Abstract

In this paper, we present characteristics of one-dimensional ZnO-based random lasers by using a time-domain traveling-wave model. The results reveal that by increasing pump intensity, at first the number of laser modes is increased, and then it gets saturated. Also, output intensity shows that by increasing pump pulse width at a fixed pump intensity, laser modes are made to appear; at first, by raising pump pulse width, more laser modes appear, and then the intensity of the output spectrum is increased. Additionally, we show that by nonuniform pumping, a single-mode laser can be achieved. Through investigation of the nanopowder’s average size, we show that the output spectrum has its highest intensity and the sharpest laser modes for average nanopowder sizes less than 100 nm. Moreover, the results show that by decreasing pump area, lasing threshold is inclined.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. S. Letokhov, “Stimulated emission of an ensemble of scattering particles with negative absorption,” J. Exp. Theor. Phys. Lett. 5, 212–215 (1967).
  2. X. Jiang and C. M. Soukoulis, “Time dependent theory for random lasers,” Phys. Rev. Lett. 85, 70–73 (2000).
    [CrossRef]
  3. S. F. Yu, C. Yuen, S. P. Lau, and H. W. Lee, “Zinc oxide thin-film random lasers on silicon substrate,” Appl. Phys. Lett. 84, 3244–3246 (2004).
    [CrossRef]
  4. Z. Q. Zhang, “Light amplification and localization in randomly layered media with gain,” Phys. Rev. B 52, 7960–7964 (1995).
    [CrossRef]
  5. P. Rafiee, V. Ahmadi, and M. H. Yavari, “Two-dimensional spectral-spatial analysis of ZnO nanoparticles random lasers,” in ICTON Mediterranean Winter Conference, 2009 (IEEE, 2009), pp. 10–12.
  6. S. F. Yu and E. S. P. Leong, “High-power single-mode ZnO thin-film random lasers,” IEEE J. Quantum Electron. 40, 1186–1194 (2004).
    [CrossRef]
  7. S. F. Yu, “An improved time-domain traveling-wave model for vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 34, 1938–1948 (1998).
    [CrossRef]
  8. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, “High temperature excitonic stimulated emission from ZnO epitaxial layers,” Appl. Phys. Lett. 73, 1038–1040 (1998).
    [CrossRef]
  9. L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model,” IEEE J. Quantum Electron. 30, 1389–1395 (1994).
    [CrossRef]
  10. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seeling, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
    [CrossRef]
  11. H. Cao, “Lasing in random media,” Wave Random Media 13, R1–R39 (2003).
    [CrossRef]

2004 (2)

S. F. Yu, C. Yuen, S. P. Lau, and H. W. Lee, “Zinc oxide thin-film random lasers on silicon substrate,” Appl. Phys. Lett. 84, 3244–3246 (2004).
[CrossRef]

S. F. Yu and E. S. P. Leong, “High-power single-mode ZnO thin-film random lasers,” IEEE J. Quantum Electron. 40, 1186–1194 (2004).
[CrossRef]

2003 (1)

H. Cao, “Lasing in random media,” Wave Random Media 13, R1–R39 (2003).
[CrossRef]

2000 (1)

X. Jiang and C. M. Soukoulis, “Time dependent theory for random lasers,” Phys. Rev. Lett. 85, 70–73 (2000).
[CrossRef]

1999 (1)

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seeling, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

1998 (2)

S. F. Yu, “An improved time-domain traveling-wave model for vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 34, 1938–1948 (1998).
[CrossRef]

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, “High temperature excitonic stimulated emission from ZnO epitaxial layers,” Appl. Phys. Lett. 73, 1038–1040 (1998).
[CrossRef]

1995 (1)

Z. Q. Zhang, “Light amplification and localization in randomly layered media with gain,” Phys. Rev. B 52, 7960–7964 (1995).
[CrossRef]

1994 (1)

L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model,” IEEE J. Quantum Electron. 30, 1389–1395 (1994).
[CrossRef]

1967 (1)

V. S. Letokhov, “Stimulated emission of an ensemble of scattering particles with negative absorption,” J. Exp. Theor. Phys. Lett. 5, 212–215 (1967).

Ahmadi, V.

P. Rafiee, V. Ahmadi, and M. H. Yavari, “Two-dimensional spectral-spatial analysis of ZnO nanoparticles random lasers,” in ICTON Mediterranean Winter Conference, 2009 (IEEE, 2009), pp. 10–12.

