Abstract

All-optical switching operation based on manipulation of absorption in a three-waveguide directional coupler is theoretically investigated. The proposed structure consists of one absorptive central waveguide and two identical passive side waveguides. Optically induced absorption change in the central waveguide effectively controls the coupling of light between the two side waveguides, leading to optical switching action. The proposed architecture alleviates the fabrication challenges and waveguide index matching conditions that limit previous demonstrations of similar switching schemes based on a two-waveguide directional coupler. The proposed device accommodates large modal index difference between absorptive and passive waveguides without compromising the switching extinction ratio.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. I. Papadimitriou, C. Papazoglou, and A. S. Pomportsis, “Optical switching: switch fabrics, techniques, and architectures,” J. Lightwave Technol. 21, 384–405 (2003).
    [CrossRef]
  2. E. Ciaramella, “Wavelength conversion and all-optical regeneration: achievements and open issues,” J. Lightwave Technol. 30, 572–582 (2012).
    [CrossRef]
  3. O. Wada, “Recent progress in semiconductor-based photonic signal-processing devices,” IEEE J. Sel. Top. Quantum Electron. 17, 309–319 (2011).
    [CrossRef]
  4. L. Yan, A. E. Willner, X. Wu, A. Yi, A. Bogoni, Z.-Y. Chen, and H.-Y. Jiang, “All-optical signal processing for ultrahigh speed optical systems and networks,” J. Lightwave Technol. 30, 3760–3770 (2012).
    [CrossRef]
  5. S. J. B. Yoo, “Energy efficiency in future internet: the role of optical packet switching and optical-label switching,” IEEE J. Sel. Top. Quantum Electron. 17, 406–418 (2011).
    [CrossRef]
  6. V. Lal, M. L. Masanovic, J. A. Summers, G. Fish, and D. J. Blumenthal, “Monolithic wavelength converters for high-speed packet-switched optical networks,” IEEE J. Sel. Top. Quantum Electron. 13, 49–57 (2007).
    [CrossRef]
  7. M. L. Masanović, V. Lal, J. S. Barton, E. J. Skogen, L. A. Coldren, and D. J. Blumenthal, “Monolithically integrated Mach–Zehnder interferometer wavelength converter and widely tunable laser in InP,” IEEE Photon. Technol. Lett. 15, 1117–1119 (2003).
    [CrossRef]
  8. Y. Huang and S. T. Ho, “High-speed low-power photonic transistor devices based on optically-controlled gain or absorption to affect optical interference,” Opt. Express 16, 16806–16824 (2008).
    [CrossRef]
  9. V. Krishnamurthy, Y. Chen, and S.-T. Ho, “Photonic transistor design principles for switching gain >=2,” J. Lightwave Technol. 31, 2086–2098 (2013).
    [CrossRef]
  10. G. P. Agarwal, Fiber-Optic Communication Systems (Wiley, 1997).
  11. R. Dahlgren, “Noise in fiber optic communication links,” [Online]. Available: http://www.svphotonics.com/pub/pub029.pdf .
  12. C. W. Lee, Y. Lai, Y. Huang, B. Liu, and S.-T. Ho, “High-spatial-resolution quantum well intermixing technique for all-optical nano-device fabrications,” in Frontiers in Optics (2009), paper FThK3.

2013 (1)

2012 (2)

2011 (2)

O. Wada, “Recent progress in semiconductor-based photonic signal-processing devices,” IEEE J. Sel. Top. Quantum Electron. 17, 309–319 (2011).
[CrossRef]

S. J. B. Yoo, “Energy efficiency in future internet: the role of optical packet switching and optical-label switching,” IEEE J. Sel. Top. Quantum Electron. 17, 406–418 (2011).
[CrossRef]

2008 (1)

2007 (1)

V. Lal, M. L. Masanovic, J. A. Summers, G. Fish, and D. J. Blumenthal, “Monolithic wavelength converters for high-speed packet-switched optical networks,” IEEE J. Sel. Top. Quantum Electron. 13, 49–57 (2007).
[CrossRef]

