractive index (a)–(d) and ADDA (e)–(h) and measured from free and mounted microspheres (i)–(l) as a function of wavelength (nm). The L–M and ADDA results are for TM-71 (left peak) and TE-71 (right peak). The first column on the left (a), (e), and (i) shows the results for a homogeneous surrounding medium, while the rest are for inhomogeneous mediums. For each row the degree of inhomogeneity increases from left to right, by effective refractive index for the first row (Fig. 4) and by epoxy angle for the other two. Dashed curves in the third row show raw data for experimental results.

Fig. 9.
Fig. 9.

Comparison of quality factor in experimental results with L–M and ADDA results as a function of epoxy angle (θ). The data are shown for TE modes.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Pj=αjEj,
Ei=14πεo{k2(n^×Pj)×n^eikrr+[3n^(n^·Pj)Pj]×(1r3ikr2)eikr},
Pj=αjEj=αj(Einc,jklAjkPk).
AP=Einc,
dmax=λmin/10n.
ne=nmedium+θ180(nepoxynmedium)=nmedium+θ180(Δn).

Metrics