Abstract

Ever since the discovery of space-time duality, several methods have been developed to perform temporal imaging, and there are two major categories: the quadratic signal onto the phase modulator and the parametric mixer with a linear chirped pump. The features of each mechanism have been thoroughly and quantitatively explored and optimized for certain kinds of applications, but a comparison of some key parameters, especially in the aspect of the repetition rate, is required. In this paper, we will first review the theoretical models and existing performance of these two mechanisms and, consequently, compare them quantitatively in different aspects: the focal group delay dispersion, the pupil size, the effective duty ratio, and the temporal numerical aperture. All these fundamental parameters are related to the repetition rate. The results obtained in this study would provide some important guidelines for the time-lens design, so as to be optimized in different kinds of applications with different repetition rate requirements, such as ultrafast optical communication and real-time bio-imaging systems.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (26)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription