Abstract

We have numerically shown that a high-power Bessel–Gauss beam can be generated by a solid-state thin-disk laser using an axicon-based resonator. Ytterbium ions doped in the YAG crystal were utilized in this configuration as an active medium. We obtained the output power, intensity, and phase profiles on the output coupler and the active medium.

© 2013 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Hasegawa and F. Tapert, “Transmission of stationary nonlinear optical pulse in dispersive dielectric fibers: I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142–144 (1973).
    [CrossRef]
  2. L. F. Mollenaure, R. H. Stolen, and J. P. Gordon, “Experimental observation of picoseconds pulse narrowing and solitons in optical fiber,” Phys. Rev. Lett. 45, 1095–1098 (1980).
    [CrossRef]
  3. A. J. Durnin, “Exact solutions for nondiffracting beams. I. the scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987).
    [CrossRef]
  4. M. Dallaire, N. McCarthy, and M. Piche, “Spatiotemporal Bessel beams: theory and experiments,” Opt. Express 17, 18148–18158 (2009).
    [CrossRef]
  5. C. Lopez-Mariscal and K. Helmerson, “Shaped nondiffracting beams,” Opt. Lett. 35, 1215–1217 (2010).
    [CrossRef]
  6. J. Durnin, J. J. Micely, and J. H. Eberly, “Diffraction free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
    [CrossRef]
  7. F. Gori, G. Guattari, and C. Padovani, “Bessel–Gauss beams,” Opt. Commun. 64, 491–495 (1987).
    [CrossRef]
  8. E. Abramochkin and V. Volostnikov, “Spiral-type beams,” Opt. Commun. 102, 336–350 (1993).
    [CrossRef]
  9. S. Chávez-Cerda, G. S. McDonald, and G. H. C. New, “Nondiffracting beams: travelling, standing, rotating and spiral waves,” Opt. Commun. 123, 225–233 (1996).
    [CrossRef]
  10. C. Paterson and R. Smith, “Helicon waves: propagation invariant waves in a rotating coordinate system,” Opt. Commun. 124, 131–140 (1996).
    [CrossRef]
  11. R. Piestun and J. Shamir, “Generalized propagation invariant wave fields,” J. Opt. Soc. Am. A 15, 3039–3044 (1998).
    [CrossRef]
  12. J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, and S. Chavez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett. 25, 1493–1495 (2000).
    [CrossRef]
  13. J. C. Gutiérrez-Vega, R. Rodríguez-Masegosa, and S. Chávez-Cerda, “Bessel–Gauss resonator with spherical output mirror: geometrical and wave-optics analysis,” J. Opt. Soc. Am. A 20, 2113–2122 (2003).
    [CrossRef]
  14. C. L. Tsangaris, G. H. C. New, and J. Rogel-Salazar, “Unstable Bessel beam resonator,” Opt. Commun. 223, 233–238 (2003).
    [CrossRef]
  15. G. Indebetouw, “Nondiffracting optical fields: some remarks on their analysis and synthesis,” J. Opt. Soc. Am. A 6, 150–152 (1989).
    [CrossRef]
  16. G. Scott and N. McArdle, “Efficient generation of nearly diffraction-free beams using an axicon,” Opt. Eng. 31, 2640–2643 (1992).
    [CrossRef]
  17. J. Turunen, A. Vasara, and A. T. Friberg, “Holographic generation of diffraction-free beams,” Appl. Opt. 27, 3959–3962 (1988).
    [CrossRef]
  18. A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6, 1748–1754 (1989).
    [CrossRef]
  19. Z. L. Horváth, M. Erdélyi, G. Szabó, Z. Bor, F. K. Tittel, and J. R. Cavallaro, “Generation of nearly nondiffracting Bessel beams with a Fabry–Perot interferometer,” J. Opt. Soc. Am. A 14, 3009–3013 (1997).
    [CrossRef]
  20. W.-X. Cong, N.-X. Chen, and B.-Y. Gu, “Generation of nondiffracting beams by diffractive phase elements,” J. Opt. Soc. Am. A 15, 2362–2364 (1998).
    [CrossRef]
  21. J. Durnin and J. H. Eberly, “Diffraction free arrangement,” U.S. patent 4,887,885 (19December1989).
  22. I. A. Litvin and A. Forbes, “Bessel–Gauss resonator with internal amplitude filter,” Opt. Commun. 281, 2385–2392 (2008).
    [CrossRef]
  23. K. Uehara and H. Kikuchi, “Generation of nearly diffraction-free laser beams,” Appl. Phys. B 48, 125–129 (1989).
    [CrossRef]
  24. P. Pääkkönen and J. Turunen, “Resonators with Bessel–Gauss modes,” Opt. Commun. 156, 359–366 (1998).
    [CrossRef]
  25. A. Hakola, S. C. Buchter, T. Kajava, H. Elfström, J. Simonen, P. Pääkkönen, and J. Turunen, “Bessel–Gauss output beam from a diode-pumped NdYAG laser,” Opt. Commun. 238, 335–340 (2004).
    [CrossRef]
  26. J. Rogel-Salazar, G. H. C. New, and S. Chávez-Cerda, “Bessel–Gauss beam optical resonator,” Opt. Commun. 190, 117–122 (2001).
    [CrossRef]
  27. A. N. Khilo, E. G. Katranji, and A. A. Ryzhevich, “Axicon-based Bessel resonator: analytical description and experiment,” J. Opt. Soc. Am. A 18, 1986–1992 (2001).
    [CrossRef]
  28. R. I. Hernández-Aranda, S. Chávez-Cerda, and J. C. Gutiérrez-Vega, “Theory of the unstable Bessel resonator,” J. Opt. Soc. Am. A 22, 1909–1916 (2005).
    [CrossRef]
  29. A. Giesen, H. Hugel, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
    [CrossRef]
  30. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598–609 (2007).
    [CrossRef]
  31. R. Aghbolaghi, J. Mollai, S. Batebi, and A. K. Jafari, “Numerical study of axicon-based Bessel–Gauss resonator for thin disk laser,” Proc. SPIE 7747, 77471H (2010).
    [CrossRef]
  32. M. J. Dashcasan, E. Barati, and R. Aghbolaghi, “Designing of an efficient multi-aperture, edge pumped thin-disk laser,” Opt. Laser Technol. 44, 800–805 (2012).
    [CrossRef]
  33. S. A. Collins, “Lens-system diffraction integral written in term of matrix optics,” J. Opt. Soc. Am. A 60, 1168–1177 (1970).
    [CrossRef]
  34. M. Ostermeyer and A. Straesser, “Theoretical investigation of feasibility of Yb:YAG as laser material for nanosecond pulse emission with large energies in the Joule range,” Opt. Commun. 274, 422–428 (2007).
    [CrossRef]
  35. G. L. Bordet and E. Bartniki, “Generalized formula for continuous-wave end-pumped Yb-doped material amplifier gain and laser output power in various pumping configurations,” Appl. Opt. 45, 9203–9209 (2006).
    [CrossRef]
  36. G. L. Bordet, “Theoretical investigation of quasi-three-level longitudinally pumped continuous wave lasers,” Appl. Opt. 39, 966–971 (2000).
    [CrossRef]

