Abstract

Power-flow focusing in metal nanostructures is attracting growing attention to design efficient and tunable substrates for surface-enhanced Raman spectroscopy (SERS), and to propose a more reliable alternative to random surfaces for single-molecule sensing. In this paper, finite-difference time-domain simulations were used to explore the near-field amplification features of short chains of gold (Au) nanospheres. Short chains of gold spheres were found to induce stronger field enhancements than infinite chains due to a more efficient trapping and focusing of the incident energy. In addition, interaction with a suitably tuned SiO2/Au double-layer substrate was demonstrated to widen the resonance’s bandwidth, meeting another practical need for SERS.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99, 5215–5217 (1977).
    [CrossRef]
  2. D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. Interfacial Electrochem. 84, 1–20 (1977).
    [CrossRef]
  3. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
    [CrossRef]
  4. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
    [CrossRef]
  5. E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
    [CrossRef]
  6. A. Otto, “The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering,” J. Raman Spectrosc. 36, 497–509 (2005).
    [CrossRef]
  7. E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423, 63–66 (2006).
    [CrossRef]
  8. M.-D. Li, Y. Cui, M.-X. Gao, J. Luo, B. Ren, and Z.-Q. Tian, “Clean substrates prepared by chemical adsorption of iodide followed by electrochemical oxidation for surface-enhanced Raman spectroscopic study of cell membrane,” Anal. Chem. 80, 5118–5125 (2008).
    [CrossRef]
  9. M. Potara, A. M. Gabudean, and S. Astilean, “Solution-phase, dual LSPR-SERS plasmonic sensors of high sensitivity and stability based on chitosan-coated anisotropic silver nanoparticles,” J. Mater. Chem. 21, 3625–3633 (2011).
    [CrossRef]
  10. A. M. Gabudean, D. Biro, and S. Astilean, “Localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS) studies of 4-aminothiophenol adsorption on gold nanorods,” J. Mol. Struct. 993, 420–424 (2011).
    [CrossRef]
  11. Y.-J. Liu, Z.-Y. Zhang, Q. Zhao, and Y.-P. Zhao, “Revisiting the separation dependent surface enhanced Raman scattering,” Appl. Phys. Lett. 93, 173106 (2008).
    [CrossRef]
  12. A. Zenidaka, Y. Tanaka, T. Miyanishi, M. Terakawa, and M. Obara, “Comparison of two-dimensional periodic arrays of convex and concave nanostructures for efficient SERS templates,” Appl. Phys. A 103, 225–231 (2011).
    [CrossRef]
  13. F. Jäckel, A. A. Kinkhabwala, and W. E. Moerner, “Gold bowtie nanoantennas for surface-enhanced Raman scattering under controlled electrochemical potential,” Chem. Phys. Lett. 446, 339–343 (2007).
    [CrossRef]
  14. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
    [CrossRef]
  15. W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices,” Nano Lett. 12, 219–227 (2012).
    [CrossRef]
  16. M. J. Gordon and D. Peyrade, “Separation of colloidal nanoparticles using capillary immersion forces,” Appl. Phys. Lett. 89, 053112 (2006).
    [CrossRef]
  17. J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
    [CrossRef]
  18. S. Bidault, F. J. García de Abajo, and A. Polman, “Plasmon-based nanolenses assembled on a well-defined DNA template,” J. Am. Chem. Soc. 130, 2750–2751 (2008).
    [CrossRef]
  19. A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. D. Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9, 3922–3929 (2009).
    [CrossRef]
  20. A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. D. Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express 17, 3741–3753 (2009).
    [CrossRef]
  21. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
    [CrossRef]
  22. G. Lévêque and R. Quidant, “Channeling light along a chain of near-field coupled gold nanoparticles near a metallic film,” Opt. Express 16, 22029–22038 (2008).
    [CrossRef]
  23. F. Zhou, Y. Liu, and Z.-Y. Li, “Surface-plasmon-polariton-assisted dipole-dipole interaction near metal surfaces,” Opt. Lett. 36, 1969–1971 (2011).
    [CrossRef]
  24. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  25. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1208 (1965).
    [CrossRef]
  26. C. F. Bohren and D. R. Huffman, “Absorption and scattering by a sphere,” in Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH, 2007), pp. 82–129.
  27. M. Quinten and U. Kreibig, “Absorption and elastic scattering of light by particle aggregates,” Appl. Opt. 32, 6173–6182 (1993).
    [CrossRef]
  28. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
    [CrossRef]
  29. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
    [CrossRef]
  30. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
    [CrossRef]
  31. T. Takemori, M. Inoue, and K. Ohtaka, “Optical response of a sphere coupled to a metal substrate,” J. Phys. Soc. Jpn. 56, 1587–1602 (1987).
    [CrossRef]
  32. P. Nordlander and E. Prodan, “Plasmon hybridization in nanoparticles near metallic surfaces,” Nano Lett. 4, 2209–2213 (2004).
    [CrossRef]
  33. Y. Q. He, S. P. Liu, L. Kong, and Z. F. Liu, “A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering,” Spectrochim. Acta, Part A 61, 2861–2866 (2005).
    [CrossRef]
  34. C. L. Haynes and R. P. Van Duyne, “Plasmon-sampled surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 107, 7426–7433 (2003).
    [CrossRef]
  35. A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109, 11279–11285 (2005).
    [CrossRef]
  36. Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B 70, 035418 (2004).
    [CrossRef]
  37. S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale 4, 76–90 (2012).
    [CrossRef]
  38. J.-W. Dong and Z.-L. Deng, “Direct eigenmode analysis of plasmonic modes in metal nanoparticle chain with layered medium,” Opt. Lett. 38, 2244–2246 (2013).
    [CrossRef]
  39. H. F. Schouten, T. D. Visser, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B 6, S404–S409 (2004).
    [CrossRef]

2013 (1)

2012 (2)

W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices,” Nano Lett. 12, 219–227 (2012).
[CrossRef]

S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale 4, 76–90 (2012).
[CrossRef]

2011 (4)

F. Zhou, Y. Liu, and Z.-Y. Li, “Surface-plasmon-polariton-assisted dipole-dipole interaction near metal surfaces,” Opt. Lett. 36, 1969–1971 (2011).
[CrossRef]

M. Potara, A. M. Gabudean, and S. Astilean, “Solution-phase, dual LSPR-SERS plasmonic sensors of high sensitivity and stability based on chitosan-coated anisotropic silver nanoparticles,” J. Mater. Chem. 21, 3625–3633 (2011).
[CrossRef]

A. M. Gabudean, D. Biro, and S. Astilean, “Localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS) studies of 4-aminothiophenol adsorption on gold nanorods,” J. Mol. Struct. 993, 420–424 (2011).
[CrossRef]

A. Zenidaka, Y. Tanaka, T. Miyanishi, M. Terakawa, and M. Obara, “Comparison of two-dimensional periodic arrays of convex and concave nanostructures for efficient SERS templates,” Appl. Phys. A 103, 225–231 (2011).
[CrossRef]

2009 (3)

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
[CrossRef]

A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. D. Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express 17, 3741–3753 (2009).
[CrossRef]

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. D. Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9, 3922–3929 (2009).
[CrossRef]

2008 (4)

G. Lévêque and R. Quidant, “Channeling light along a chain of near-field coupled gold nanoparticles near a metallic film,” Opt. Express 16, 22029–22038 (2008).
[CrossRef]

S. Bidault, F. J. García de Abajo, and A. Polman, “Plasmon-based nanolenses assembled on a well-defined DNA template,” J. Am. Chem. Soc. 130, 2750–2751 (2008).
[CrossRef]

Y.-J. Liu, Z.-Y. Zhang, Q. Zhao, and Y.-P. Zhao, “Revisiting the separation dependent surface enhanced Raman scattering,” Appl. Phys. Lett. 93, 173106 (2008).
[CrossRef]

M.-D. Li, Y. Cui, M.-X. Gao, J. Luo, B. Ren, and Z.-Q. Tian, “Clean substrates prepared by chemical adsorption of iodide followed by electrochemical oxidation for surface-enhanced Raman spectroscopic study of cell membrane,” Anal. Chem. 80, 5118–5125 (2008).
[CrossRef]

2007 (3)

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[CrossRef]

F. Jäckel, A. A. Kinkhabwala, and W. E. Moerner, “Gold bowtie nanoantennas for surface-enhanced Raman scattering under controlled electrochemical potential,” Chem. Phys. Lett. 446, 339–343 (2007).
[CrossRef]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[CrossRef]

2006 (2)

M. J. Gordon and D. Peyrade, “Separation of colloidal nanoparticles using capillary immersion forces,” Appl. Phys. Lett. 89, 053112 (2006).
[CrossRef]

E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423, 63–66 (2006).
[CrossRef]

2005 (4)

A. Otto, “The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering,” J. Raman Spectrosc. 36, 497–509 (2005).
[CrossRef]

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[CrossRef]

Y. Q. He, S. P. Liu, L. Kong, and Z. F. Liu, “A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering,” Spectrochim. Acta, Part A 61, 2861–2866 (2005).
[CrossRef]

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109, 11279–11285 (2005).
[CrossRef]

2004 (4)

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B 70, 035418 (2004).
[CrossRef]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

H. F. Schouten, T. D. Visser, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B 6, S404–S409 (2004).
[CrossRef]

P. Nordlander and E. Prodan, “Plasmon hybridization in nanoparticles near metallic surfaces,” Nano Lett. 4, 2209–2213 (2004).
[CrossRef]

2003 (3)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef]

C. L. Haynes and R. P. Van Duyne, “Plasmon-sampled surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 107, 7426–7433 (2003).
[CrossRef]

1997 (2)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

1993 (1)

1987 (1)

T. Takemori, M. Inoue, and K. Ohtaka, “Optical response of a sphere coupled to a metal substrate,” J. Phys. Soc. Jpn. 56, 1587–1602 (1987).
[CrossRef]

1977 (2)

M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99, 5215–5217 (1977).
[CrossRef]

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. Interfacial Electrochem. 84, 1–20 (1977).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1965 (1)

Ahn, W.

W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices,” Nano Lett. 12, 219–227 (2012).
[CrossRef]

Albrecht, M. G.

M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99, 5215–5217 (1977).
[CrossRef]

Astilean, S.

M. Potara, A. M. Gabudean, and S. Astilean, “Solution-phase, dual LSPR-SERS plasmonic sensors of high sensitivity and stability based on chitosan-coated anisotropic silver nanoparticles,” J. Mater. Chem. 21, 3625–3633 (2011).
[CrossRef]

A. M. Gabudean, D. Biro, and S. Astilean, “Localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS) studies of 4-aminothiophenol adsorption on gold nanorods,” J. Mol. Struct. 993, 420–424 (2011).
[CrossRef]

Bidault, S.

S. Bidault, F. J. García de Abajo, and A. Polman, “Plasmon-based nanolenses assembled on a well-defined DNA template,” J. Am. Chem. Soc. 130, 2750–2751 (2008).
[CrossRef]

Biro, D.

A. M. Gabudean, D. Biro, and S. Astilean, “Localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS) studies of 4-aminothiophenol adsorption on gold nanorods,” J. Mol. Struct. 993, 420–424 (2011).
[CrossRef]

Blackie, E.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, “Absorption and scattering by a sphere,” in Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH, 2007), pp. 82–129.

Boriskina, S. V.

W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices,” Nano Lett. 12, 219–227 (2012).
[CrossRef]

S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale 4, 76–90 (2012).
[CrossRef]

A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. D. Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express 17, 3741–3753 (2009).
[CrossRef]

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. D. Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9, 3922–3929 (2009).
[CrossRef]

Brown, D. E.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[CrossRef]

Chong, T. C.

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B 70, 035418 (2004).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Creighton, J. A.

M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99, 5215–5217 (1977).
[CrossRef]

Cui, Y.

M.-D. Li, Y. Cui, M.-X. Gao, J. Luo, B. Ren, and Z.-Q. Tian, “Clean substrates prepared by chemical adsorption of iodide followed by electrochemical oxidation for surface-enhanced Raman spectroscopic study of cell membrane,” Anal. Chem. 80, 5118–5125 (2008).
[CrossRef]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Deng, Z.-L.

Dieringer, J. A.

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109, 11279–11285 (2005).
[CrossRef]

Dong, J.-W.

