Abstract

A highly sensitive temperature sensor was made by use of a side-hole glass fiber filled with indium metal, and its optical properties were investigated. The temperature sensitivity of the fiber-optic temperature sensor was dλ/dT=7.38nm/K. The temperature sensitivity was also examined in sensors made by different lengths of the side-hole fiber and the indium-filled fiber region. The temperature sensitivity could be varied in the range of 1.83 to 7.38nm/K by changing the relative length between the side-hole fiber and the indium-filled fiber region.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
    [CrossRef]
  2. A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. De La Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70, 19–21 (1997).
    [CrossRef]
  3. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
    [CrossRef]
  4. O. Frazao, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors 7, 2970–2983 (2007).
    [CrossRef]
  5. K. Lee, P. Hu, J. L. Blows, D. Thorncraft, and J. Baxter, “A 200 m optical fiber with integrated electrode and its poling,” Opt. Lett. 29, 2124–2126 (2004).
    [CrossRef]
  6. N. Myren and W. Margulis, “Time evolution of frozen-in field during poling of fiber with alloy electrodes,” Opt. Express 13, 3438–3444 (2005).
    [CrossRef]
  7. B. H. Kim, S. Moon, U. C. Paek, and W.-T. Han, “All fiber polarimetric modulation using an electro-optic fiber with internal Pb-Sn electrodes,” Opt. Express 14, 11234–11241 (2006).
    [CrossRef]
  8. G. Chesini, C. M. B. Cordeiro, C. J. S. de Matos, M. Fokine, I. C. S. Carvalho, and J. C. Knight, “All-fiber devices based on photonic crystal fibers with integrated electrodes,” Opt. Express 17, 1660–1665 (2009).
    [CrossRef]
  9. J. Hou, D. Bird, A. George, S. Maier, B. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express 16, 5983–5990 (2008).
    [CrossRef]
  10. M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express 16, 8427–8432 (2008).
    [CrossRef]
  11. B. H. Kim, S. H. Lee, A. Lin, C.-L. Lee, J. Lee, and W.-T. Han, “Large temperature sensitivity of Sagnac loop interferometer based on the birefringent holey fiber filled with metal indium,” Opt. Express 17, 1789–1794 (2009).
    [CrossRef]
  12. S. H. Lee, B. H. Kim, and W.-T. Han, “Effect of filler metals on the temperature sensitivity of side-hole fiber,” Opt. Express 17, 9712–9717 (2009).
    [CrossRef]
  13. B. H. Kim, S. H. Lee, D. H. Son, T.-J. Ahn, S. Kim, and W.-T. Han, “Highly sensitive temperature sensor based on the side-hole optical fiber filled with indium,” in Technical Digest of European Conference on Optical Communications (IEEE, 2011), paper We.10.P1.03.
  14. M. Fokine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, “Integrated fiber Mach–Zehnder interferometer for electro-optic switching,” Opt. Lett. 27, 1643–1645 (2002).
    [CrossRef]
  15. D. R. Lide, Handbook of Chemistry and Physics (CRC, 2000), Sec. 8.
  16. X. Fang and R. O. Claus, “Polarization-independent all-fiber wavelength-division multiplexer based on a Sagnac interferometer,” Opt. Lett. 20, 2146–2148 (1995).
    [CrossRef]
  17. E. De la Rosa, L. A. Zenteno, A. N. Starodumov, and D. Monzon, “All-fiber absolute temperature sensor using an unbalanced high-birefringence Sagnac loop,” Opt. Lett. 22, 481–483 (1997).
    [CrossRef]
  18. S. H. Lee, D. H. Son, B. H. Kim, and W.-T. Han, “Effect of infiltration pressure on the birefringent properties of a side-hole fiber filled with indium,” Opt. Lett. 37, 2322–2324 (2012).
    [CrossRef]

2012 (1)

S. H. Lee, D. H. Son, B. H. Kim, and W.-T. Han, “Effect of infiltration pressure on the birefringent properties of a side-hole fiber filled with indium,” Opt. Lett. 37, 2322–2324 (2012).
[CrossRef]

2009 (3)