2003 (2)

M. L. Masanović, V. Lal, J. S. Barton, E. J. Skogen, L. A. Coldren, and D. J. Blumenthal, “Monolithically integrated Mach–Zehnder interferometer wavelength converter and widely tunable laser in InP,” IEEE Photon. Technol. Lett. 15, 1117–1119 (2003).
[CrossRef]

G. I. Papadimitriou, C. Papazoglou, and A. S. Pomportsis, “Optical switching: switch fabrics, techniques, and architectures,” J. Lightwave Technol. 21, 384–405 (2003).
[CrossRef]

Agarwal, G. P.

G. P. Agarwal, Fiber-Optic Communication Systems (Wiley, 1997).

Barton, J. S.

M. L. Masanović, V. Lal, J. S. Barton, E. J. Skogen, L. A. Coldren, and D. J. Blumenthal, “Monolithically integrated Mach–Zehnder interferometer wavelength converter and widely tunable laser in InP,” IEEE Photon. Technol. Lett. 15, 1117–1119 (2003).
[CrossRef]

Blumenthal, D. J.

V. Lal, M. L. Masanovic, J. A. Summers, G. Fish, and D. J. Blumenthal, “Monolithic wavelength converters for high-speed packet-switched optical networks,” IEEE J. Sel. Top. Quantum Electron. 13, 49–57 (2007).
[CrossRef]

M. L. Masanović, V. Lal, J. S. Barton, E. J. Skogen, L. A. Coldren, and D. J. Blumenthal, “Monolithically integrated Mach–Zehnder interferometer wavelength converter and widely tunable laser in InP,” IEEE Photon. Technol. Lett. 15, 1117–1119 (2003).
[CrossRef]

Bogoni, A.

Chen, Y.

Chen, Z.-Y.

Ciaramella, E.

Coldren, L. A.

M. L. Masanović, V. Lal, J. S. Barton, E. J. Skogen, L. A. Coldren, and D. J. Blumenthal, “Monolithically integrated Mach–Zehnder interferometer wavelength converter and widely tunable laser in InP,” IEEE Photon. Technol. Lett. 15, 1117–1119 (2003).
[CrossRef]

Fish, G.

V. Lal, M. L. Masanovic, J. A. Summers, G. Fish, and D. J. Blumenthal, “Monolithic wavelength converters for high-speed packet-switched optical networks,” IEEE J. Sel. Top. Quantum Electron. 13, 49–57 (2007).
[CrossRef]

Ho, S. T.

Ho, S.-T.

V. Krishnamurthy, Y. Chen, and S.-T. Ho, “Photonic transistor design principles for switching gain >=2,” J. Lightwave Technol. 31, 2086–2098 (2013).
[CrossRef]

C. W. Lee, Y. Lai, Y. Huang, B. Liu, and S.-T. Ho, “High-spatial-resolution quantum well intermixing technique for all-optical nano-device fabrications,” in Frontiers in Optics (2009), paper FThK3.

Huang, Y.

Y. Huang and S. T. Ho, “High-speed low-power photonic transistor devices based on optically-controlled gain or absorption to affect optical interference,” Opt. Express 16, 16806–16824 (2008).
[CrossRef]

C. W. Lee, Y. Lai, Y. Huang, B. Liu, and S.-T. Ho, “High-spatial-resolution quantum well intermixing technique for all-optical nano-device fabrications,” in Frontiers in Optics (2009), paper FThK3.

Jiang, H.-Y.

Krishnamurthy, V.

Lai, Y.

C. W. Lee, Y. Lai, Y. Huang, B. Liu, and S.-T. Ho, “High-spatial-resolution quantum well intermixing technique for all-optical nano-device fabrications,” in Frontiers in Optics (2009), paper FThK3.

Lal, V.