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef]

Etchegoin, P. G.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[CrossRef]

E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423, 63–66 (2006).
[CrossRef]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Gabudean, A. M.

A. M. Gabudean, D. Biro, and S. Astilean, “Localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS) studies of 4-aminothiophenol adsorption on gold nanorods,” J. Mol. Struct. 993, 420–424 (2011).
[CrossRef]

M. Potara, A. M. Gabudean, and S. Astilean, “Solution-phase, dual LSPR-SERS plasmonic sensors of high sensitivity and stability based on chitosan-coated anisotropic silver nanoparticles,” J. Mater. Chem. 21, 3625–3633 (2011).
[CrossRef]

Gao, M.-X.

M.-D. Li, Y. Cui, M.-X. Gao, J. Luo, B. Ren, and Z.-Q. Tian, “Clean substrates prepared by chemical adsorption of iodide followed by electrochemical oxidation for surface-enhanced Raman spectroscopic study of cell membrane,” Anal. Chem. 80, 5118–5125 (2008).
[CrossRef]

García de Abajo, F. J.

S. Bidault, F. J. García de Abajo, and A. Polman, “Plasmon-based nanolenses assembled on a well-defined DNA template,” J. Am. Chem. Soc. 130, 2750–2751 (2008).
[CrossRef]

Gopinath, A.

A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. D. Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express 17, 3741–3753 (2009).
[CrossRef]

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. D. Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9, 3922–3929 (2009).
[CrossRef]

Gordon, M. J.

M. J. Gordon and D. Peyrade, “Separation of colloidal nanoparticles using capillary immersion forces,” Appl. Phys. Lett. 89, 053112 (2006).
[CrossRef]

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef]

Haynes, C. L.

C. L. Haynes and R. P. Van Duyne, “Plasmon-sampled surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 107, 7426–7433 (2003).
[CrossRef]

He, Y. Q.

Y. Q. He, S. P. Liu, L. Kong, and Z. F. Liu, “A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering,” Spectrochim. Acta, Part A 61, 2861–2866 (2005).
[CrossRef]

Hiller, J. M.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[CrossRef]

Hong, M. H.

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B 70, 035418 (2004).
[CrossRef]

Hong, Y.

W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices,” Nano Lett. 12, 219–227 (2012).
[CrossRef]

Hua, J.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, “Absorption and scattering by a sphere,” in Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH, 2007), pp. 82–129.

Inoue, M.

T. Takemori, M. Inoue, and K. Ohtaka, “Optical response of a sphere coupled to a metal substrate,” J. Phys. Soc. Jpn. 56, 1587–1602 (1987).
[CrossRef]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Jäckel, F.

F. Jäckel, A. A. Kinkhabwala, and W. E. Moerner, “Gold bowtie nanoantennas for surface-enhanced Raman scattering under controlled electrochemical potential,” Chem. Phys. Lett. 446, 339–343 (2007).
[CrossRef]

Jeanmaire, D. L.

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. Interfacial Electrochem. 84, 1–20 (1977).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Kimball, C. W.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[CrossRef]

Kinkhabwala, A. A.

F. Jäckel, A. A. Kinkhabwala, and W. E. Moerner, “Gold bowtie nanoantennas for surface-enhanced Raman scattering under controlled electrochemical potential,” Chem. Phys. Lett. 446, 339–343 (2007).
[CrossRef]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Kong, L.

Y. Q. He, S. P. Liu, L. Kong, and Z. F. Liu, “A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering,” Spectrochim. Acta, Part A 61, 2861–2866 (2005).
[CrossRef]

Kreibig, U.

Le Ru, E. C.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[CrossRef]

E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423, 63–66 (2006).
[CrossRef]

Lenstra, D.

H. F. Schouten, T. D. Visser, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B 6, S404–S409 (2004).
[CrossRef]

Lévêque, G.

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

Li, M.-D.

M.-D. Li, Y. Cui, M.-X. Gao, J. Luo, B. Ren, and Z.-Q. Tian, “Clean substrates prepared by chemical adsorption of iodide followed by electrochemical oxidation for surface-enhanced Raman spectroscopic study of cell membrane,” Anal. Chem. 80, 5118–5125 (2008).
[CrossRef]

Li, Z.-Y.

Lin, Y.

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B 70, 035418 (2004).
[CrossRef]

Liu, S. P.

Y. Q. He, S. P. Liu, L. Kong, and Z. F. Liu, “A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering,” Spectrochim. Acta, Part A 61, 2861–2866 (2005).
[CrossRef]

Liu, Y.

Liu, Y.-J.

Y.-J. Liu, Z.-Y. Zhang, Q. Zhao, and Y.-P. Zhao, “Revisiting the separation dependent surface enhanced Raman scattering,” Appl. Phys. Lett. 93, 173106 (2008).
[CrossRef]

Liu, Z. F.

Y. Q. He, S. P. Liu, L. Kong, and Z. F. Liu, “A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering,” Spectrochim. Acta, Part A 61, 2861–2866 (2005).
[CrossRef]

Luk’yanchuk, B. S.

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B 70, 035418 (2004).
[CrossRef]

Luo, J.

M.-D. Li, Y. Cui, M.-X. Gao, J. Luo, B. Ren, and Z.-Q. Tian, “Clean substrates prepared by chemical adsorption of iodide followed by electrochemical oxidation for surface-enhanced Raman spectroscopic study of cell membrane,” Anal. Chem. 80, 5118–5125 (2008).
[CrossRef]

Malitson, I. H.

McFarland, A. D.

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109, 11279–11285 (2005).
[CrossRef]

Meyer, M.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[CrossRef]

Miyanishi, T.

A. Zenidaka, Y. Tanaka, T. Miyanishi, M. Terakawa, and M. Obara, “Comparison of two-dimensional periodic arrays of convex and concave nanostructures for efficient SERS templates,” Appl. Phys. A 103, 225–231 (2011).
[CrossRef]

Moerner, W. E.

F. Jäckel, A. A. Kinkhabwala, and W. E. Moerner, “Gold bowtie nanoantennas for surface-enhanced Raman scattering under controlled electrochemical potential,” Chem. Phys. Lett. 446, 339–343 (2007).
[CrossRef]

Negro, L. D.

A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. D. Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express 17, 3741–3753 (2009).
[CrossRef]

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. D. Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9, 3922–3929 (2009).
[CrossRef]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef]

Nordlander, P.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
[CrossRef]

P. Nordlander and E. Prodan, “Plasmon hybridization in nanoparticles near metallic surfaces,” Nano Lett. 4, 2209–2213 (2004).
[CrossRef]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef]

Obara, M.

A. Zenidaka, Y. Tanaka, T. Miyanishi, M. Terakawa, and M. Obara, “Comparison of two-dimensional periodic arrays of convex and concave nanostructures for efficient SERS templates,” Appl. Phys. A 103, 225–231 (2011).
[CrossRef]

Ohtaka, K.

T. Takemori, M. Inoue, and K. Ohtaka, “Optical response of a sphere coupled to a metal substrate,” J. Phys. Soc. Jpn. 56, 1587–1602 (1987).
[CrossRef]

Otto, A.

A. Otto, “The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering,” J. Raman Spectrosc. 36, 497–509 (2005).
[CrossRef]

Oubre, C.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

Pearson, J.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[CrossRef]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Peyrade, D.

M. J. Gordon and D. Peyrade, “Separation of colloidal nanoparticles using capillary immersion forces,” Appl. Phys. Lett. 89, 053112 (2006).
[CrossRef]

Polman, A.

S. Bidault, F. J. García de Abajo, and A. Polman, “Plasmon-based nanolenses assembled on a well-defined DNA template,” J. Am. Chem. Soc. 130, 2750–2751 (2008).
[CrossRef]

Potara, M.

M. Potara, A. M. Gabudean, and S. Astilean, “Solution-phase, dual LSPR-SERS plasmonic sensors of high sensitivity and stability based on chitosan-coated anisotropic silver nanoparticles,” J. Mater. Chem. 21, 3625–3633 (2011).
[CrossRef]

Premasiri, W. R.

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. D. Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9, 3922–3929 (2009).
[CrossRef]

Prodan, E.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
[CrossRef]

P. Nordlander and E. Prodan, “Plasmon hybridization in nanoparticles near metallic surfaces,” Nano Lett. 4, 2209–2213 (2004).
[CrossRef]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef]

Quidant, R.