Bagnall, D. M.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, “High temperature excitonic stimulated emission from ZnO epitaxial layers,” Appl. Phys. Lett. 73, 1038–1040 (1998).
[CrossRef]

Cao, H.

H. Cao, “Lasing in random media,” Wave Random Media 13, R1–R39 (2003).
[CrossRef]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seeling, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Carroll, J. E.

L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model,” IEEE J. Quantum Electron. 30, 1389–1395 (1994).
[CrossRef]

Chang, R. P. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seeling, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Chen, Y. F.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, “High temperature excitonic stimulated emission from ZnO epitaxial layers,” Appl. Phys. Lett. 73, 1038–1040 (1998).
[CrossRef]

Goto, T.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, “High temperature excitonic stimulated emission from ZnO epitaxial layers,” Appl. Phys. Lett. 73, 1038–1040 (1998).
[CrossRef]

Ho, S. T.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seeling, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Jiang, X.

X. Jiang and C. M. Soukoulis, “Time dependent theory for random lasers,” Phys. Rev. Lett. 85, 70–73 (2000).
[CrossRef]

Lau, S. P.

S. F. Yu, C. Yuen, S. P. Lau, and H. W. Lee, “Zinc oxide thin-film random lasers on silicon substrate,” Appl. Phys. Lett. 84, 3244–3246 (2004).
[CrossRef]

Lee, H. W.

S. F. Yu, C. Yuen, S. P. Lau, and H. W. Lee, “Zinc oxide thin-film random lasers on silicon substrate,” Appl. Phys. Lett. 84, 3244–3246 (2004).
[CrossRef]

Leong, E. S. P.

S. F. Yu and E. S. P. Leong, “High-power single-mode ZnO thin-film random lasers,” IEEE J. Quantum Electron. 40, 1186–1194 (2004).
[CrossRef]

Letokhov, V. S.

V. S. Letokhov, “Stimulated emission of an ensemble of scattering particles with negative absorption,” J. Exp. Theor. Phys. Lett. 5, 212–215 (1967).

Marcenac, D. D.

L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model,” IEEE J. Quantum Electron. 30, 1389–1395 (1994).
[CrossRef]

Nowell, M. C.

L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model,” IEEE J. Quantum Electron. 30, 1389–1395 (1994).
[CrossRef]

Plumb, R. G. S.

L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model,” IEEE J. Quantum Electron. 30, 1389–1395 (1994).
[CrossRef]

Rafiee, P.

P. Rafiee, V. Ahmadi, and M. H. Yavari, “Two-dimensional spectral-spatial analysis of ZnO nanoparticles random lasers,” in ICTON Mediterranean Winter Conference, 2009 (IEEE, 2009), pp. 10–12.

Seeling, E. W.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seeling, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Shen, M. Y.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, “High temperature excitonic stimulated emission from ZnO epitaxial layers,” Appl. Phys. Lett. 73, 1038–1040 (1998).
[CrossRef]

Soukoulis, C. M.

X. Jiang and C. M. Soukoulis, “Time dependent theory for random lasers,” Phys. Rev. Lett. 85, 70–73 (2000).
[CrossRef]

Wang, Q. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seeling, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Yao, T.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, “High temperature excitonic stimulated emission from ZnO epitaxial layers,” Appl. Phys. Lett. 73, 1038–1040 (1998).
[CrossRef]

Yavari, M. H.

P. Rafiee, V. Ahmadi, and M. H. Yavari, “Two-dimensional spectral-spatial analysis of ZnO nanoparticles random lasers,” in ICTON Mediterranean Winter Conference, 2009 (IEEE, 2009), pp. 10–12.

Yu, S. F.

S. F. Yu and E. S. P. Leong, “High-power single-mode ZnO thin-film random lasers,” IEEE J. Quantum Electron. 40, 1186–1194 (2004).
[CrossRef]

S. F. Yu, C. Yuen, S. P. Lau, and H. W. Lee, “Zinc oxide thin-film random lasers on silicon substrate,” Appl. Phys. Lett. 84, 3244–3246 (2004).
[CrossRef]

S. F. Yu, “An improved time-domain traveling-wave model for vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 34, 1938–1948 (1998).
[CrossRef]

L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model,” IEEE J. Quantum Electron. 30, 1389–1395 (1994).
[CrossRef]

Yuen, C.

S. F. Yu, C. Yuen, S. P. Lau, and H. W. Lee, “Zinc oxide thin-film random lasers on silicon substrate,” Appl. Phys. Lett. 84, 3244–3246 (2004).
[CrossRef]

Zhang, L. M.