V. Lal, M. L. Masanovic, J. A. Summers, G. Fish, and D. J. Blumenthal, “Monolithic wavelength converters for high-speed packet-switched optical networks,” IEEE J. Sel. Top. Quantum Electron. 13, 49–57 (2007).
[CrossRef]

M. L. Masanović, V. Lal, J. S. Barton, E. J. Skogen, L. A. Coldren, and D. J. Blumenthal, “Monolithically integrated Mach–Zehnder interferometer wavelength converter and widely tunable laser in InP,” IEEE Photon. Technol. Lett. 15, 1117–1119 (2003).
[CrossRef]

Lee, C. W.

C. W. Lee, Y. Lai, Y. Huang, B. Liu, and S.-T. Ho, “High-spatial-resolution quantum well intermixing technique for all-optical nano-device fabrications,” in Frontiers in Optics (2009), paper FThK3.

Liu, B.

C. W. Lee, Y. Lai, Y. Huang, B. Liu, and S.-T. Ho, “High-spatial-resolution quantum well intermixing technique for all-optical nano-device fabrications,” in Frontiers in Optics (2009), paper FThK3.

Masanovic, M. L.

V. Lal, M. L. Masanovic, J. A. Summers, G. Fish, and D. J. Blumenthal, “Monolithic wavelength converters for high-speed packet-switched optical networks,” IEEE J. Sel. Top. Quantum Electron. 13, 49–57 (2007).
[CrossRef]

M. L. Masanović, V. Lal, J. S. Barton, E. J. Skogen, L. A. Coldren, and D. J. Blumenthal, “Monolithically integrated Mach–Zehnder interferometer wavelength converter and widely tunable laser in InP,” IEEE Photon. Technol. Lett. 15, 1117–1119 (2003).
[CrossRef]

Papadimitriou, G. I.

Papazoglou, C.

Pomportsis, A. S.

Skogen, E. J.

M. L. Masanović, V. Lal, J. S. Barton, E. J. Skogen, L. A. Coldren, and D. J. Blumenthal, “Monolithically integrated Mach–Zehnder interferometer wavelength converter and widely tunable laser in InP,” IEEE Photon. Technol. Lett. 15, 1117–1119 (2003).
[CrossRef]

Summers, J. A.

V. Lal, M. L. Masanovic, J. A. Summers, G. Fish, and D. J. Blumenthal, “Monolithic wavelength converters for high-speed packet-switched optical networks,” IEEE J. Sel. Top. Quantum Electron. 13, 49–57 (2007).
[CrossRef]

Wada, O.

O. Wada, “Recent progress in semiconductor-based photonic signal-processing devices,” IEEE J. Sel. Top. Quantum Electron. 17, 309–319 (2011).
[CrossRef]

Willner, A. E.

Wu, X.

Yan, L.

Yi, A.

Yoo, S. J. B.

S. J. B. Yoo, “Energy efficiency in future internet: the role of optical packet switching and optical-label switching,” IEEE J. Sel. Top. Quantum Electron. 17, 406–418 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

O. Wada, “Recent progress in semiconductor-based photonic signal-processing devices,” IEEE J. Sel. Top. Quantum Electron. 17, 309–319 (2011).
[CrossRef]

S. J. B. Yoo, “Energy efficiency in future internet: the role of optical packet switching and optical-label switching,” IEEE J. Sel. Top. Quantum Electron. 17, 406–418 (2011).
[CrossRef]

V. Lal, M. L. Masanovic, J. A. Summers, G. Fish, and D. J. Blumenthal, “Monolithic wavelength converters for high-speed packet-switched optical networks,” IEEE J. Sel. Top. Quantum Electron. 13, 49–57 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. L. Masanović, V. Lal, J. S. Barton, E. J. Skogen, L. A. Coldren, and D. J. Blumenthal, “Monolithically integrated Mach–Zehnder interferometer wavelength converter and widely tunable laser in InP,” IEEE Photon. Technol. Lett. 15, 1117–1119 (2003).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Express (1)

Other (3)

G. P. Agarwal, Fiber-Optic Communication Systems (Wiley, 1997).

R. Dahlgren, “Noise in fiber optic communication links,” [Online]. Available: http://www.svphotonics.com/pub/pub029.pdf .