2012 (1)

M. J. Dashcasan, E. Barati, and R. Aghbolaghi, “Designing of an efficient multi-aperture, edge pumped thin-disk laser,” Opt. Laser Technol. 44, 800–805 (2012).
[CrossRef]

2010 (2)

R. Aghbolaghi, J. Mollai, S. Batebi, and A. K. Jafari, “Numerical study of axicon-based Bessel–Gauss resonator for thin disk laser,” Proc. SPIE 7747, 77471H (2010).
[CrossRef]

C. Lopez-Mariscal and K. Helmerson, “Shaped nondiffracting beams,” Opt. Lett. 35, 1215–1217 (2010).
[CrossRef]

2009 (1)

M. Dallaire, N. McCarthy, and M. Piche, “Spatiotemporal Bessel beams: theory and experiments,” Opt. Express 17, 18148–18158 (2009).
[CrossRef]

2008 (1)

I. A. Litvin and A. Forbes, “Bessel–Gauss resonator with internal amplitude filter,” Opt. Commun. 281, 2385–2392 (2008).
[CrossRef]

2007 (2)

M. Ostermeyer and A. Straesser, “Theoretical investigation of feasibility of Yb:YAG as laser material for nanosecond pulse emission with large energies in the Joule range,” Opt. Commun. 274, 422–428 (2007).
[CrossRef]

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598–609 (2007).
[CrossRef]

2006 (1)

G. L. Bordet and E. Bartniki, “Generalized formula for continuous-wave end-pumped Yb-doped material amplifier gain and laser output power in various pumping configurations,” Appl. Opt. 45, 9203–9209 (2006).
[CrossRef]

2005 (1)

R. I. Hernández-Aranda, S. Chávez-Cerda, and J. C. Gutiérrez-Vega, “Theory of the unstable Bessel resonator,” J. Opt. Soc. Am. A 22, 1909–1916 (2005).
[CrossRef]

2004 (1)

A. Hakola, S. C. Buchter, T. Kajava, H. Elfström, J. Simonen, P. Pääkkönen, and J. Turunen, “Bessel–Gauss output beam from a diode-pumped NdYAG laser,” Opt. Commun. 238, 335–340 (2004).
[CrossRef]

2003 (2)

J. C. Gutiérrez-Vega, R. Rodríguez-Masegosa, and S. Chávez-Cerda, “Bessel–Gauss resonator with spherical output mirror: geometrical and wave-optics analysis,” J. Opt. Soc. Am. A 20, 2113–2122 (2003).
[CrossRef]

C. L. Tsangaris, G. H. C. New, and J. Rogel-Salazar, “Unstable Bessel beam resonator,” Opt. Commun. 223, 233–238 (2003).
[CrossRef]

2001 (2)

J. Rogel-Salazar, G. H. C. New, and S. Chávez-Cerda, “Bessel–Gauss beam optical resonator,” Opt. Commun. 190, 117–122 (2001).
[CrossRef]

A. N. Khilo, E. G. Katranji, and A. A. Ryzhevich, “Axicon-based Bessel resonator: analytical description and experiment,” J. Opt. Soc. Am. A 18, 1986–1992 (2001).
[CrossRef]

