Abstract

In this paper, a polarization recycling method is proposed for a light-pipe-based liquid crystal on silicon (LCoS) pico-optical engine. The method is based on making use of the virtual light sources array forming at the light pipe’s input surface. With traditional imaging optics, the virtual light sources array can be imaged to a plane after the light pipe, where the separated beams array can be obtained. By applying the polarization conversion system to the separated beams, the incoming unpolarized light can be converted to polarized light. The polarized light is then collected and transferred to the LCoS panel through the relay system. This new polarization recycling method can highly improve the light efficiency. A design example of a 0.29 in. (7.366 mm) color-filter LCoS pico-optical engine with 852×480 resolution is listed. High light efficiency of about 10.5 lm per LED Watt and high irradiance uniformity of about 95% has been achieved. The thickness of the optical engine is 8 mm.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. H. Stupp and M. S. Brennesholtz, Projection Displays (Wiley, 1998), Chap. 7.
  2. S. Bierhuizen, “Single panel color sequential projectors with polarization recovery,” SID Int. Symp. Dig. Tech. Pap. 33, 1350–1353 (2002).
    [CrossRef]
  3. W. Zhang, B. Qu, and F. Yu, “Novel polarization recovery method for LCoS pico projection,” Opt. Eng. 51, 093001 (2012).
    [CrossRef]
  4. Q. X. Liu, W. Z. Zhang, H. F. Gao, and F. H. Yu, “A new multiplexing method for the micro LCoS projector optical system,” Proc. SPIE 7506, 75061A (2009).
  5. M. Duelli and A. T. Taylor, “Novel polarization conversion and integration system for projection displays,” SID Int. Symp. Dig. Tech. Pap., 34, 766–769 (2003).
    [CrossRef]
  6. M. Duelli and T. McGettigan, “Integrator rod with polarization recycling functionality,” SID Int. Symp. Dig. Tech. Pap. 33, 1078–1080 (2002).
    [CrossRef]
  7. M. Duelli, T. McGettigan, and C. Pentico, “Polarization recovery system based on light pipe,” Proc. SPIE 4657, 9–16 (2002).
    [CrossRef]
  8. K. K. Li, S. Sillyman, and S. Inatsugu, “Dual paraboloid reflector and polarization recycling systems for projection displays,” Proc. SPIE 5002, 31 (2003).
    [CrossRef]
  9. B. A. Jacobson, R. D. Gengelbach, and J. M. Ferri, “Beam-shape transforming devices in high-efficiency projection systems,” Proc. SPIE 3139, 141 (1997).
    [CrossRef]
  10. C.-M. Cheng and J.-L. Chern, “Illuminance formation and color difference of mixed-color light emitting diodes in a rectangular light pipe: an analytical approach,” Appl. Opt. 47, 431–441 (2008).
    [CrossRef]
  11. W. R. Powell, “Transmission characteristics of specularly reflecting light pipes uniformly irradiated by obliquely inclined rays,” Appl. Opt. 13, 952–954 (1974).
    [CrossRef]
  12. C. M. Cheng and J. L. Chern, “Optical transfer functions for specific-shaped apertures generated by illumination with a rectangular light pipe,” J. Opt. Soc. Am. A 23, 3123–3132 (2006).
    [CrossRef]
  13. Y. Meuret, B. Vangiel, F. Christiaens, and H. Thienpont, “Efficient illumination in LED-based projection systems using lenslet integrators,” Proc. SPIE 6196, 619605 (2006).
    [CrossRef]
  14. W. Z. Zhang, “LED illumination system for CF-LCoS based pico-projection optical engine,” Ph.D. thesis (Zhejiang University, 2010), Chap. 5.
  15. TracePro, www.lambdares.com .
  16. A. Csaszar, “Data projection equipment and large screen data displays, test, and performance measurements,” in SID 1991 Digest (1991), pp. 265–267.
  17. HIMAX, http://www.himax.com.tw/en/home/index.asp .