B. H. Kim, S. H. Lee, A. Lin, C.-L. Lee, J. Lee, and W.-T. Han, “Large temperature sensitivity of Sagnac loop interferometer based on the birefringent holey fiber filled with metal indium,” Opt. Express 17, 1789–1794 (2009).
[CrossRef]

S. H. Lee, B. H. Kim, and W.-T. Han, “Effect of filler metals on the temperature sensitivity of side-hole fiber,” Opt. Express 17, 9712–9717 (2009).
[CrossRef]

G. Chesini, C. M. B. Cordeiro, C. J. S. de Matos, M. Fokine, I. C. S. Carvalho, and J. C. Knight, “All-fiber devices based on photonic crystal fibers with integrated electrodes,” Opt. Express 17, 1660–1665 (2009).
[CrossRef]

2008 (2)

J. Hou, D. Bird, A. George, S. Maier, B. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express 16, 5983–5990 (2008).
[CrossRef]

M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express 16, 8427–8432 (2008).
[CrossRef]

2007 (1)

O. Frazao, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors 7, 2970–2983 (2007).
[CrossRef]

2006 (1)

B. H. Kim, S. Moon, U. C. Paek, and W.-T. Han, “All fiber polarimetric modulation using an electro-optic fiber with internal Pb-Sn electrodes,” Opt. Express 14, 11234–11241 (2006).
[CrossRef]

2005 (1)

N. Myren and W. Margulis, “Time evolution of frozen-in field during poling of fiber with alloy electrodes,” Opt. Express 13, 3438–3444 (2005).
[CrossRef]

2004 (1)

K. Lee, P. Hu, J. L. Blows, D. Thorncraft, and J. Baxter, “A 200 m optical fiber with integrated electrode and its poling,” Opt. Lett. 29, 2124–2126 (2004).
[CrossRef]

2002 (1)

M. Fokine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, “Integrated fiber Mach–Zehnder interferometer for electro-optic switching,” Opt. Lett. 27, 1643–1645 (2002).
[CrossRef]

1997 (3)

E. De la Rosa, L. A. Zenteno, A. N. Starodumov, and D. Monzon, “All-fiber absolute temperature sensor using an unbalanced high-birefringence Sagnac loop,” Opt. Lett. 22, 481–483 (1997).
[CrossRef]

A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. De La Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70, 19–21 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

1996 (1)

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
[CrossRef]

1995 (1)

X. Fang and R. O. Claus, “Polarization-independent all-fiber wavelength-division multiplexer based on a Sagnac interferometer,” Opt. Lett. 20, 2146–2148 (1995).
[CrossRef]

Ahn, T.-J.

B. H. Kim, S. H. Lee, D. H. Son, T.-J. Ahn, S. Kim, and W.-T. Han, “Highly sensitive temperature sensor based on the side-hole optical fiber filled with indium,” in Technical Digest of European Conference on Optical Communications (IEEE, 2011), paper We.10.P1.03.

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Baptista, J. M.

O. Frazao, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors 7, 2970–2983 (2007).
[CrossRef]

Baxter, J.

K. Lee, P. Hu, J. L. Blows, D. Thorncraft, and J. Baxter, “A 200 m optical fiber with integrated electrode and its poling,” Opt. Lett. 29, 2124–2126 (2004).
[CrossRef]

Berlemont, D.

M. Fokine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, “Integrated fiber Mach–Zehnder interferometer for electro-optic switching,” Opt. Lett. 27, 1643–1645 (2002).
[CrossRef]

Bhatia, V.

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
[CrossRef]

Bird, D.

J. Hou, D. Bird, A. George, S. Maier, B. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express 16, 5983–5990 (2008).
[CrossRef]

Blows, J. L.

K. Lee, P. Hu, J. L. Blows, D. Thorncraft, and J. Baxter, “A 200 m optical fiber with integrated electrode and its poling,” Opt. Lett. 29, 2124–2126 (2004).
[CrossRef]

Carvalho, I. C. S.

G. Chesini, C. M. B. Cordeiro, C. J. S. de Matos, M. Fokine, I. C. S. Carvalho, and J. C. Knight, “All-fiber devices based on photonic crystal fibers with integrated electrodes,” Opt. Express 17, 1660–1665 (2009).
[CrossRef]

Chesini, G.

G. Chesini, C. M. B. Cordeiro, C. J. S. de Matos, M. Fokine, I. C. S. Carvalho, and J. C. Knight, “All-fiber devices based on photonic crystal fibers with integrated electrodes,” Opt. Express 17, 1660–1665 (2009).
[CrossRef]

Claesson, A.

M. Fokine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, “Integrated fiber Mach–Zehnder interferometer for electro-optic switching,” Opt. Lett. 27, 1643–1645 (2002).
[CrossRef]

Claus, R. O.

X. Fang and R. O. Claus, “Polarization-independent all-fiber wavelength-division multiplexer based on a Sagnac interferometer,” Opt. Lett. 20, 2146–2148 (1995).
[CrossRef]

Cordeiro, C. M. B.

G. Chesini, C. M. B. Cordeiro, C. J. S. de Matos, M. Fokine, I. C. S. Carvalho, and J. C. Knight, “All-fiber devices based on photonic crystal fibers with integrated electrodes,” Opt. Express 17, 1660–1665 (2009).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

De La Rosa, E.

A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. De La Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70, 19–21 (1997).
[CrossRef]

E. De la Rosa, L. A. Zenteno, A. N. Starodumov, and D. Monzon, “All-fiber absolute temperature sensor using an unbalanced high-birefringence Sagnac loop,” Opt. Lett. 22, 481–483 (1997).
[CrossRef]

de Matos, C. J. S.

G. Chesini, C. M. B. Cordeiro, C. J. S. de Matos, M. Fokine, I. C. S. Carvalho, and J. C. Knight, “All-fiber devices based on photonic crystal fibers with integrated electrodes,” Opt. Express 17, 1660–1665 (2009).
[CrossRef]

Fang, X.

X. Fang and R. O. Claus, “Polarization-independent all-fiber wavelength-division multiplexer based on a Sagnac interferometer,” Opt. Lett. 20, 2146–2148 (1995).
[CrossRef]

Fokine, M.

G. Chesini, C. M. B. Cordeiro, C. J. S. de Matos, M. Fokine, I. C. S. Carvalho, and J. C. Knight, “All-fiber devices based on photonic crystal fibers with integrated electrodes,” Opt. Express 17, 1660–1665 (2009).
[CrossRef]

M. Fokine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, “Integrated fiber Mach–Zehnder interferometer for electro-optic switching,” Opt. Lett. 27, 1643–1645 (2002).
[CrossRef]

Frazao, O.

O. Frazao, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors 7, 2970–2983 (2007).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

George, A.

J. Hou, D. Bird, A. George, S. Maier, B. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express 16, 5983–5990 (2008).
[CrossRef]

Han, W.-T.

S. H. Lee, D. H. Son, B. H. Kim, and W.-T. Han, “Effect of infiltration pressure on the birefringent properties of a side-hole fiber filled with indium,” Opt. Lett. 37, 2322–2324 (2012).
[CrossRef]

B. H. Kim, S. H. Lee, A. Lin, C.-L. Lee, J. Lee, and W.-T. Han, “Large temperature sensitivity of Sagnac loop interferometer based on the birefringent holey fiber filled with metal indium,” Opt. Express 17, 1789–1794 (2009).
[CrossRef]

S. H. Lee, B. H. Kim, and W.-T. Han, “Effect of filler metals on the temperature sensitivity of side-hole fiber,” Opt. Express 17, 9712–9717 (2009).
[CrossRef]

B. H. Kim, S. Moon, U. C. Paek, and W.-T. Han, “All fiber polarimetric modulation using an electro-optic fiber with internal Pb-Sn electrodes,” Opt. Express 14, 11234–11241 (2006).
[CrossRef]

B. H. Kim, S. H. Lee, D. H. Son, T.-J. Ahn, S. Kim, and W.-T. Han, “Highly sensitive temperature sensor based on the side-hole optical fiber filled with indium,” in Technical Digest of European Conference on Optical Communications (IEEE, 2011), paper We.10.P1.03.