Quinten, M.

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef]

Reinhard, B. M.

W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices,” Nano Lett. 12, 219–227 (2012).
[CrossRef]

S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale 4, 76–90 (2012).
[CrossRef]

A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. D. Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express 17, 3741–3753 (2009).
[CrossRef]

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. D. Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9, 3922–3929 (2009).
[CrossRef]

Ren, B.

M.-D. Li, Y. Cui, M.-X. Gao, J. Luo, B. Ren, and Z.-Q. Tian, “Clean substrates prepared by chemical adsorption of iodide followed by electrochemical oxidation for surface-enhanced Raman spectroscopic study of cell membrane,” Anal. Chem. 80, 5118–5125 (2008).
[CrossRef]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Schouten, H. F.

H. F. Schouten, T. D. Visser, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B 6, S404–S409 (2004).
[CrossRef]

Stockman, M. I.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

Takemori, T.

T. Takemori, M. Inoue, and K. Ohtaka, “Optical response of a sphere coupled to a metal substrate,” J. Phys. Soc. Jpn. 56, 1587–1602 (1987).
[CrossRef]

Tanaka, Y.

A. Zenidaka, Y. Tanaka, T. Miyanishi, M. Terakawa, and M. Obara, “Comparison of two-dimensional periodic arrays of convex and concave nanostructures for efficient SERS templates,” Appl. Phys. A 103, 225–231 (2011).
[CrossRef]

Terakawa, M.

A. Zenidaka, Y. Tanaka, T. Miyanishi, M. Terakawa, and M. Obara, “Comparison of two-dimensional periodic arrays of convex and concave nanostructures for efficient SERS templates,” Appl. Phys. A 103, 225–231 (2011).
[CrossRef]

Tian, Z.-Q.

M.-D. Li, Y. Cui, M.-X. Gao, J. Luo, B. Ren, and Z.-Q. Tian, “Clean substrates prepared by chemical adsorption of iodide followed by electrochemical oxidation for surface-enhanced Raman spectroscopic study of cell membrane,” Anal. Chem. 80, 5118–5125 (2008).
[CrossRef]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[CrossRef]

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109, 11279–11285 (2005).
[CrossRef]

C. L. Haynes and R. P. Van Duyne, “Plasmon-sampled surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 107, 7426–7433 (2003).
[CrossRef]

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. Interfacial Electrochem. 84, 1–20 (1977).
[CrossRef]

Visser, T. D.

H. F. Schouten, T. D. Visser, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B 6, S404–S409 (2004).
[CrossRef]

Vlasko-Vlasov, V. K.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[CrossRef]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Wang, Z. B.

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B 70, 035418 (2004).
[CrossRef]

Welp, U.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[CrossRef]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[CrossRef]

Yin, L.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[CrossRef]

Young, M. A.

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109, 11279–11285 (2005).
[CrossRef]

Zenidaka, A.

A. Zenidaka, Y. Tanaka, T. Miyanishi, M. Terakawa, and M. Obara, “Comparison of two-dimensional periodic arrays of convex and concave nanostructures for efficient SERS templates,” Appl. Phys. A 103, 225–231 (2011).
[CrossRef]

Zhang, Z.-Y.

Y.-J. Liu, Z.-Y. Zhang, Q. Zhao, and Y.-P. Zhao, “Revisiting the separation dependent surface enhanced Raman scattering,” Appl. Phys. Lett. 93, 173106 (2008).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Zhao, Q.

Y.-J. Liu, Z.-Y. Zhang, Q. Zhao, and Y.-P. Zhao, “Revisiting the separation dependent surface enhanced Raman scattering,” Appl. Phys. Lett. 93, 173106 (2008).
[CrossRef]

Zhao, Y.-P.

Y.-J. Liu, Z.-Y. Zhang, Q. Zhao, and Y.-P. Zhao, “Revisiting the separation dependent surface enhanced Raman scattering,” Appl. Phys. Lett. 93, 173106 (2008).
[CrossRef]

Zhou, F.

Ziegler, L.