2000 (2)

G. L. Bordet, “Theoretical investigation of quasi-three-level longitudinally pumped continuous wave lasers,” Appl. Opt. 39, 966–971 (2000).
[CrossRef]

J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, and S. Chavez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett. 25, 1493–1495 (2000).
[CrossRef]

1998 (3)

R. Piestun and J. Shamir, “Generalized propagation invariant wave fields,” J. Opt. Soc. Am. A 15, 3039–3044 (1998).
[CrossRef]

P. Pääkkönen and J. Turunen, “Resonators with Bessel–Gauss modes,” Opt. Commun. 156, 359–366 (1998).
[CrossRef]

W.-X. Cong, N.-X. Chen, and B.-Y. Gu, “Generation of nondiffracting beams by diffractive phase elements,” J. Opt. Soc. Am. A 15, 2362–2364 (1998).
[CrossRef]

1997 (1)

Z. L. Horváth, M. Erdélyi, G. Szabó, Z. Bor, F. K. Tittel, and J. R. Cavallaro, “Generation of nearly nondiffracting Bessel beams with a Fabry–Perot interferometer,” J. Opt. Soc. Am. A 14, 3009–3013 (1997).
[CrossRef]

1996 (2)

S. Chávez-Cerda, G. S. McDonald, and G. H. C. New, “Nondiffracting beams: travelling, standing, rotating and spiral waves,” Opt. Commun. 123, 225–233 (1996).
[CrossRef]

C. Paterson and R. Smith, “Helicon waves: propagation invariant waves in a rotating coordinate system,” Opt. Commun. 124, 131–140 (1996).
[CrossRef]

1994 (1)

A. Giesen, H. Hugel, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

1993 (1)

E. Abramochkin and V. Volostnikov, “Spiral-type beams,” Opt. Commun. 102, 336–350 (1993).
[CrossRef]

1992 (1)

G. Scott and N. McArdle, “Efficient generation of nearly diffraction-free beams using an axicon,” Opt. Eng. 31, 2640–2643 (1992).
[CrossRef]

1989 (3)

A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6, 1748–1754 (1989).
[CrossRef]

G. Indebetouw, “Nondiffracting optical fields: some remarks on their analysis and synthesis,” J. Opt. Soc. Am. A 6, 150–152 (1989).
[CrossRef]

K. Uehara and H. Kikuchi, “Generation of nearly diffraction-free laser beams,” Appl. Phys. B 48, 125–129 (1989).
[CrossRef]

1988 (1)

J. Turunen, A. Vasara, and A. T. Friberg, “Holographic generation of diffraction-free beams,” Appl. Opt. 27, 3959–3962 (1988).
[CrossRef]

1987 (3)

J. Durnin, J. J. Micely, and J. H. Eberly, “Diffraction free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef]

F. Gori, G. Guattari, and C. Padovani, “Bessel–Gauss beams,” Opt. Commun. 64, 491–495 (1987).
[CrossRef]

A. J. Durnin, “Exact solutions for nondiffracting beams. I. the scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987).
[CrossRef]

1980 (1)

L. F. Mollenaure, R. H. Stolen, and J. P. Gordon, “Experimental observation of picoseconds pulse narrowing and solitons in optical fiber,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[CrossRef]

1973 (1)

A. Hasegawa and F. Tapert, “Transmission of stationary nonlinear optical pulse in dispersive dielectric fibers: I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142–144 (1973).
[CrossRef]

1970 (1)

S. A. Collins, “Lens-system diffraction integral written in term of matrix optics,” J. Opt. Soc. Am. A 60, 1168–1177 (1970).
[CrossRef]

Abramochkin, E.

E. Abramochkin and V. Volostnikov, “Spiral-type beams,” Opt. Commun. 102, 336–350 (1993).
[CrossRef]

Aghbolaghi, R.

M. J. Dashcasan, E. Barati, and R. Aghbolaghi, “Designing of an efficient multi-aperture, edge pumped thin-disk laser,” Opt. Laser Technol. 44, 800–805 (2012).
[CrossRef]

R. Aghbolaghi, J. Mollai, S. Batebi, and A. K. Jafari, “Numerical study of axicon-based Bessel–Gauss resonator for thin disk laser,” Proc. SPIE 7747, 77471H (2010).
[CrossRef]

Barati, E.

M. J. Dashcasan, E. Barati, and R. Aghbolaghi, “Designing of an efficient multi-aperture, edge pumped thin-disk laser,” Opt. Laser Technol. 44, 800–805 (2012).
[CrossRef]

Bartniki, E.

G. L. Bordet and E. Bartniki, “Generalized formula for continuous-wave end-pumped Yb-doped material amplifier gain and laser output power in various pumping configurations,” Appl. Opt. 45, 9203–9209 (2006).
[CrossRef]

Batebi, S.

R. Aghbolaghi, J. Mollai, S. Batebi, and A. K. Jafari, “Numerical study of axicon-based Bessel–Gauss resonator for thin disk laser,” Proc. SPIE 7747, 77471H (2010).
[CrossRef]

Bor, Z.