2012

W. Zhang, B. Qu, and F. Yu, “Novel polarization recovery method for LCoS pico projection,” Opt. Eng. 51, 093001 (2012).
[CrossRef]

2009

Q. X. Liu, W. Z. Zhang, H. F. Gao, and F. H. Yu, “A new multiplexing method for the micro LCoS projector optical system,” Proc. SPIE 7506, 75061A (2009).

2008

2006

C. M. Cheng and J. L. Chern, “Optical transfer functions for specific-shaped apertures generated by illumination with a rectangular light pipe,” J. Opt. Soc. Am. A 23, 3123–3132 (2006).
[CrossRef]

Y. Meuret, B. Vangiel, F. Christiaens, and H. Thienpont, “Efficient illumination in LED-based projection systems using lenslet integrators,” Proc. SPIE 6196, 619605 (2006).
[CrossRef]

2003

K. K. Li, S. Sillyman, and S. Inatsugu, “Dual paraboloid reflector and polarization recycling systems for projection displays,” Proc. SPIE 5002, 31 (2003).
[CrossRef]

M. Duelli and A. T. Taylor, “Novel polarization conversion and integration system for projection displays,” SID Int. Symp. Dig. Tech. Pap., 34, 766–769 (2003).
[CrossRef]

2002

M. Duelli and T. McGettigan, “Integrator rod with polarization recycling functionality,” SID Int. Symp. Dig. Tech. Pap. 33, 1078–1080 (2002).
[CrossRef]

M. Duelli, T. McGettigan, and C. Pentico, “Polarization recovery system based on light pipe,” Proc. SPIE 4657, 9–16 (2002).
[CrossRef]

S. Bierhuizen, “Single panel color sequential projectors with polarization recovery,” SID Int. Symp. Dig. Tech. Pap. 33, 1350–1353 (2002).
[CrossRef]

1997

B. A. Jacobson, R. D. Gengelbach, and J. M. Ferri, “Beam-shape transforming devices in high-efficiency projection systems,” Proc. SPIE 3139, 141 (1997).
[CrossRef]

1974

Bierhuizen, S.

S. Bierhuizen, “Single panel color sequential projectors with polarization recovery,” SID Int. Symp. Dig. Tech. Pap. 33, 1350–1353 (2002).
[CrossRef]

Brennesholtz, M. S.

E. H. Stupp and M. S. Brennesholtz, Projection Displays (Wiley, 1998), Chap. 7.

Cheng, C. M.

Cheng, C.-M.

Chern, J. L.

Chern, J.-L.

Christiaens, F.

Y. Meuret, B. Vangiel, F. Christiaens, and H. Thienpont, “Efficient illumination in LED-based projection systems using lenslet integrators,” Proc. SPIE 6196, 619605 (2006).
[CrossRef]

Csaszar, A.

A. Csaszar, “Data projection equipment and large screen data displays, test, and performance measurements,” in SID 1991 Digest (1991), pp. 265–267.

Duelli, M.

M. Duelli and A. T. Taylor, “Novel polarization conversion and integration system for projection displays,” SID Int. Symp. Dig. Tech. Pap., 34, 766–769 (2003).
[CrossRef]

M. Duelli and T. McGettigan, “Integrator rod with polarization recycling functionality,” SID Int. Symp. Dig. Tech. Pap. 33, 1078–1080 (2002).
[CrossRef]

M. Duelli, T. McGettigan, and C. Pentico, “Polarization recovery system based on light pipe,” Proc. SPIE 4657, 9–16 (2002).
[CrossRef]

Ferri, J. M.

B. A. Jacobson, R. D. Gengelbach, and J. M. Ferri, “Beam-shape transforming devices in high-efficiency projection systems,” Proc. SPIE 3139, 141 (1997).
[CrossRef]

Gao, H. F.

Q. X. Liu, W. Z. Zhang, H. F. Gao, and F. H. Yu, “A new multiplexing method for the micro LCoS projector optical system,” Proc. SPIE 7506, 75061A (2009).

Gengelbach, R. D.