Hautakorpi, M.

M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express 16, 8427–8432 (2008).
[CrossRef]

Hou, J.

J. Hou, D. Bird, A. George, S. Maier, B. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express 16, 5983–5990 (2008).
[CrossRef]

Hu, P.

K. Lee, P. Hu, J. L. Blows, D. Thorncraft, and J. Baxter, “A 200 m optical fiber with integrated electrode and its poling,” Opt. Lett. 29, 2124–2126 (2004).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Kim, B. H.

S. H. Lee, D. H. Son, B. H. Kim, and W.-T. Han, “Effect of infiltration pressure on the birefringent properties of a side-hole fiber filled with indium,” Opt. Lett. 37, 2322–2324 (2012).
[CrossRef]

S. H. Lee, B. H. Kim, and W.-T. Han, “Effect of filler metals on the temperature sensitivity of side-hole fiber,” Opt. Express 17, 9712–9717 (2009).
[CrossRef]

B. H. Kim, S. H. Lee, A. Lin, C.-L. Lee, J. Lee, and W.-T. Han, “Large temperature sensitivity of Sagnac loop interferometer based on the birefringent holey fiber filled with metal indium,” Opt. Express 17, 1789–1794 (2009).
[CrossRef]

B. H. Kim, S. Moon, U. C. Paek, and W.-T. Han, “All fiber polarimetric modulation using an electro-optic fiber with internal Pb-Sn electrodes,” Opt. Express 14, 11234–11241 (2006).
[CrossRef]

B. H. Kim, S. H. Lee, D. H. Son, T.-J. Ahn, S. Kim, and W.-T. Han, “Highly sensitive temperature sensor based on the side-hole optical fiber filled with indium,” in Technical Digest of European Conference on Optical Communications (IEEE, 2011), paper We.10.P1.03.

Kim, S.

B. H. Kim, S. H. Lee, D. H. Son, T.-J. Ahn, S. Kim, and W.-T. Han, “Highly sensitive temperature sensor based on the side-hole optical fiber filled with indium,” in Technical Digest of European Conference on Optical Communications (IEEE, 2011), paper We.10.P1.03.

Kjellberg, L.

M. Fokine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, “Integrated fiber Mach–Zehnder interferometer for electro-optic switching,” Opt. Lett. 27, 1643–1645 (2002).
[CrossRef]

Knight, J. C.

G. Chesini, C. M. B. Cordeiro, C. J. S. de Matos, M. Fokine, I. C. S. Carvalho, and J. C. Knight, “All-fiber devices based on photonic crystal fibers with integrated electrodes,” Opt. Express 17, 1660–1665 (2009).
[CrossRef]

J. Hou, D. Bird, A. George, S. Maier, B. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express 16, 5983–5990 (2008).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Krummenacher, L.

M. Fokine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, “Integrated fiber Mach–Zehnder interferometer for electro-optic switching,” Opt. Lett. 27, 1643–1645 (2002).
[CrossRef]

Kuhlmey, B.

J. Hou, D. Bird, A. George, S. Maier, B. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express 16, 5983–5990 (2008).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Lee, C.-L.

B. H. Kim, S. H. Lee, A. Lin, C.-L. Lee, J. Lee, and W.-T. Han, “Large temperature sensitivity of Sagnac loop interferometer based on the birefringent holey fiber filled with metal indium,” Opt. Express 17, 1789–1794 (2009).
[CrossRef]

Lee, J.

B. H. Kim, S. H. Lee, A. Lin, C.-L. Lee, J. Lee, and W.-T. Han, “Large temperature sensitivity of Sagnac loop interferometer based on the birefringent holey fiber filled with metal indium,” Opt. Express 17, 1789–1794 (2009).
[CrossRef]

Lee, K.

K. Lee, P. Hu, J. L. Blows, D. Thorncraft, and J. Baxter, “A 200 m optical fiber with integrated electrode and its poling,” Opt. Lett. 29, 2124–2126 (2004).
[CrossRef]

Lee, S. H.

S. H. Lee, D. H. Son, B. H. Kim, and W.-T. Han, “Effect of infiltration pressure on the birefringent properties of a side-hole fiber filled with indium,” Opt. Lett. 37, 2322–2324 (2012).
[CrossRef]

B. H. Kim, S. H. Lee, A. Lin, C.-L. Lee, J. Lee, and W.-T. Han, “Large temperature sensitivity of Sagnac loop interferometer based on the birefringent holey fiber filled with metal indium,” Opt. Express 17, 1789–1794 (2009).
[CrossRef]

S. H. Lee, B. H. Kim, and W.-T. Han, “Effect of filler metals on the temperature sensitivity of side-hole fiber,” Opt. Express 17, 9712–9717 (2009).
[CrossRef]

B. H. Kim, S. H. Lee, D. H. Son, T.-J. Ahn, S. Kim, and W.-T. Han, “Highly sensitive temperature sensor based on the side-hole optical fiber filled with indium,” in Technical Digest of European Conference on Optical Communications (IEEE, 2011), paper We.10.P1.03.

Lide, D. R.

D. R. Lide, Handbook of Chemistry and Physics (CRC, 2000), Sec. 8.

Lin, A.

B. H. Kim, S. H. Lee, A. Lin, C.-L. Lee, J. Lee, and W.-T. Han, “Large temperature sensitivity of Sagnac loop interferometer based on the birefringent holey fiber filled with metal indium,” Opt. Express 17, 1789–1794 (2009).
[CrossRef]

Ludvigsen, H.

M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express 16, 8427–8432 (2008).
[CrossRef]

Maier, S.

J. Hou, D. Bird, A. George, S. Maier, B. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express 16, 5983–5990 (2008).
[CrossRef]

Margulis, W.

N. Myren and W. Margulis, “Time evolution of frozen-in field during poling of fiber with alloy electrodes,” Opt. Express 13, 3438–3444 (2005).
[CrossRef]

M. Fokine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, “Integrated fiber Mach–Zehnder interferometer for electro-optic switching,” Opt. Lett. 27, 1643–1645 (2002).
[CrossRef]

Mattinen, M.

M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express 16, 8427–8432 (2008).
[CrossRef]

Monzon, D.

A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. De La Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70, 19–21 (1997).
[CrossRef]

E. De la Rosa, L. A. Zenteno, A. N. Starodumov, and D. Monzon, “All-fiber absolute temperature sensor using an unbalanced high-birefringence Sagnac loop,” Opt. Lett. 22, 481–483 (1997).
[CrossRef]

Moon, S.

B. H. Kim, S. Moon, U. C. Paek, and W.-T. Han, “All fiber polarimetric modulation using an electro-optic fiber with internal Pb-Sn electrodes,” Opt. Express 14, 11234–11241 (2006).
[CrossRef]

Myren, N.

N. Myren and W. Margulis, “Time evolution of frozen-in field during poling of fiber with alloy electrodes,” Opt. Express 13, 3438–3444 (2005).
[CrossRef]

Nilsson, L. E.

M. Fokine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, “Integrated fiber Mach–Zehnder interferometer for electro-optic switching,” Opt. Lett. 27, 1643–1645 (2002).
[CrossRef]

Paek, U. C.

B. H. Kim, S. Moon, U. C. Paek, and W.-T. Han, “All fiber polarimetric modulation using an electro-optic fiber with internal Pb-Sn electrodes,” Opt. Express 14, 11234–11241 (2006).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Santos, J. L.

O. Frazao, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors 7, 2970–2983 (2007).
[CrossRef]

Son, D. H.

S. H. Lee, D. H. Son, B. H. Kim, and W.-T. Han, “Effect of infiltration pressure on the birefringent properties of a side-hole fiber filled with indium,” Opt. Lett. 37, 2322–2324 (2012).
[CrossRef]

B. H. Kim, S. H. Lee, D. H. Son, T.-J. Ahn, S. Kim, and W.-T. Han, “Highly sensitive temperature sensor based on the side-hole optical fiber filled with indium,” in Technical Digest of European Conference on Optical Communications (IEEE, 2011), paper We.10.P1.03.

Starodumov, A. N.

A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. De La Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70, 19–21 (1997).
[CrossRef]

E. De la Rosa, L. A. Zenteno, A. N. Starodumov, and D. Monzon, “All-fiber absolute temperature sensor using an unbalanced high-birefringence Sagnac loop,” Opt. Lett. 22, 481–483 (1997).
[CrossRef]

Thorncraft, D.

K. Lee, P. Hu, J. L. Blows, D. Thorncraft, and J. Baxter, “A 200 m optical fiber with integrated electrode and its poling,” Opt. Lett. 29, 2124–2126 (2004).
[CrossRef]

Vengsarkar, A. M.

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
[CrossRef]

Zenteno, L. A.

A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. De La Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70, 19–21 (1997).
[CrossRef]

E. De la Rosa, L. A. Zenteno, A. N. Starodumov, and D. Monzon, “All-fiber absolute temperature sensor using an unbalanced high-birefringence Sagnac loop,” Opt. Lett. 22, 481–483 (1997).
[CrossRef]

Appl. Phys. Lett. (1)

A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. De La Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70, 19–21 (1997).
[CrossRef]

J. Lightwave Technol. (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Opt. Express (7)

N. Myren and W. Margulis, “Time evolution of frozen-in field during poling of fiber with alloy electrodes,” Opt. Express 13, 3438–3444 (2005).
[CrossRef]

B. H. Kim, S. Moon, U. C. Paek, and W.-T. Han, “All fiber polarimetric modulation using an electro-optic fiber with internal Pb-Sn electrodes,” Opt. Express 14, 11234–11241 (2006).
[CrossRef]

G. Chesini, C. M. B. Cordeiro, C. J. S. de Matos, M. Fokine, I. C. S. Carvalho, and J. C. Knight, “All-fiber devices based on photonic crystal fibers with integrated electrodes,” Opt. Express 17, 1660–1665 (2009).
[CrossRef]

J. Hou, D. Bird, A. George, S. Maier, B. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express 16, 5983–5990 (2008).
[CrossRef]

M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express 16, 8427–8432 (2008).
[CrossRef]

B. H. Kim, S. H. Lee, A. Lin, C.-L. Lee, J. Lee, and W.-T. Han, “Large temperature sensitivity of Sagnac loop interferometer based on the birefringent holey fiber filled with metal indium,” Opt. Express 17, 1789–1794 (2009).
[CrossRef]

S. H. Lee, B. H. Kim, and W.-T. Han, “Effect of filler metals on the temperature sensitivity of side-hole fiber,” Opt. Express 17, 9712–9717 (2009).
[CrossRef]

Opt. Lett. (6)

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
[CrossRef]

K. Lee, P. Hu, J. L. Blows, D. Thorncraft, and J. Baxter, “A 200 m optical fiber with integrated electrode and its poling,” Opt. Lett. 29, 2124–2126 (2004).
[CrossRef]

M. Fokine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, “Integrated fiber Mach–Zehnder interferometer for electro-optic switching,” Opt. Lett. 27, 1643–1645 (2002).
[CrossRef]

X. Fang and R. O. Claus, “Polarization-independent all-fiber wavelength-division multiplexer based on a Sagnac interferometer,” Opt. Lett. 20, 2146–2148 (1995).
[CrossRef]

E. De la Rosa, L. A. Zenteno, A. N. Starodumov, and D. Monzon, “All-fiber absolute temperature sensor using an unbalanced high-birefringence Sagnac loop,” Opt. Lett. 22, 481–483 (1997).
[CrossRef]

S. H. Lee, D. H. Son, B. H. Kim, and W.-T. Han, “Effect of infiltration pressure on the birefringent properties of a side-hole fiber filled with indium,” Opt. Lett. 37, 2322–2324 (2012).
[CrossRef]

Sensors (1)

O. Frazao, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors 7, 2970–2983 (2007).
[CrossRef]

Other (2)

D. R. Lide, Handbook of Chemistry and Physics (CRC, 2000), Sec. 8.

B. H. Kim, S. H. Lee, D. H. Son, T.-J. Ahn, S. Kim, and W.-T. Han, “Highly sensitive temperature sensor based on the side-hole optical fiber filled with indium,” in Technical Digest of European Conference on Optical Communications (IEEE, 2011), paper We.10.P1.03.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Microphoto images of the side-hole fiber (a) before and (b) after the metal infiltration process, and (c) SEM image of the indium-filled side-hole region near the elliptical core.