Z. L. Horváth, M. Erdélyi, G. Szabó, Z. Bor, F. K. Tittel, and J. R. Cavallaro, “Generation of nearly nondiffracting Bessel beams with a Fabry–Perot interferometer,” J. Opt. Soc. Am. A 14, 3009–3013 (1997).
[CrossRef]

Bordet, G. L.

G. L. Bordet and E. Bartniki, “Generalized formula for continuous-wave end-pumped Yb-doped material amplifier gain and laser output power in various pumping configurations,” Appl. Opt. 45, 9203–9209 (2006).
[CrossRef]

G. L. Bordet, “Theoretical investigation of quasi-three-level longitudinally pumped continuous wave lasers,” Appl. Opt. 39, 966–971 (2000).
[CrossRef]

Brauch, U.

A. Giesen, H. Hugel, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

Buchter, S. C.

A. Hakola, S. C. Buchter, T. Kajava, H. Elfström, J. Simonen, P. Pääkkönen, and J. Turunen, “Bessel–Gauss output beam from a diode-pumped NdYAG laser,” Opt. Commun. 238, 335–340 (2004).
[CrossRef]

Cavallaro, J. R.

Z. L. Horváth, M. Erdélyi, G. Szabó, Z. Bor, F. K. Tittel, and J. R. Cavallaro, “Generation of nearly nondiffracting Bessel beams with a Fabry–Perot interferometer,” J. Opt. Soc. Am. A 14, 3009–3013 (1997).
[CrossRef]

Chavez-Cerda, S.

J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, and S. Chavez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett. 25, 1493–1495 (2000).
[CrossRef]

Chávez-Cerda, S.

R. I. Hernández-Aranda, S. Chávez-Cerda, and J. C. Gutiérrez-Vega, “Theory of the unstable Bessel resonator,” J. Opt. Soc. Am. A 22, 1909–1916 (2005).
[CrossRef]

J. C. Gutiérrez-Vega, R. Rodríguez-Masegosa, and S. Chávez-Cerda, “Bessel–Gauss resonator with spherical output mirror: geometrical and wave-optics analysis,” J. Opt. Soc. Am. A 20, 2113–2122 (2003).
[CrossRef]

J. Rogel-Salazar, G. H. C. New, and S. Chávez-Cerda, “Bessel–Gauss beam optical resonator,” Opt. Commun. 190, 117–122 (2001).
[CrossRef]

S. Chávez-Cerda, G. S. McDonald, and G. H. C. New, “Nondiffracting beams: travelling, standing, rotating and spiral waves,” Opt. Commun. 123, 225–233 (1996).
[CrossRef]

Chen, N.-X.

W.-X. Cong, N.-X. Chen, and B.-Y. Gu, “Generation of nondiffracting beams by diffractive phase elements,” J. Opt. Soc. Am. A 15, 2362–2364 (1998).
[CrossRef]

Collins, S. A.

S. A. Collins, “Lens-system diffraction integral written in term of matrix optics,” J. Opt. Soc. Am. A 60, 1168–1177 (1970).
[CrossRef]

Cong, W.-X.

W.-X. Cong, N.-X. Chen, and B.-Y. Gu, “Generation of nondiffracting beams by diffractive phase elements,” J. Opt. Soc. Am. A 15, 2362–2364 (1998).
[CrossRef]

Dallaire, M.

M. Dallaire, N. McCarthy, and M. Piche, “Spatiotemporal Bessel beams: theory and experiments,” Opt. Express 17, 18148–18158 (2009).
[CrossRef]

Dashcasan, M. J.

M. J. Dashcasan, E. Barati, and R. Aghbolaghi, “Designing of an efficient multi-aperture, edge pumped thin-disk laser,” Opt. Laser Technol. 44, 800–805 (2012).
[CrossRef]

Durnin, A. J.

A. J. Durnin, “Exact solutions for nondiffracting beams. I. the scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987).
[CrossRef]

Durnin, J.

J. Durnin, J. J. Micely, and J. H. Eberly, “Diffraction free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef]

J. Durnin and J. H. Eberly, “Diffraction free arrangement,” U.S. patent 4,887,885 (19December1989).

Eberly, J. H.

J. Durnin, J. J. Micely, and J. H. Eberly, “Diffraction free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef]

J. Durnin and J. H. Eberly, “Diffraction free arrangement,” U.S. patent 4,887,885 (19December1989).

Elfström, H.

A. Hakola, S. C. Buchter, T. Kajava, H. Elfström, J. Simonen, P. Pääkkönen, and J. Turunen, “Bessel–Gauss output beam from a diode-pumped NdYAG laser,” Opt. Commun. 238, 335–340 (2004).
[CrossRef]

Erdélyi, M.

Z. L. Horváth, M. Erdélyi, G. Szabó, Z. Bor, F. K. Tittel, and J. R. Cavallaro, “Generation of nearly nondiffracting Bessel beams with a Fabry–Perot interferometer,” J. Opt. Soc. Am. A 14, 3009–3013 (1997).
[CrossRef]

Forbes, A.