C. W. Lee, Y. Lai, Y. Huang, B. Liu, and S.-T. Ho, “High-spatial-resolution quantum well intermixing technique for all-optical nano-device fabrications,” in Frontiers in Optics (2009), paper FThK3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) All-optical switching with energy-up wavelength conversion based on absorption manipulation of optical interference in a 2-WG directional coupler. (b) All-optical switching with energy-up conversion based on absorption manipulation of optical interference in a 3-WG directional coupler. The solid arrow and dashed arrow, respectively, show the OFF-state and ON-state optical path of the pump supply beam. PS-IN, SIG-OUT, and SIG-IN represent the input pump supply, output signal, and input signal, respectively.

Fig. 2.
Fig. 2.

Two-waveguide coupler with a passive waveguide and an absorptive waveguide. The continuous wave is launched into the passive waveguide at z=0.

Fig. 3.
Fig. 3.

Power transmission from WG1 in a 2-WG asymmetric directional coupler at z=LC2 versus αLC2 at different |Δβ|LC0. |Δβ|LC0 varies from 0 to 8 corresponding to the effective modal index mismatch Δneff from 0 to 0.02 with LC0=100 and 1.55 μm light wavelength.

Fig. 4.
Fig. 4.

Symmetric 3-WG coupler with absorptive central waveguide and two side waveguides, which are passive and identical. Continuous wave light is launched from the side waveguide WG1.

Fig. 5.
Fig. 5.

Optical intensity along WG1 (black solid line), WG2 (gray solid line), and WG3 (black dashed line) in the 3-WG coupler shown in Fig. 4 when |Δβ|LC0=0, 2, 4, 6, 8, and 10, corresponding to Δneff=0, 0.005, 0.01, 0.015, 0.02, and 0.025. The coupling length is labeled by LC3/LC0.

Fig. 6.
Fig. 6.

Transparency-state output power from WG1 in 2-WG coupler (dashed line) and 3-WG coupler (solid line) with different |Δβ|LC0 when the incident light is launched from waveguide 1. The inserted graphs show the FDTD simulation of light coupling in the 2-WG and 3-WG with Δneff=0.052.

Fig. 7.
Fig. 7.

Power transmission from waveguide 1 of the symmetric 3-WG coupler at coupling length LC3 versus αLC3 at different |Δβ|LC0. |Δβ|LC0 from 0 to 8 corresponds to the effective modal index mismatch Δneff from 0 to 0.02 with LC0=100μm and 1.55 μm light wavelength.

Fig. 8.
Fig. 8.

Plot of FOM of 2-WG switch (solid lines) and 3-WG switch (dashed lines) with respect to Δneff with induced absorption coefficient α at 0.02μm1 (round dots), 0.06μm1 (triangle dots), and 0.1μm1 (stars).

Equations (41)

Equations on this page are rendered with MathJax. Learn more.