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. D. Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9, 3922–3929 (2009).
[CrossRef]

Zuloaga, J.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
[CrossRef]

Anal. Chem. (1)

M.-D. Li, Y. Cui, M.-X. Gao, J. Luo, B. Ren, and Z.-Q. Tian, “Clean substrates prepared by chemical adsorption of iodide followed by electrochemical oxidation for surface-enhanced Raman spectroscopic study of cell membrane,” Anal. Chem. 80, 5118–5125 (2008).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (1)

A. Zenidaka, Y. Tanaka, T. Miyanishi, M. Terakawa, and M. Obara, “Comparison of two-dimensional periodic arrays of convex and concave nanostructures for efficient SERS templates,” Appl. Phys. A 103, 225–231 (2011).
[CrossRef]

Appl. Phys. Lett. (2)

M. J. Gordon and D. Peyrade, “Separation of colloidal nanoparticles using capillary immersion forces,” Appl. Phys. Lett. 89, 053112 (2006).
[CrossRef]

Y.-J. Liu, Z.-Y. Zhang, Q. Zhao, and Y.-P. Zhao, “Revisiting the separation dependent surface enhanced Raman scattering,” Appl. Phys. Lett. 93, 173106 (2008).
[CrossRef]

Chem. Phys. Lett. (2)

F. Jäckel, A. A. Kinkhabwala, and W. E. Moerner, “Gold bowtie nanoantennas for surface-enhanced Raman scattering under controlled electrochemical potential,” Chem. Phys. Lett. 446, 339–343 (2007).
[CrossRef]

E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423, 63–66 (2006).
[CrossRef]

J. Am. Chem. Soc. (2)

M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99, 5215–5217 (1977).
[CrossRef]

S. Bidault, F. J. García de Abajo, and A. Polman, “Plasmon-based nanolenses assembled on a well-defined DNA template,” J. Am. Chem. Soc. 130, 2750–2751 (2008).
[CrossRef]

J. Electroanal. Chem. Interfacial Electrochem. (1)

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. Interfacial Electrochem. 84, 1–20 (1977).
[CrossRef]

J. Mater. Chem. (1)

M. Potara, A. M. Gabudean, and S. Astilean, “Solution-phase, dual LSPR-SERS plasmonic sensors of high sensitivity and stability based on chitosan-coated anisotropic silver nanoparticles,” J. Mater. Chem. 21, 3625–3633 (2011).
[CrossRef]

J. Mol. Struct. (1)

A. M. Gabudean, D. Biro, and S. Astilean, “Localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS) studies of 4-aminothiophenol adsorption on gold nanorods,” J. Mol. Struct. 993, 420–424 (2011).
[CrossRef]

J. Opt. B (1)

H. F. Schouten, T. D. Visser, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B 6, S404–S409 (2004).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. Chem. B (3)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

C. L. Haynes and R. P. Van Duyne, “Plasmon-sampled surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 107, 7426–7433 (2003).
[CrossRef]

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109, 11279–11285 (2005).
[CrossRef]

J. Phys. Chem. C (1)

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[CrossRef]

J. Phys. Soc. Jpn. (1)

T. Takemori, M. Inoue, and K. Ohtaka, “Optical response of a sphere coupled to a metal substrate,” J. Phys. Soc. Jpn. 56, 1587–1602 (1987).
[CrossRef]

J. Raman Spectrosc. (1)

A. Otto, “The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering,” J. Raman Spectrosc. 36, 497–509 (2005).
[CrossRef]

Nano Lett. (6)

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. D. Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9, 3922–3929 (2009).
[CrossRef]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
[CrossRef]

W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices,” Nano Lett. 12, 219–227 (2012).
[CrossRef]

P. Nordlander and E. Prodan, “Plasmon hybridization in nanoparticles near metallic surfaces,” Nano Lett. 4, 2209–2213 (2004).
[CrossRef]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[CrossRef]

Nanoscale (1)

S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale 4, 76–90 (2012).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (2)

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B 70, 035418 (2004).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Science (2)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef]

Spectrochim. Acta, Part A (1)

Y. Q. He, S. P. Liu, L. Kong, and Z. F. Liu, “A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering,” Spectrochim. Acta, Part A 61, 2861–2866 (2005).
[CrossRef]

Other (1)

C. F. Bohren and D. R. Huffman, “Absorption and scattering by a sphere,” in Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH, 2007), pp. 82–129.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Side and (b) top views of the studied structure having aligned Au spheres on an Au/SiO2 double-layer with respective thicknesses dSiO2 and dAu. The gap g between the spheres is fixed to 10 nm, the sphere radius r is 50 nm, and the periods in the x and y directions are, respectively, p=760 nm and w=600nm, unless stated otherwise. The structure is illuminated at normal incidence with a plane wave of wavelength λ having its electric field polarized along the x direction.