Fig. 2.
Fig. 2.

Schematic structure of the end-face-type fiber-optic temperature sensor made with the side-hole fiber with the indium-filled fiber region near the fiber end face.

Fig. 3.
Fig. 3.

Wavelength shift of the interference fringe in the fiber-optic temperature sensors based on the side-hole fibers without (reference sensor) and with (sensor A) indium. The arrows represent the guide to show the wavelength shifts.

Fig. 4.
Fig. 4.

Wavelength shift of the interference fringes near 1500 nm in the fiber-optic temperature sensors with (sensor A) and without (reference sensor) indium in the temperature from 25°C to 83°C.

Fig. 5.
Fig. 5.

(a) Interference fringe spacing of sensor A with indium and the reference sensor without indium in the temperature range 25°C to 83°C. (b) Birefringence of the fiber regions with and without indium and birefringence solely induced by indium.

Fig. 6.
Fig. 6.

Output spectra of the fiber-optic temperature sensors (sensors A, B, C, and D) made with different lengths of the side-hole fiber and the indium-filled fiber region at 35 ° C .

Fig. 7.
Fig. 7.

(a) Wavelength shift of the interference fringes in sensors B, C, and D made by different lengths of the side-hole fiber and indium-filled fiber region in the temperature range of 28°C to 85°C. (b) Temperature sensitivity of the wavelength shift with the length ratio between the fiber regions with and without indium. The solid curve was obtained from the theoretical Eq. (12) and the birefringent properties of the fiber ( B s = 9.54 × 10 5 , B n = 1.06 × 10 4 , and δ B m / δ T = 3.30 × 10 6 K 1 ), and the dashed curve represents the fitting by y = a / ( 1 + 1.11 x ) based on the equation.

Tables (2)

Tables Icon

Table 1. Optical Characteristics of the Fiber-optic Sensor with Indium (Sensor A) and the Reference Sensor

Tables Icon

Table 2. Dimensional and Optical Properties of the Fiber-optic Temperature Sensorsa

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

φ t ( T ) = φ m ( T ) + φ n ( T ) + φ 0 = 4 π B L λ = 2 π λ S = 4 π ( B m L m + B n L n + B 0 L 0 ) λ ,
λ S = 2 ( B m L m + B n L n + B 0 L 0 ) λ ,
S = λ 2 2 B L = λ 2 2 ( B m L m + B n L n + B 0 L 0 ) ,
B m = L L m B L n L m B n L 0 L m B 0 .
B n = L L p B L 0 L p B 0 ,
B s = B m B n = L L m B ( L n L m + 1 ) B n L 0 L m B 0 .
δ δ T ( λ S ) = δ δ T [ 2 ( B m L m + B n L n + B 0 L 0 ) λ ] .
1 S d λ d T = 2 λ δ δ T ( B m L m + B n L n + B 0 L 0 ) ,
d λ d T = 2 S λ δ δ T ( B m L m + B n L n + B 0 L 0 ) = 2 S λ [ B m L m ( 1 B m δ B m δ T + 1 L m δ L m δ T ) + B n L n ( 1 B n δ B n δ T + 1 L n δ L n δ T ) ] .
d λ d T 2 S λ [ δ B m δ T L m + δ B n δ T L n ] .
B L = B m L m + B n L n + B 0 L 0 = ( B s + B n ) L m + B n L n + B 0 L 0 = B s L m + ( B n L m + B n L n + B 0 L 0 ) B s L m + ( B n L m + B n L n + B n L 0 ) = B s L m + B n L ,
d λ d T 2 S λ δ B m δ T L m = λ B L δ B m δ T L m λ B s + B n L / L m δ B m δ T .

Metrics