B. A. Jacobson, R. D. Gengelbach, and J. M. Ferri, “Beam-shape transforming devices in high-efficiency projection systems,” Proc. SPIE 3139, 141 (1997).
[CrossRef]

Inatsugu, S.

K. K. Li, S. Sillyman, and S. Inatsugu, “Dual paraboloid reflector and polarization recycling systems for projection displays,” Proc. SPIE 5002, 31 (2003).
[CrossRef]

Jacobson, B. A.

B. A. Jacobson, R. D. Gengelbach, and J. M. Ferri, “Beam-shape transforming devices in high-efficiency projection systems,” Proc. SPIE 3139, 141 (1997).
[CrossRef]

Li, K. K.

K. K. Li, S. Sillyman, and S. Inatsugu, “Dual paraboloid reflector and polarization recycling systems for projection displays,” Proc. SPIE 5002, 31 (2003).
[CrossRef]

Liu, Q. X.

Q. X. Liu, W. Z. Zhang, H. F. Gao, and F. H. Yu, “A new multiplexing method for the micro LCoS projector optical system,” Proc. SPIE 7506, 75061A (2009).

McGettigan, T.

M. Duelli, T. McGettigan, and C. Pentico, “Polarization recovery system based on light pipe,” Proc. SPIE 4657, 9–16 (2002).
[CrossRef]

M. Duelli and T. McGettigan, “Integrator rod with polarization recycling functionality,” SID Int. Symp. Dig. Tech. Pap. 33, 1078–1080 (2002).
[CrossRef]

Meuret, Y.

Y. Meuret, B. Vangiel, F. Christiaens, and H. Thienpont, “Efficient illumination in LED-based projection systems using lenslet integrators,” Proc. SPIE 6196, 619605 (2006).
[CrossRef]

Pentico, C.

M. Duelli, T. McGettigan, and C. Pentico, “Polarization recovery system based on light pipe,” Proc. SPIE 4657, 9–16 (2002).
[CrossRef]

Powell, W. R.

Qu, B.

W. Zhang, B. Qu, and F. Yu, “Novel polarization recovery method for LCoS pico projection,” Opt. Eng. 51, 093001 (2012).
[CrossRef]

Sillyman, S.

K. K. Li, S. Sillyman, and S. Inatsugu, “Dual paraboloid reflector and polarization recycling systems for projection displays,” Proc. SPIE 5002, 31 (2003).
[CrossRef]

Stupp, E. H.

E. H. Stupp and M. S. Brennesholtz, Projection Displays (Wiley, 1998), Chap. 7.

Taylor, A. T.

M. Duelli and A. T. Taylor, “Novel polarization conversion and integration system for projection displays,” SID Int. Symp. Dig. Tech. Pap., 34, 766–769 (2003).
[CrossRef]

Thienpont, H.

Y. Meuret, B. Vangiel, F. Christiaens, and H. Thienpont, “Efficient illumination in LED-based projection systems using lenslet integrators,” Proc. SPIE 6196, 619605 (2006).
[CrossRef]

Vangiel, B.

Y. Meuret, B. Vangiel, F. Christiaens, and H. Thienpont, “Efficient illumination in LED-based projection systems using lenslet integrators,” Proc. SPIE 6196, 619605 (2006).
[CrossRef]

Yu, F.

W. Zhang, B. Qu, and F. Yu, “Novel polarization recovery method for LCoS pico projection,” Opt. Eng. 51, 093001 (2012).
[CrossRef]

Yu, F. H.

Q. X. Liu, W. Z. Zhang, H. F. Gao, and F. H. Yu, “A new multiplexing method for the micro LCoS projector optical system,” Proc. SPIE 7506, 75061A (2009).

Zhang, W.

W. Zhang, B. Qu, and F. Yu, “Novel polarization recovery method for LCoS pico projection,” Opt. Eng. 51, 093001 (2012).
[CrossRef]

Zhang, W. Z.

Q. X. Liu, W. Z. Zhang, H. F. Gao, and F. H. Yu, “A new multiplexing method for the micro LCoS projector optical system,” Proc. SPIE 7506, 75061A (2009).