I. A. Litvin and A. Forbes, “Bessel–Gauss resonator with internal amplitude filter,” Opt. Commun. 281, 2385–2392 (2008).
[CrossRef]

Friberg, A. T.

A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6, 1748–1754 (1989).
[CrossRef]

J. Turunen, A. Vasara, and A. T. Friberg, “Holographic generation of diffraction-free beams,” Appl. Opt. 27, 3959–3962 (1988).
[CrossRef]

Giesen, A.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598–609 (2007).
[CrossRef]

A. Giesen, H. Hugel, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

Gordon, J. P.

L. F. Mollenaure, R. H. Stolen, and J. P. Gordon, “Experimental observation of picoseconds pulse narrowing and solitons in optical fiber,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[CrossRef]

Gori, F.

F. Gori, G. Guattari, and C. Padovani, “Bessel–Gauss beams,” Opt. Commun. 64, 491–495 (1987).
[CrossRef]

Gu, B.-Y.

W.-X. Cong, N.-X. Chen, and B.-Y. Gu, “Generation of nondiffracting beams by diffractive phase elements,” J. Opt. Soc. Am. A 15, 2362–2364 (1998).
[CrossRef]

Guattari, G.

F. Gori, G. Guattari, and C. Padovani, “Bessel–Gauss beams,” Opt. Commun. 64, 491–495 (1987).
[CrossRef]

Gutiérrez-Vega, J. C.

R. I. Hernández-Aranda, S. Chávez-Cerda, and J. C. Gutiérrez-Vega, “Theory of the unstable Bessel resonator,” J. Opt. Soc. Am. A 22, 1909–1916 (2005).
[CrossRef]

J. C. Gutiérrez-Vega, R. Rodríguez-Masegosa, and S. Chávez-Cerda, “Bessel–Gauss resonator with spherical output mirror: geometrical and wave-optics analysis,” J. Opt. Soc. Am. A 20, 2113–2122 (2003).
[CrossRef]

J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, and S. Chavez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett. 25, 1493–1495 (2000).
[CrossRef]

Hakola, A.

A. Hakola, S. C. Buchter, T. Kajava, H. Elfström, J. Simonen, P. Pääkkönen, and J. Turunen, “Bessel–Gauss output beam from a diode-pumped NdYAG laser,” Opt. Commun. 238, 335–340 (2004).
[CrossRef]

Hasegawa, A.

A. Hasegawa and F. Tapert, “Transmission of stationary nonlinear optical pulse in dispersive dielectric fibers: I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142–144 (1973).
[CrossRef]

Helmerson, K.

C. Lopez-Mariscal and K. Helmerson, “Shaped nondiffracting beams,” Opt. Lett. 35, 1215–1217 (2010).
[CrossRef]

Hernández-Aranda, R. I.

R. I. Hernández-Aranda, S. Chávez-Cerda, and J. C. Gutiérrez-Vega, “Theory of the unstable Bessel resonator,” J. Opt. Soc. Am. A 22, 1909–1916 (2005).
[CrossRef]

Horváth, Z. L.

Z. L. Horváth, M. Erdélyi, G. Szabó, Z. Bor, F. K. Tittel, and J. R. Cavallaro, “Generation of nearly nondiffracting Bessel beams with a Fabry–Perot interferometer,” J. Opt. Soc. Am. A 14, 3009–3013 (1997).
[CrossRef]

Hugel, H.

A. Giesen, H. Hugel, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

Indebetouw, G.

G. Indebetouw, “Nondiffracting optical fields: some remarks on their analysis and synthesis,” J. Opt. Soc. Am. A 6, 150–152 (1989).
[CrossRef]

Iturbe-Castillo, M. D.

J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, and S. Chavez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett. 25, 1493–1495 (2000).
[CrossRef]

Jafari, A. K.

R. Aghbolaghi, J. Mollai, S. Batebi, and A. K. Jafari, “Numerical study of axicon-based Bessel–Gauss resonator for thin disk laser,” Proc. SPIE 7747, 77471H (2010).
[CrossRef]

Kajava, T.

A. Hakola, S. C. Buchter, T. Kajava, H. Elfström, J. Simonen, P. Pääkkönen, and J. Turunen, “Bessel–Gauss output beam from a diode-pumped NdYAG laser,” Opt. Commun. 238, 335–340 (2004).
[CrossRef]

Katranji, E. G.

A. N. Khilo, E. G. Katranji, and A. A. Ryzhevich, “Axicon-based Bessel resonator: analytical description and experiment,” J. Opt. Soc. Am. A 18, 1986–1992 (2001).
[CrossRef]

Khilo, A. N.

A. N. Khilo, E. G. Katranji, and A. A. Ryzhevich, “Axicon-based Bessel resonator: analytical description and experiment,” J. Opt. Soc. Am. A 18, 1986–1992 (2001).
[CrossRef]

Kikuchi, H.

K. Uehara and H. Kikuchi, “Generation of nearly diffraction-free laser beams,” Appl. Phys. B 48, 125–129 (1989).
[CrossRef]

Litvin, I. A.

I. A. Litvin and A. Forbes, “Bessel–Gauss resonator with internal amplitude filter,” Opt. Commun. 281, 2385–2392 (2008).
[CrossRef]

Lopez-Mariscal, C.