Fig. 2.
Fig. 2.

Vertical cross sections of the |Ex|2 (left) and |Ez|2 (right) amplitude distributions in the steady state for the Au spheres on (a) the dielectric substrate, (b) the gold mirror, and (c) the Au/SiO2 double-layer. The distributions are shown in log scale for the resonance wavelengths [(a) λ=750nm, (b) λ=700nm, and (c) λ=710nm]. The maximum values of |E|2 found in the sphere gaps of (a), (b), and (c) are 900, 4875, and 5025, respectively. The electric field amplitude is normalized to the electric field amplitude of the incoming wave.

Fig. 3.
Fig. 3.

Reflected, absorbed, and transmitted light by the five-sphere chains on a double-layer structure with dSiO2=50nm. The local maximum in the reflection curve at λ=710nm coincides with the field enhancement’s resonance wavelength. More light is transmitted in the short-wavelength domain than through a plain gold layer (50 nm) or in the configuration without the SiO2 layer. An almost perfect extinction occurs at λ=770nm.

Fig. 4.
Fig. 4.

Electric field amplification |E|2 in the sphere gap as a function of wavelength for different sphere radii (25, 35, 50, 75, and 90 nm). For this simulation, the period p along x was increased to 1 μm to allow for larger spheres to fit into one unit-cell. The general trend is that the resonance amplitude increases with the sphere radius. However, in the case of the 90 nm radius spheres, the amplification instead decreases compared to the 75 nm radius spheres as the spheres fill the whole unit cell. The resonance wavelength steadily increases with the sphere’s radius.

Fig. 5.
Fig. 5.

(a) Electric field enhancement |E|2 in the sphere gap at λ=710nm (inset for λ=600nm) as a function of the dielectric thickness dSiO2. When the spheres are separated from the mirror, the behavior becomes significantly different from the situation where the spheres are directly on the mirror. While the amplification is weaker with a very thin dielectric layer, it reaches a maximum for dSiO250nm. A 170 nm layer leads to a perfect extinction. |E|2 in the sphere gap as a function of the wavelength λ is shown for an array of five-sphere chains and an infinite chain deposited on (b) the gold mirror and (c) the SiO2/Au double-layer. On the gold mirror, the nanochains blueshift the resonance and make the resonance stronger and sharper near λres. On the SiO2/Au double-layer, the nanochains significantly enhance the electric field in a large bandwidth.

Fig. 6.
Fig. 6.

Poynting vector in the vertical (left) and the horizontal (right) planes passing through the spheres’ centers. Parts (a) and (d) represent the spheres directly on the gold mirror, (b) and (e) represent the situation with a 50 nm thick dielectric layer, and (c) and (f) the situation with a 170 nm thick dielectric layer (λ=710nm). For the two first cases, which achieve high field amplification, the vertical view shows how the energy flow is focused from the sides toward the spheres and the gaps. The horizontal view also shows how the energy is focused toward the spheres, from the whole unit-cell surface. With the presence of a 50 nm dielectric layer, we see in (b) that optical vortices and saddle points effectively trap the incoming energy in the vicinity of the nanochains. When the dielectric thickness further increases to 170 nm (corresponding to the extinction wavelength), two additional vortices are formed in the dielectric, thus redirecting the energy flow outward of the spheres as seen in (c).

Fig. 7.
Fig. 7.

Effect of the number of spheres in the nanochains on (a) the electric field amplification |E|2 and (b)–(g) the Poynting vector in the horizontal planes passing through the spheres’ centers. Part (g) corresponds to the infinite chain. The results are shown for the case of the SiO2/Au double-layer with a 50 nm thick dielectric layer.

Metrics