L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model,” IEEE J. Quantum Electron. 30, 1389–1395 (1994).
[CrossRef]

Zhang, Z. Q.

Z. Q. Zhang, “Light amplification and localization in randomly layered media with gain,” Phys. Rev. B 52, 7960–7964 (1995).
[CrossRef]

Zhao, Y. G.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seeling, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Zhu, Z.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, “High temperature excitonic stimulated emission from ZnO epitaxial layers,” Appl. Phys. Lett. 73, 1038–1040 (1998).
[CrossRef]

Appl. Phys. Lett. (2)

S. F. Yu, C. Yuen, S. P. Lau, and H. W. Lee, “Zinc oxide thin-film random lasers on silicon substrate,” Appl. Phys. Lett. 84, 3244–3246 (2004).
[CrossRef]

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, “High temperature excitonic stimulated emission from ZnO epitaxial layers,” Appl. Phys. Lett. 73, 1038–1040 (1998).
[CrossRef]

IEEE J. Quantum Electron. (3)

L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model,” IEEE J. Quantum Electron. 30, 1389–1395 (1994).
[CrossRef]

S. F. Yu and E. S. P. Leong, “High-power single-mode ZnO thin-film random lasers,” IEEE J. Quantum Electron. 40, 1186–1194 (2004).
[CrossRef]

S. F. Yu, “An improved time-domain traveling-wave model for vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 34, 1938–1948 (1998).
[CrossRef]

J. Exp. Theor. Phys. Lett. (1)

V. S. Letokhov, “Stimulated emission of an ensemble of scattering particles with negative absorption,” J. Exp. Theor. Phys. Lett. 5, 212–215 (1967).

Phys. Rev. B (1)

Z. Q. Zhang, “Light amplification and localization in randomly layered media with gain,” Phys. Rev. B 52, 7960–7964 (1995).
[CrossRef]

Phys. Rev. Lett. (2)

X. Jiang and C. M. Soukoulis, “Time dependent theory for random lasers,” Phys. Rev. Lett. 85, 70–73 (2000).
[CrossRef]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seeling, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Wave Random Media (1)

H. Cao, “Lasing in random media,” Wave Random Media 13, R1–R39 (2003).
[CrossRef]

Other (1)

P. Rafiee, V. Ahmadi, and M. H. Yavari, “Two-dimensional spectral-spatial analysis of ZnO nanoparticles random lasers,” in ICTON Mediterranean Winter Conference, 2009 (IEEE, 2009), pp. 10–12.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Output intensity of scattered spectrum versus pump intensity.

Fig. 2.
Fig. 2.

Output intensity of thin film for pump intensity (a) 0.7×Pth, (b) 1.19×Pth, (c) 2.14×Pth, and (d) 2.38×Pth.

Fig. 3.
Fig. 3.

Time response of emission intensity as well as exciton population and pump pulse. Pump intensity is (a) below threshold, (b) about lasing threshold, and (c) above lasing threshold.

Fig. 4.
Fig. 4.

Output intensity at fix pump intensity for pump pulse width (a) 10, (b) 15, and (c) 20 ps.

Fig. 5.
Fig. 5.

Output intensity at pump intensity 1.1MW/cm2 for different nonuniform spatial distributions of the pump pulse.

Fig. 6.
Fig. 6.

Output spectrum corresponding to nanopowder size (a) 60, (b) 80, (c) 100, and (d) 180 nm at fixed void for 65 nm. Pump intensity is equals to 3×Pth.

Fig. 7.
Fig. 7.

(a) Output intensity versus pump intensity for pump areas of 4, 5, and 6 μm and (b) lasing threshold versus pump area.

Tables (1)

Tables Icon

Table 1. Parameters Used in the Simulation

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

1νgE±(z,t)t±E±(z,t)z=H(z,t)E±(z,t),
Nex(zm,t)t=νgPpump(zm,t)dNex(zm,t)τnνgg(Nex)P(zm,t),
E(zm,t+Δt)=s221E(zm+Δz,t)s221s21E+(zm,t)+Sp(zm+Δz,t),
E+(zm+Δz,t+Δt)=s11E+(zm,t)+s12E(zm,t+Δt)+Sp+(zm,t),
[S]m=t1(1rr1)×(exp(H(zm,t)Δz)00exp(H(zm,t)Δz)),
Sp±(z,t)Sp±(z,t)*=βKRspνgδ(zz)δ(tt)Sp±(z,t)Sp±(z,t)=0,
W=A1Λ2+A2Λ+A3,

Metrics