C. Lopez-Mariscal and K. Helmerson, “Shaped nondiffracting beams,” Opt. Lett. 35, 1215–1217 (2010).
[CrossRef]

McArdle, N.

G. Scott and N. McArdle, “Efficient generation of nearly diffraction-free beams using an axicon,” Opt. Eng. 31, 2640–2643 (1992).
[CrossRef]

McCarthy, N.

M. Dallaire, N. McCarthy, and M. Piche, “Spatiotemporal Bessel beams: theory and experiments,” Opt. Express 17, 18148–18158 (2009).
[CrossRef]

McDonald, G. S.

S. Chávez-Cerda, G. S. McDonald, and G. H. C. New, “Nondiffracting beams: travelling, standing, rotating and spiral waves,” Opt. Commun. 123, 225–233 (1996).
[CrossRef]

Micely, J. J.

J. Durnin, J. J. Micely, and J. H. Eberly, “Diffraction free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef]

Mollai, J.

R. Aghbolaghi, J. Mollai, S. Batebi, and A. K. Jafari, “Numerical study of axicon-based Bessel–Gauss resonator for thin disk laser,” Proc. SPIE 7747, 77471H (2010).
[CrossRef]

Mollenaure, L. F.

L. F. Mollenaure, R. H. Stolen, and J. P. Gordon, “Experimental observation of picoseconds pulse narrowing and solitons in optical fiber,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[CrossRef]

New, G. H. C.

C. L. Tsangaris, G. H. C. New, and J. Rogel-Salazar, “Unstable Bessel beam resonator,” Opt. Commun. 223, 233–238 (2003).
[CrossRef]

J. Rogel-Salazar, G. H. C. New, and S. Chávez-Cerda, “Bessel–Gauss beam optical resonator,” Opt. Commun. 190, 117–122 (2001).
[CrossRef]

S. Chávez-Cerda, G. S. McDonald, and G. H. C. New, “Nondiffracting beams: travelling, standing, rotating and spiral waves,” Opt. Commun. 123, 225–233 (1996).
[CrossRef]

Opower, H.

A. Giesen, H. Hugel, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

Ostermeyer, M.

M. Ostermeyer and A. Straesser, “Theoretical investigation of feasibility of Yb:YAG as laser material for nanosecond pulse emission with large energies in the Joule range,” Opt. Commun. 274, 422–428 (2007).
[CrossRef]

Pääkkönen, P.

A. Hakola, S. C. Buchter, T. Kajava, H. Elfström, J. Simonen, P. Pääkkönen, and J. Turunen, “Bessel–Gauss output beam from a diode-pumped NdYAG laser,” Opt. Commun. 238, 335–340 (2004).
[CrossRef]

P. Pääkkönen and J. Turunen, “Resonators with Bessel–Gauss modes,” Opt. Commun. 156, 359–366 (1998).
[CrossRef]

Padovani, C.

F. Gori, G. Guattari, and C. Padovani, “Bessel–Gauss beams,” Opt. Commun. 64, 491–495 (1987).
[CrossRef]

Paterson, C.

C. Paterson and R. Smith, “Helicon waves: propagation invariant waves in a rotating coordinate system,” Opt. Commun. 124, 131–140 (1996).
[CrossRef]

Piche, M.

M. Dallaire, N. McCarthy, and M. Piche, “Spatiotemporal Bessel beams: theory and experiments,” Opt. Express 17, 18148–18158 (2009).
[CrossRef]

Piestun, R.

R. Piestun and J. Shamir, “Generalized propagation invariant wave fields,” J. Opt. Soc. Am. A 15, 3039–3044 (1998).
[CrossRef]

Rodríguez-Masegosa, R.

J. C. Gutiérrez-Vega, R. Rodríguez-Masegosa, and S. Chávez-Cerda, “Bessel–Gauss resonator with spherical output mirror: geometrical and wave-optics analysis,” J. Opt. Soc. Am. A 20, 2113–2122 (2003).
[CrossRef]

Rogel-Salazar, J.

C. L. Tsangaris, G. H. C. New, and J. Rogel-Salazar, “Unstable Bessel beam resonator,” Opt. Commun. 223, 233–238 (2003).
[CrossRef]

J. Rogel-Salazar, G. H. C. New, and S. Chávez-Cerda, “Bessel–Gauss beam optical resonator,” Opt. Commun. 190, 117–122 (2001).
[CrossRef]

Ryzhevich, A. A.

A. N. Khilo, E. G. Katranji, and A. A. Ryzhevich, “Axicon-based Bessel resonator: analytical description and experiment,” J. Opt. Soc. Am. A 18, 1986–1992 (2001).
[CrossRef]

Scott, G.

G. Scott and N. McArdle, “Efficient generation of nearly diffraction-free beams using an axicon,” Opt. Eng. 31, 2640–2643 (1992).
[CrossRef]

Shamir, J.

R. Piestun and J. Shamir, “Generalized propagation invariant wave fields,” J. Opt. Soc. Am. A 15, 3039–3044 (1998).
[CrossRef]

Simonen, J.