W. Z. Zhang, “LED illumination system for CF-LCoS based pico-projection optical engine,” Ph.D. thesis (Zhejiang University, 2010), Chap. 5.

Appl. Opt.

J. Opt. Soc. Am. A

Opt. Eng.

W. Zhang, B. Qu, and F. Yu, “Novel polarization recovery method for LCoS pico projection,” Opt. Eng. 51, 093001 (2012).
[CrossRef]

Proc. SPIE

Q. X. Liu, W. Z. Zhang, H. F. Gao, and F. H. Yu, “A new multiplexing method for the micro LCoS projector optical system,” Proc. SPIE 7506, 75061A (2009).

M. Duelli, T. McGettigan, and C. Pentico, “Polarization recovery system based on light pipe,” Proc. SPIE 4657, 9–16 (2002).
[CrossRef]

K. K. Li, S. Sillyman, and S. Inatsugu, “Dual paraboloid reflector and polarization recycling systems for projection displays,” Proc. SPIE 5002, 31 (2003).
[CrossRef]

B. A. Jacobson, R. D. Gengelbach, and J. M. Ferri, “Beam-shape transforming devices in high-efficiency projection systems,” Proc. SPIE 3139, 141 (1997).
[CrossRef]

Y. Meuret, B. Vangiel, F. Christiaens, and H. Thienpont, “Efficient illumination in LED-based projection systems using lenslet integrators,” Proc. SPIE 6196, 619605 (2006).
[CrossRef]

SID Int. Symp. Dig. Tech. Pap.

S. Bierhuizen, “Single panel color sequential projectors with polarization recovery,” SID Int. Symp. Dig. Tech. Pap. 33, 1350–1353 (2002).
[CrossRef]

M. Duelli and A. T. Taylor, “Novel polarization conversion and integration system for projection displays,” SID Int. Symp. Dig. Tech. Pap., 34, 766–769 (2003).
[CrossRef]

M. Duelli and T. McGettigan, “Integrator rod with polarization recycling functionality,” SID Int. Symp. Dig. Tech. Pap. 33, 1078–1080 (2002).
[CrossRef]

Other

E. H. Stupp and M. S. Brennesholtz, Projection Displays (Wiley, 1998), Chap. 7.

W. Z. Zhang, “LED illumination system for CF-LCoS based pico-projection optical engine,” Ph.D. thesis (Zhejiang University, 2010), Chap. 5.

TracePro, www.lambdares.com .

A. Csaszar, “Data projection equipment and large screen data displays, test, and performance measurements,” in SID 1991 Digest (1991), pp. 265–267.

HIMAX, http://www.himax.com.tw/en/home/index.asp .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic illustration of the mirror-imaging method.

Fig. 2.
Fig. 2.

Schematic of the two-dimensional virtual sources array at the entrance of the light pipe.

Fig. 3.
Fig. 3.

Schematic of the light-pipe-based splitting and integration system.

Fig. 4.
Fig. 4.

Gaussian optical model corresponding to Fig. 3.

Fig. 5.
Fig. 5.

Sketch of light source ray propagating within the optical system. (a) Ray from a perfect point source and (b) ray from a 1mm×1mm LED chip.

Fig. 6.
Fig. 6.

Polarization conversion system.

Fig. 7.
Fig. 7.

Layout of the optical engine.

Fig. 8.
Fig. 8.

Simulated irradiance distribution at the PCS plane.

Fig. 9.
Fig. 9.

Distribution of polarization degree for the light output from the PCS.

Fig. 10.
Fig. 10.

Simulated irradiance distribution on the LCoS panel.

Fig. 11.
Fig. 11.

Simulated irradiance distribution on screen.

Tables (1)

Tables Icon

Table 1. Light Efficiency Evaluation

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

1L11(LnL1)=1f1,
L1=f1(LnL1)(LnL1f1),
M1=L1L1+Ln=WPCSWLED.
f=f=f1f2Δd,
1L2LH1L1LH=1f=Δdf1f2,
M2=W1W1=W2W2=L2LHL1LH,

Metrics