ida1dz=β1a1+κ12a2,
ida2dz=β2a2+κ21a1,
d(|a1|2+|a2|2)dz=2α|a2|2.
a1(z)=β1ββ+βeiβ+z+β+β1β+βeiβz,
β±=β1+β2r2±γ+i2(α±b)
2γ+ib=Δβ2α2+π2LC02+2iαΔβ.
|a1(z)|2=eαz4γ2+b2{[Δβcosh(bz2)+2γsinh(bz2)]2+[αcosh(bz2)+bsinh(bz2)]2(Δβ2+α2)+[2γcos(γz)+αsin(γz)]2+[bcos(γz)Δβsin(γz)]2}.
|a1(z)|2=1[1(Δβ2γ)2]sin2(γz),
LC2=LC0(ΔβLC0π)2+1,
I0=11(ΔβLC0π)2+1=1(LC2LC0)2.
ida1dz=β1a1+κ12a2,
ida2dz=β2a2+κ21a1+κ23a3,
ida3dz=β1a3+κ32a2.
a1(z)=12[β1ββ+βeiβ+z+β+β1β+βeiβz+eiβ1z],
a2(z)=κβ+β(eiβ+zeiβz),
a3(z)=12[β1ββ+βeiβ+z+β+β1β+βeiβzeiβ1z],
β±=β1+β2r2±γ+i2(α±b)
2γ+ib=Δβ2α2+2π2LC02+2iαΔβ
|a1|2(z)=14eαz4γ2+b2{[Δβcosh(bz2)+2γsinh(bz2)]2+[αcosh(bz2)+bsinh(bz2)]2(Δβ2+α2)+[2γcos(γz)+αsin(γz)]2+[bcos(γz)Δβsin(γz)]2}+142eαz24γ2+b2{[(Δβγ2γ2+αb2b22)cos(Δβ2+γ)z+(αγΔβb2)sin(Δβ2+γ)z]ebz2+[(Δβγ+2γ2+αb2+b22)cos(Δβ2γ)z(αγΔβb2)sin(Δβ2γ)z]ebz2}+14,
|a2(z)|2=|κ|2eαz4γ2+b2[ebz+ebz2cos(2γz)],
|a3|2(z)=14eαz4γ2+b2{[Δβcosh(bz2)+2γsinh(bz2)]2+[αcosh(bz2)+bsinh(bz2)]2(Δβ2+α2)+[2γcos(γz)+αsin(γz)]2+[bcos(γz)Δβsin(γz)]2},142eαz24γ2+b2{[(Δβγ2γ2+αb2b22)cos(Δβ2+γ)z+(αγΔβb2)sin(Δβ2+γ)z]ebz2+[(Δβγ+2γ2+αb2+b22)cos(Δβ2γ)z(αγΔβb2)sin(Δβ2γ)z]ebz2}+14.
|a1(z)|2=14[Δβ2γsin(γz)+sin(Δβ2z)]2+14[cos(γz)+cos(Δβ2z)]2,
|a2(z)|2=π24γ2LC02sin2(γz),
|a3(z)|2=14[Δβ2γsin(γz)sin(Δβ2z)]2+14[cos(γz)cos(Δβ2z)]2,
LC3=2π(ΔβLC0)2+2π2|Δβ|LC0LC0.
I0=14π2sinc(π(ΔβLC0)2+2π2(ΔβLC0)2+2π2|Δβ|LC0).
QI1I0σ1+σ0.
QI1I02σT+S(I1+I0)=12σTΔI+Sre+1re1,
FOMΔIIinαLCire1re+1.
2γ+ib=Δβ2α2+π2LC02+2iαΔβ
2γ+ib=α2+π2LC02.
4γ2b2=Δβ2α2+π2LC02,
2γb=αΔβ.
16γ4(Δβ2α2+π2LC02)4γ2α2Δβ2=0.
γ2=(Δβ2α2+π2LC02)+(Δβ2α2+π2LC02)2+4α2Δβ28.
γ=[(Δβ2α2+2π2LC02)+(Δβ2α2+π2LC02)2+4α2Δβ28]12
dPdz=ddz(|a1|2+|a2|2+|a3|2)=2α|a2|2.
ddz(|a1|2+|a2|2+|a3|2)=(a1da1*dz+da1dza1*)+(a2da2*dz+da2dza2*)+(a3da3*dz+da3dza3*).
ddz(|a1|2+|a2|2+|a3|2)=i(κ21κ12*)(a1a2*+a2*a3)i(κ21*κ12)(a1*a2+a2a3*)2α|a2|2,
(κ21κ12*)(a1a2*+a2*a3)=(κ21*κ12)(a1*a2+a2a3*).
κ21=κ12*=κ.

Metrics