A. Hakola, S. C. Buchter, T. Kajava, H. Elfström, J. Simonen, P. Pääkkönen, and J. Turunen, “Bessel–Gauss output beam from a diode-pumped NdYAG laser,” Opt. Commun. 238, 335–340 (2004).
[CrossRef]

Smith, R.

C. Paterson and R. Smith, “Helicon waves: propagation invariant waves in a rotating coordinate system,” Opt. Commun. 124, 131–140 (1996).
[CrossRef]

Speiser, J.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598–609 (2007).
[CrossRef]

Stolen, R. H.

L. F. Mollenaure, R. H. Stolen, and J. P. Gordon, “Experimental observation of picoseconds pulse narrowing and solitons in optical fiber,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[CrossRef]

Straesser, A.

M. Ostermeyer and A. Straesser, “Theoretical investigation of feasibility of Yb:YAG as laser material for nanosecond pulse emission with large energies in the Joule range,” Opt. Commun. 274, 422–428 (2007).
[CrossRef]

Szabó, G.

Z. L. Horváth, M. Erdélyi, G. Szabó, Z. Bor, F. K. Tittel, and J. R. Cavallaro, “Generation of nearly nondiffracting Bessel beams with a Fabry–Perot interferometer,” J. Opt. Soc. Am. A 14, 3009–3013 (1997).
[CrossRef]

Tapert, F.

A. Hasegawa and F. Tapert, “Transmission of stationary nonlinear optical pulse in dispersive dielectric fibers: I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142–144 (1973).
[CrossRef]

Tittel, F. K.

Z. L. Horváth, M. Erdélyi, G. Szabó, Z. Bor, F. K. Tittel, and J. R. Cavallaro, “Generation of nearly nondiffracting Bessel beams with a Fabry–Perot interferometer,” J. Opt. Soc. Am. A 14, 3009–3013 (1997).
[CrossRef]

Tsangaris, C. L.

C. L. Tsangaris, G. H. C. New, and J. Rogel-Salazar, “Unstable Bessel beam resonator,” Opt. Commun. 223, 233–238 (2003).
[CrossRef]

Turunen, J.

A. Hakola, S. C. Buchter, T. Kajava, H. Elfström, J. Simonen, P. Pääkkönen, and J. Turunen, “Bessel–Gauss output beam from a diode-pumped NdYAG laser,” Opt. Commun. 238, 335–340 (2004).
[CrossRef]

P. Pääkkönen and J. Turunen, “Resonators with Bessel–Gauss modes,” Opt. Commun. 156, 359–366 (1998).
[CrossRef]

A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6, 1748–1754 (1989).
[CrossRef]

J. Turunen, A. Vasara, and A. T. Friberg, “Holographic generation of diffraction-free beams,” Appl. Opt. 27, 3959–3962 (1988).
[CrossRef]

Uehara, K.

K. Uehara and H. Kikuchi, “Generation of nearly diffraction-free laser beams,” Appl. Phys. B 48, 125–129 (1989).
[CrossRef]

Vasara, A.

A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6, 1748–1754 (1989).
[CrossRef]

J. Turunen, A. Vasara, and A. T. Friberg, “Holographic generation of diffraction-free beams,” Appl. Opt. 27, 3959–3962 (1988).
[CrossRef]

Volostnikov, V.

E. Abramochkin and V. Volostnikov, “Spiral-type beams,” Opt. Commun. 102, 336–350 (1993).
[CrossRef]

Wittig, K.

A. Giesen, H. Hugel, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

Appl. Opt. (3)

J. Turunen, A. Vasara, and A. T. Friberg, “Holographic generation of diffraction-free beams,” Appl. Opt. 27, 3959–3962 (1988).
[CrossRef]

G. L. Bordet and E. Bartniki, “Generalized formula for continuous-wave end-pumped Yb-doped material amplifier gain and laser output power in various pumping configurations,” Appl. Opt. 45, 9203–9209 (2006).
[CrossRef]

G. L. Bordet, “Theoretical investigation of quasi-three-level longitudinally pumped continuous wave lasers,” Appl. Opt. 39, 966–971 (2000).
[CrossRef]

Appl. Phys. B (2)

K. Uehara and H. Kikuchi, “Generation of nearly diffraction-free laser beams,” Appl. Phys. B 48, 125–129 (1989).
[CrossRef]

A. Giesen, H. Hugel, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

Appl. Phys. Lett. (1)

A. Hasegawa and F. Tapert, “Transmission of stationary nonlinear optical pulse in dispersive dielectric fibers: I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142–144 (1973).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598–609 (2007).
[CrossRef]

J. Opt. Soc. Am. A (10)

A. N. Khilo, E. G. Katranji, and A. A. Ryzhevich, “Axicon-based Bessel resonator: analytical description and experiment,” J. Opt. Soc. Am. A 18, 1986–1992 (2001).
[CrossRef]

R. I. Hernández-Aranda, S. Chávez-Cerda, and J. C. Gutiérrez-Vega, “Theory of the unstable Bessel resonator,” J. Opt. Soc. Am. A 22, 1909–1916 (2005).
[CrossRef]

S. A. Collins, “Lens-system diffraction integral written in term of matrix optics,” J. Opt. Soc. Am. A 60, 1168–1177 (1970).
[CrossRef]

A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6, 1748–1754 (1989).
[CrossRef]

Z. L. Horváth, M. Erdélyi, G. Szabó, Z. Bor, F. K. Tittel, and J. R. Cavallaro, “Generation of nearly nondiffracting Bessel beams with a Fabry–Perot interferometer,” J. Opt. Soc. Am. A 14, 3009–3013 (1997).
[CrossRef]

W.-X. Cong, N.-X. Chen, and B.-Y. Gu, “Generation of nondiffracting beams by diffractive phase elements,” J. Opt. Soc. Am. A 15, 2362–2364 (1998).
[CrossRef]

R. Piestun and J. Shamir, “Generalized propagation invariant wave fields,” J. Opt. Soc. Am. A 15, 3039–3044 (1998).
[CrossRef]

J. C. Gutiérrez-Vega, R. Rodríguez-Masegosa, and S. Chávez-Cerda, “Bessel–Gauss resonator with spherical output mirror: geometrical and wave-optics analysis,” J. Opt. Soc. Am. A 20, 2113–2122 (2003).
[CrossRef]

G. Indebetouw, “Nondiffracting optical fields: some remarks on their analysis and synthesis,” J. Opt. Soc. Am. A 6, 150–152 (1989).
[CrossRef]

A. J. Durnin, “Exact solutions for nondiffracting beams. I. the scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987).
[CrossRef]

Opt. Commun. (10)

F. Gori, G. Guattari, and C. Padovani, “Bessel–Gauss beams,” Opt. Commun. 64, 491–495 (1987).
[CrossRef]

E. Abramochkin and V. Volostnikov, “Spiral-type beams,” Opt. Commun. 102, 336–350 (1993).
[CrossRef]

S. Chávez-Cerda, G. S. McDonald, and G. H. C. New, “Nondiffracting beams: travelling, standing, rotating and spiral waves,” Opt. Commun. 123, 225–233 (1996).
[CrossRef]

C. Paterson and R. Smith, “Helicon waves: propagation invariant waves in a rotating coordinate system,” Opt. Commun. 124, 131–140 (1996).
[CrossRef]

C. L. Tsangaris, G. H. C. New, and J. Rogel-Salazar, “Unstable Bessel beam resonator,” Opt. Commun. 223, 233–238 (2003).
[CrossRef]

P. Pääkkönen and J. Turunen, “Resonators with Bessel–Gauss modes,” Opt. Commun. 156, 359–366 (1998).
[CrossRef]

A. Hakola, S. C. Buchter, T. Kajava, H. Elfström, J. Simonen, P. Pääkkönen, and J. Turunen, “Bessel–Gauss output beam from a diode-pumped NdYAG laser,” Opt. Commun. 238, 335–340 (2004).
[CrossRef]

J. Rogel-Salazar, G. H. C. New, and S. Chávez-Cerda, “Bessel–Gauss beam optical resonator,” Opt. Commun. 190, 117–122 (2001).
[CrossRef]

M. Ostermeyer and A. Straesser, “Theoretical investigation of feasibility of Yb:YAG as laser material for nanosecond pulse emission with large energies in the Joule range,” Opt. Commun. 274, 422–428 (2007).
[CrossRef]

I. A. Litvin and A. Forbes, “Bessel–Gauss resonator with internal amplitude filter,” Opt. Commun. 281, 2385–2392 (2008).
[CrossRef]

Opt. Eng. (1)

G. Scott and N. McArdle, “Efficient generation of nearly diffraction-free beams using an axicon,” Opt. Eng. 31, 2640–2643 (1992).
[CrossRef]

Opt. Express (1)

M. Dallaire, N. McCarthy, and M. Piche, “Spatiotemporal Bessel beams: theory and experiments,” Opt. Express 17, 18148–18158 (2009).
[CrossRef]

Opt. Laser Technol. (1)

M. J. Dashcasan, E. Barati, and R. Aghbolaghi, “Designing of an efficient multi-aperture, edge pumped thin-disk laser,” Opt. Laser Technol. 44, 800–805 (2012).
[CrossRef]

Opt. Lett. (2)

C. Lopez-Mariscal and K. Helmerson, “Shaped nondiffracting beams,” Opt. Lett. 35, 1215–1217 (2010).
[CrossRef]

J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, and S. Chavez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett. 25, 1493–1495 (2000).
[CrossRef]

Phys. Rev. Lett. (2)

L. F. Mollenaure, R. H. Stolen, and J. P. Gordon, “Experimental observation of picoseconds pulse narrowing and solitons in optical fiber,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[CrossRef]

J. Durnin, J. J. Micely, and J. H. Eberly, “Diffraction free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef]

Proc. SPIE (1)

R. Aghbolaghi, J. Mollai, S. Batebi, and A. K. Jafari, “Numerical study of axicon-based Bessel–Gauss resonator for thin disk laser,” Proc. SPIE 7747, 77471H (2010).
[CrossRef]

Other (1)

J. Durnin and J. H. Eberly, “Diffraction free arrangement,” U.S. patent 4,887,885 (19December1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics