Abstract

Surface-relief diffraction gratings and planar diffraction gratings directly written on nanoporous silicon layers using 514 nm continuous-wave lasers at very low power (less than 20 mW) were demonstrated. Diffraction-based biosensing application to detect arachidonic acid was experimentally demonstrated at incident light wavelength of 632.8 nm. A comparison in sensing applications was made between the two types of gratings to show the distinct advantage of the planar grating with selective functionalization. Laser-written planar gratings enable directly immobilizing biomolecules in the laser oxidized area of nanoporous silicon, resulting in a new patterned functionalization technique for biosensing applications. The functionalization technique can not only simplify the functionalization procedure in biosensing but also it has potential to increase the sensitivity of sensors by accurately defining grating patterns using the laser direct writing technique.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Jenison, S. Yang, A. Haeberli, and B. Polisky, “Interference-based detection of nucleic acid targets on optically coated silicon,” Nat. Biotechnol. 19, 62–65 (2001).
    [CrossRef]
  2. J. B. Goh, R. W. Loo, and M. C. Goh, “Label-free monitoring of multiple biomolecular binding interactions in real-time with diffraction-based sensing,” Sens. Actuators B 106, 243–248 (2005).
    [CrossRef]
  3. C. Chang, G. Acharya, and C. A. Savran, “In situ assembled diffraction grating for biomolecular detection,” Appl. Phys. Lett. 90, 233901 (2007).
    [CrossRef]
  4. R. Polzius, Th. Schneider, F. F. Biert, and U. Bilitewskit, “Optimization of biosensing using grating couplers: immobilization on tantalum oxide waveguides,” Biosens. Bioelectron. 11, 503–514 (1996).
    [CrossRef]
  5. G. Ye and X. Wang, “Glucose sensing through diffraction grating of hydrogel bearing phenylboronic acid groups,” Biosens. Bioelectron. 26, 772–777 (2010).
    [CrossRef]
  6. J. Dostalek, J. Homola, and M. Miler, “Surface plasmon resonance sensor based on an array of diffraction gratings for highly parallelized observation of biomolecular interactions,” Sens. Actuators B 129, 303–310 (2008).
    [CrossRef]
  7. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
    [CrossRef]
  8. J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699–3710 (2002).
    [CrossRef]
  9. J. Lee, K. Icoz, A. Roberts, A. D. Ellington, and C. A. Savran, “Diffractometric detection of proteins using microbead-based rolling circle amplification,” Anal. Chem. 82, 197–202 (2010).
    [CrossRef]
  10. A. W. Wark, H. J. Lee, A. J. Qavi, and R. M. Corn, “Nanoparticle-enhanced diffraction gratings for ultrasensitive surface plasmon biosensing,” Anal. Chem. 79, 6697–6701 (2007).
    [CrossRef]
  11. L. Canham, Properties of Porous Silicon (INSPEC, 1997).
  12. V. S. Y. Lin, K. Motesharei, K. P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
    [CrossRef]
  13. J. D. Ryckman, M. Liscidini, J. E. Sipe, and S. M. Weiss, “Porous silicon structures for low-cost diffraction-based biosensing,” Appl. Phys. Lett. 96, 171103 (2010).
    [CrossRef]
  14. R. Martínez-Vazquez, R. Osellame, G. Cerullo, R. Ramponi, and O. Svelto, “Fabrication of photonic devices in nanostructured glasses by femtosecond laser pulses,” Opt. Express 15, 12628–12635 (2007).
    [CrossRef]
  15. M. Thie, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532  nm,” Appl. Phys. Lett. 97, 221102 (2010).
    [CrossRef]
  16. A. M. Rossi, G. Amato, V. Camarchia, L. Boarino, and S. Borini, “High-quality porous-silicon buried waveguides,” Appl. Phys. Lett. 78, 3003–3005 (2001).
    [CrossRef]
  17. J. Xia, A. M. Rossi, and T. E. Murphy, “Laser written nanoporous silicon ridge waveguide for highly sensitive optical sensors,” Opt. Lett. 37, 256–258 (2012).
    [CrossRef]
  18. D. Panigrahy, A. Kaipainen, E. R. Greene, and S. Huang, “Cytochrome P450-derived eicosanoids: the neglected pathway in cancer,” Cancer Metastasis Rev. 29, 723–735 (2010).
  19. R. O. Sanchez-Mejia and L. Mucke, “Phospholipase A2 and arachidonic acid in Alzheimer’s disease,” Biochim. Biophys. Acta 1801, 784–790 (2010).
    [CrossRef]
  20. D. Dymkowska, J. Szczepanowska, M. R. Wieckowski, and L. Wojtczak, “Short-term and long-term effects of fatty acids in rat hepatoma AS-30D cells: the way to apoptosis,” Biochim. Biophys. Acta 1763, 152–163 (2006).
    [CrossRef]
  21. Z. G. Xu, M. Zhang, X. Y. Lv, D. Xiang, X. Zhang, and L. Chen, “The inhibitory effect of celecoxib on mouse hepatoma H22 cell line on the arachidonic acid metabolic pathway,” Biochem. Cell Biol. 88, 603–609 (2010).
    [CrossRef]
  22. P. Su, K. M. Kaushal, and D. L. Kroetz, “Inhibition of renal arachidonic acid ω-hydroxylase activity with ABT reduces blood pressure in the SHR,” Am. J. Physiol. 275, R426–R438 (1998).
  23. A. M. Giovannozzi, V. E. V. Ferrero, F. Pennecchi, S. J. Sadeghi, G. Gilardi, and A. M. Rossi, “P450-based porous silicon biosensor for arachidonic acid detection,” Biosens. Bioelectron. 28, 320–325 (2011).
    [CrossRef]

2012

2011

A. M. Giovannozzi, V. E. V. Ferrero, F. Pennecchi, S. J. Sadeghi, G. Gilardi, and A. M. Rossi, “P450-based porous silicon biosensor for arachidonic acid detection,” Biosens. Bioelectron. 28, 320–325 (2011).
[CrossRef]

2010

M. Thie, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532  nm,” Appl. Phys. Lett. 97, 221102 (2010).
[CrossRef]

Z. G. Xu, M. Zhang, X. Y. Lv, D. Xiang, X. Zhang, and L. Chen, “The inhibitory effect of celecoxib on mouse hepatoma H22 cell line on the arachidonic acid metabolic pathway,” Biochem. Cell Biol. 88, 603–609 (2010).
[CrossRef]

J. D. Ryckman, M. Liscidini, J. E. Sipe, and S. M. Weiss, “Porous silicon structures for low-cost diffraction-based biosensing,” Appl. Phys. Lett. 96, 171103 (2010).
[CrossRef]

D. Panigrahy, A. Kaipainen, E. R. Greene, and S. Huang, “Cytochrome P450-derived eicosanoids: the neglected pathway in cancer,” Cancer Metastasis Rev. 29, 723–735 (2010).

R. O. Sanchez-Mejia and L. Mucke, “Phospholipase A2 and arachidonic acid in Alzheimer’s disease,” Biochim. Biophys. Acta 1801, 784–790 (2010).
[CrossRef]

G. Ye and X. Wang, “Glucose sensing through diffraction grating of hydrogel bearing phenylboronic acid groups,” Biosens. Bioelectron. 26, 772–777 (2010).
[CrossRef]

J. Lee, K. Icoz, A. Roberts, A. D. Ellington, and C. A. Savran, “Diffractometric detection of proteins using microbead-based rolling circle amplification,” Anal. Chem. 82, 197–202 (2010).
[CrossRef]

2008

J. Dostalek, J. Homola, and M. Miler, “Surface plasmon resonance sensor based on an array of diffraction gratings for highly parallelized observation of biomolecular interactions,” Sens. Actuators B 129, 303–310 (2008).
[CrossRef]

2007

A. W. Wark, H. J. Lee, A. J. Qavi, and R. M. Corn, “Nanoparticle-enhanced diffraction gratings for ultrasensitive surface plasmon biosensing,” Anal. Chem. 79, 6697–6701 (2007).
[CrossRef]

C. Chang, G. Acharya, and C. A. Savran, “In situ assembled diffraction grating for biomolecular detection,” Appl. Phys. Lett. 90, 233901 (2007).
[CrossRef]

R. Martínez-Vazquez, R. Osellame, G. Cerullo, R. Ramponi, and O. Svelto, “Fabrication of photonic devices in nanostructured glasses by femtosecond laser pulses,” Opt. Express 15, 12628–12635 (2007).
[CrossRef]

2006

D. Dymkowska, J. Szczepanowska, M. R. Wieckowski, and L. Wojtczak, “Short-term and long-term effects of fatty acids in rat hepatoma AS-30D cells: the way to apoptosis,” Biochim. Biophys. Acta 1763, 152–163 (2006).
[CrossRef]

2005

J. B. Goh, R. W. Loo, and M. C. Goh, “Label-free monitoring of multiple biomolecular binding interactions in real-time with diffraction-based sensing,” Sens. Actuators B 106, 243–248 (2005).
[CrossRef]

2002

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699–3710 (2002).
[CrossRef]

2001

R. Jenison, S. Yang, A. Haeberli, and B. Polisky, “Interference-based detection of nucleic acid targets on optically coated silicon,” Nat. Biotechnol. 19, 62–65 (2001).
[CrossRef]

A. M. Rossi, G. Amato, V. Camarchia, L. Boarino, and S. Borini, “High-quality porous-silicon buried waveguides,” Appl. Phys. Lett. 78, 3003–3005 (2001).
[CrossRef]

1999

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

1998

P. Su, K. M. Kaushal, and D. L. Kroetz, “Inhibition of renal arachidonic acid ω-hydroxylase activity with ABT reduces blood pressure in the SHR,” Am. J. Physiol. 275, R426–R438 (1998).

1997

V. S. Y. Lin, K. Motesharei, K. P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
[CrossRef]

1996

R. Polzius, Th. Schneider, F. F. Biert, and U. Bilitewskit, “Optimization of biosensing using grating couplers: immobilization on tantalum oxide waveguides,” Biosens. Bioelectron. 11, 503–514 (1996).
[CrossRef]

Acharya, G.

C. Chang, G. Acharya, and C. A. Savran, “In situ assembled diffraction grating for biomolecular detection,” Appl. Phys. Lett. 90, 233901 (2007).
[CrossRef]

Amato, G.

A. M. Rossi, G. Amato, V. Camarchia, L. Boarino, and S. Borini, “High-quality porous-silicon buried waveguides,” Appl. Phys. Lett. 78, 3003–3005 (2001).
[CrossRef]

Biert, F. F.

R. Polzius, Th. Schneider, F. F. Biert, and U. Bilitewskit, “Optimization of biosensing using grating couplers: immobilization on tantalum oxide waveguides,” Biosens. Bioelectron. 11, 503–514 (1996).
[CrossRef]

Bilitewskit, U.

R. Polzius, Th. Schneider, F. F. Biert, and U. Bilitewskit, “Optimization of biosensing using grating couplers: immobilization on tantalum oxide waveguides,” Biosens. Bioelectron. 11, 503–514 (1996).
[CrossRef]

Boarino, L.

A. M. Rossi, G. Amato, V. Camarchia, L. Boarino, and S. Borini, “High-quality porous-silicon buried waveguides,” Appl. Phys. Lett. 78, 3003–3005 (2001).
[CrossRef]

Borini, S.

A. M. Rossi, G. Amato, V. Camarchia, L. Boarino, and S. Borini, “High-quality porous-silicon buried waveguides,” Appl. Phys. Lett. 78, 3003–3005 (2001).
[CrossRef]

Camarchia, V.

A. M. Rossi, G. Amato, V. Camarchia, L. Boarino, and S. Borini, “High-quality porous-silicon buried waveguides,” Appl. Phys. Lett. 78, 3003–3005 (2001).
[CrossRef]

Canham, L.

L. Canham, Properties of Porous Silicon (INSPEC, 1997).

Cerullo, G.

Chang, C.

C. Chang, G. Acharya, and C. A. Savran, “In situ assembled diffraction grating for biomolecular detection,” Appl. Phys. Lett. 90, 233901 (2007).
[CrossRef]

Chen, L.

Z. G. Xu, M. Zhang, X. Y. Lv, D. Xiang, X. Zhang, and L. Chen, “The inhibitory effect of celecoxib on mouse hepatoma H22 cell line on the arachidonic acid metabolic pathway,” Biochem. Cell Biol. 88, 603–609 (2010).
[CrossRef]

Corn, R. M.

A. W. Wark, H. J. Lee, A. J. Qavi, and R. M. Corn, “Nanoparticle-enhanced diffraction gratings for ultrasensitive surface plasmon biosensing,” Anal. Chem. 79, 6697–6701 (2007).
[CrossRef]

Csúcs, G.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699–3710 (2002).
[CrossRef]

Dancil, K. P. S.

V. S. Y. Lin, K. Motesharei, K. P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
[CrossRef]

De Paul, S. M.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699–3710 (2002).
[CrossRef]

Dostalek, J.

J. Dostalek, J. Homola, and M. Miler, “Surface plasmon resonance sensor based on an array of diffraction gratings for highly parallelized observation of biomolecular interactions,” Sens. Actuators B 129, 303–310 (2008).
[CrossRef]

Dymkowska, D.

D. Dymkowska, J. Szczepanowska, M. R. Wieckowski, and L. Wojtczak, “Short-term and long-term effects of fatty acids in rat hepatoma AS-30D cells: the way to apoptosis,” Biochim. Biophys. Acta 1763, 152–163 (2006).
[CrossRef]

Ellington, A. D.

J. Lee, K. Icoz, A. Roberts, A. D. Ellington, and C. A. Savran, “Diffractometric detection of proteins using microbead-based rolling circle amplification,” Anal. Chem. 82, 197–202 (2010).
[CrossRef]

Ferrero, V. E. V.

A. M. Giovannozzi, V. E. V. Ferrero, F. Pennecchi, S. J. Sadeghi, G. Gilardi, and A. M. Rossi, “P450-based porous silicon biosensor for arachidonic acid detection,” Biosens. Bioelectron. 28, 320–325 (2011).
[CrossRef]

Fischer, J.

M. Thie, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532  nm,” Appl. Phys. Lett. 97, 221102 (2010).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Ghadiri, M. R.

V. S. Y. Lin, K. Motesharei, K. P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
[CrossRef]

Gilardi, G.

A. M. Giovannozzi, V. E. V. Ferrero, F. Pennecchi, S. J. Sadeghi, G. Gilardi, and A. M. Rossi, “P450-based porous silicon biosensor for arachidonic acid detection,” Biosens. Bioelectron. 28, 320–325 (2011).
[CrossRef]

Giovannozzi, A. M.

A. M. Giovannozzi, V. E. V. Ferrero, F. Pennecchi, S. J. Sadeghi, G. Gilardi, and A. M. Rossi, “P450-based porous silicon biosensor for arachidonic acid detection,” Biosens. Bioelectron. 28, 320–325 (2011).
[CrossRef]

Goh, J. B.

J. B. Goh, R. W. Loo, and M. C. Goh, “Label-free monitoring of multiple biomolecular binding interactions in real-time with diffraction-based sensing,” Sens. Actuators B 106, 243–248 (2005).
[CrossRef]

Goh, M. C.

J. B. Goh, R. W. Loo, and M. C. Goh, “Label-free monitoring of multiple biomolecular binding interactions in real-time with diffraction-based sensing,” Sens. Actuators B 106, 243–248 (2005).
[CrossRef]

Greene, E. R.

D. Panigrahy, A. Kaipainen, E. R. Greene, and S. Huang, “Cytochrome P450-derived eicosanoids: the neglected pathway in cancer,” Cancer Metastasis Rev. 29, 723–735 (2010).

Haeberli, A.

R. Jenison, S. Yang, A. Haeberli, and B. Polisky, “Interference-based detection of nucleic acid targets on optically coated silicon,” Nat. Biotechnol. 19, 62–65 (2001).
[CrossRef]

Homola, J.

J. Dostalek, J. Homola, and M. Miler, “Surface plasmon resonance sensor based on an array of diffraction gratings for highly parallelized observation of biomolecular interactions,” Sens. Actuators B 129, 303–310 (2008).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Huang, S.

D. Panigrahy, A. Kaipainen, E. R. Greene, and S. Huang, “Cytochrome P450-derived eicosanoids: the neglected pathway in cancer,” Cancer Metastasis Rev. 29, 723–735 (2010).

Icoz, K.

J. Lee, K. Icoz, A. Roberts, A. D. Ellington, and C. A. Savran, “Diffractometric detection of proteins using microbead-based rolling circle amplification,” Anal. Chem. 82, 197–202 (2010).
[CrossRef]

Jenison, R.

R. Jenison, S. Yang, A. Haeberli, and B. Polisky, “Interference-based detection of nucleic acid targets on optically coated silicon,” Nat. Biotechnol. 19, 62–65 (2001).
[CrossRef]

Kaipainen, A.

D. Panigrahy, A. Kaipainen, E. R. Greene, and S. Huang, “Cytochrome P450-derived eicosanoids: the neglected pathway in cancer,” Cancer Metastasis Rev. 29, 723–735 (2010).

Kaushal, K. M.

P. Su, K. M. Kaushal, and D. L. Kroetz, “Inhibition of renal arachidonic acid ω-hydroxylase activity with ABT reduces blood pressure in the SHR,” Am. J. Physiol. 275, R426–R438 (1998).

Kroetz, D. L.

P. Su, K. M. Kaushal, and D. L. Kroetz, “Inhibition of renal arachidonic acid ω-hydroxylase activity with ABT reduces blood pressure in the SHR,” Am. J. Physiol. 275, R426–R438 (1998).

Lee, H. J.

A. W. Wark, H. J. Lee, A. J. Qavi, and R. M. Corn, “Nanoparticle-enhanced diffraction gratings for ultrasensitive surface plasmon biosensing,” Anal. Chem. 79, 6697–6701 (2007).
[CrossRef]

Lee, J.

J. Lee, K. Icoz, A. Roberts, A. D. Ellington, and C. A. Savran, “Diffractometric detection of proteins using microbead-based rolling circle amplification,” Anal. Chem. 82, 197–202 (2010).
[CrossRef]

Lin, V. S. Y.

V. S. Y. Lin, K. Motesharei, K. P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
[CrossRef]

Liscidini, M.

J. D. Ryckman, M. Liscidini, J. E. Sipe, and S. M. Weiss, “Porous silicon structures for low-cost diffraction-based biosensing,” Appl. Phys. Lett. 96, 171103 (2010).
[CrossRef]

Loo, R. W.

J. B. Goh, R. W. Loo, and M. C. Goh, “Label-free monitoring of multiple biomolecular binding interactions in real-time with diffraction-based sensing,” Sens. Actuators B 106, 243–248 (2005).
[CrossRef]

Lv, X. Y.

Z. G. Xu, M. Zhang, X. Y. Lv, D. Xiang, X. Zhang, and L. Chen, “The inhibitory effect of celecoxib on mouse hepatoma H22 cell line on the arachidonic acid metabolic pathway,” Biochem. Cell Biol. 88, 603–609 (2010).
[CrossRef]

Martínez-Vazquez, R.

Miler, M.

J. Dostalek, J. Homola, and M. Miler, “Surface plasmon resonance sensor based on an array of diffraction gratings for highly parallelized observation of biomolecular interactions,” Sens. Actuators B 129, 303–310 (2008).
[CrossRef]

Motesharei, K.

V. S. Y. Lin, K. Motesharei, K. P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
[CrossRef]

Mucke, L.

R. O. Sanchez-Mejia and L. Mucke, “Phospholipase A2 and arachidonic acid in Alzheimer’s disease,” Biochim. Biophys. Acta 1801, 784–790 (2010).
[CrossRef]

Murphy, T. E.

Osellame, R.

Panigrahy, D.

D. Panigrahy, A. Kaipainen, E. R. Greene, and S. Huang, “Cytochrome P450-derived eicosanoids: the neglected pathway in cancer,” Cancer Metastasis Rev. 29, 723–735 (2010).

Pennecchi, F.

A. M. Giovannozzi, V. E. V. Ferrero, F. Pennecchi, S. J. Sadeghi, G. Gilardi, and A. M. Rossi, “P450-based porous silicon biosensor for arachidonic acid detection,” Biosens. Bioelectron. 28, 320–325 (2011).
[CrossRef]

Polisky, B.

R. Jenison, S. Yang, A. Haeberli, and B. Polisky, “Interference-based detection of nucleic acid targets on optically coated silicon,” Nat. Biotechnol. 19, 62–65 (2001).
[CrossRef]

Polzius, R.

R. Polzius, Th. Schneider, F. F. Biert, and U. Bilitewskit, “Optimization of biosensing using grating couplers: immobilization on tantalum oxide waveguides,” Biosens. Bioelectron. 11, 503–514 (1996).
[CrossRef]

Qavi, A. J.

A. W. Wark, H. J. Lee, A. J. Qavi, and R. M. Corn, “Nanoparticle-enhanced diffraction gratings for ultrasensitive surface plasmon biosensing,” Anal. Chem. 79, 6697–6701 (2007).
[CrossRef]

Ramponi, R.

Ramsden, J. J.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699–3710 (2002).
[CrossRef]

Roberts, A.

J. Lee, K. Icoz, A. Roberts, A. D. Ellington, and C. A. Savran, “Diffractometric detection of proteins using microbead-based rolling circle amplification,” Anal. Chem. 82, 197–202 (2010).
[CrossRef]

Rossi, A. M.

J. Xia, A. M. Rossi, and T. E. Murphy, “Laser written nanoporous silicon ridge waveguide for highly sensitive optical sensors,” Opt. Lett. 37, 256–258 (2012).
[CrossRef]

A. M. Giovannozzi, V. E. V. Ferrero, F. Pennecchi, S. J. Sadeghi, G. Gilardi, and A. M. Rossi, “P450-based porous silicon biosensor for arachidonic acid detection,” Biosens. Bioelectron. 28, 320–325 (2011).
[CrossRef]

A. M. Rossi, G. Amato, V. Camarchia, L. Boarino, and S. Borini, “High-quality porous-silicon buried waveguides,” Appl. Phys. Lett. 78, 3003–3005 (2001).
[CrossRef]

Ryckman, J. D.

J. D. Ryckman, M. Liscidini, J. E. Sipe, and S. M. Weiss, “Porous silicon structures for low-cost diffraction-based biosensing,” Appl. Phys. Lett. 96, 171103 (2010).
[CrossRef]

Sadeghi, S. J.

A. M. Giovannozzi, V. E. V. Ferrero, F. Pennecchi, S. J. Sadeghi, G. Gilardi, and A. M. Rossi, “P450-based porous silicon biosensor for arachidonic acid detection,” Biosens. Bioelectron. 28, 320–325 (2011).
[CrossRef]

Sailor, M. J.

V. S. Y. Lin, K. Motesharei, K. P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
[CrossRef]

Sanchez-Mejia, R. O.

R. O. Sanchez-Mejia and L. Mucke, “Phospholipase A2 and arachidonic acid in Alzheimer’s disease,” Biochim. Biophys. Acta 1801, 784–790 (2010).
[CrossRef]

Savran, C. A.

J. Lee, K. Icoz, A. Roberts, A. D. Ellington, and C. A. Savran, “Diffractometric detection of proteins using microbead-based rolling circle amplification,” Anal. Chem. 82, 197–202 (2010).
[CrossRef]

C. Chang, G. Acharya, and C. A. Savran, “In situ assembled diffraction grating for biomolecular detection,” Appl. Phys. Lett. 90, 233901 (2007).
[CrossRef]

Schneider, Th.

R. Polzius, Th. Schneider, F. F. Biert, and U. Bilitewskit, “Optimization of biosensing using grating couplers: immobilization on tantalum oxide waveguides,” Biosens. Bioelectron. 11, 503–514 (1996).
[CrossRef]

Sipe, J. E.

J. D. Ryckman, M. Liscidini, J. E. Sipe, and S. M. Weiss, “Porous silicon structures for low-cost diffraction-based biosensing,” Appl. Phys. Lett. 96, 171103 (2010).
[CrossRef]

Spencer, N. D.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699–3710 (2002).
[CrossRef]

Su, P.

P. Su, K. M. Kaushal, and D. L. Kroetz, “Inhibition of renal arachidonic acid ω-hydroxylase activity with ABT reduces blood pressure in the SHR,” Am. J. Physiol. 275, R426–R438 (1998).

Svelto, O.

Szczepanowska, J.

D. Dymkowska, J. Szczepanowska, M. R. Wieckowski, and L. Wojtczak, “Short-term and long-term effects of fatty acids in rat hepatoma AS-30D cells: the way to apoptosis,” Biochim. Biophys. Acta 1763, 152–163 (2006).
[CrossRef]

Szendro, I.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699–3710 (2002).
[CrossRef]

Textor, M.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699–3710 (2002).
[CrossRef]

Thie, M.

M. Thie, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532  nm,” Appl. Phys. Lett. 97, 221102 (2010).
[CrossRef]

von Freymann, G.

M. Thie, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532  nm,” Appl. Phys. Lett. 97, 221102 (2010).
[CrossRef]

Vörös, J.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699–3710 (2002).
[CrossRef]

Wang, X.

G. Ye and X. Wang, “Glucose sensing through diffraction grating of hydrogel bearing phenylboronic acid groups,” Biosens. Bioelectron. 26, 772–777 (2010).
[CrossRef]

Wark, A. W.

A. W. Wark, H. J. Lee, A. J. Qavi, and R. M. Corn, “Nanoparticle-enhanced diffraction gratings for ultrasensitive surface plasmon biosensing,” Anal. Chem. 79, 6697–6701 (2007).
[CrossRef]

Wegener, M.

M. Thie, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532  nm,” Appl. Phys. Lett. 97, 221102 (2010).
[CrossRef]

Weiss, S. M.

J. D. Ryckman, M. Liscidini, J. E. Sipe, and S. M. Weiss, “Porous silicon structures for low-cost diffraction-based biosensing,” Appl. Phys. Lett. 96, 171103 (2010).
[CrossRef]

Wieckowski, M. R.

D. Dymkowska, J. Szczepanowska, M. R. Wieckowski, and L. Wojtczak, “Short-term and long-term effects of fatty acids in rat hepatoma AS-30D cells: the way to apoptosis,” Biochim. Biophys. Acta 1763, 152–163 (2006).
[CrossRef]

Wojtczak, L.

D. Dymkowska, J. Szczepanowska, M. R. Wieckowski, and L. Wojtczak, “Short-term and long-term effects of fatty acids in rat hepatoma AS-30D cells: the way to apoptosis,” Biochim. Biophys. Acta 1763, 152–163 (2006).
[CrossRef]

Xia, J.

Xiang, D.

Z. G. Xu, M. Zhang, X. Y. Lv, D. Xiang, X. Zhang, and L. Chen, “The inhibitory effect of celecoxib on mouse hepatoma H22 cell line on the arachidonic acid metabolic pathway,” Biochem. Cell Biol. 88, 603–609 (2010).
[CrossRef]

Xu, Z. G.

Z. G. Xu, M. Zhang, X. Y. Lv, D. Xiang, X. Zhang, and L. Chen, “The inhibitory effect of celecoxib on mouse hepatoma H22 cell line on the arachidonic acid metabolic pathway,” Biochem. Cell Biol. 88, 603–609 (2010).
[CrossRef]

Yang, S.

R. Jenison, S. Yang, A. Haeberli, and B. Polisky, “Interference-based detection of nucleic acid targets on optically coated silicon,” Nat. Biotechnol. 19, 62–65 (2001).
[CrossRef]

Ye, G.

G. Ye and X. Wang, “Glucose sensing through diffraction grating of hydrogel bearing phenylboronic acid groups,” Biosens. Bioelectron. 26, 772–777 (2010).
[CrossRef]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Zhang, M.

Z. G. Xu, M. Zhang, X. Y. Lv, D. Xiang, X. Zhang, and L. Chen, “The inhibitory effect of celecoxib on mouse hepatoma H22 cell line on the arachidonic acid metabolic pathway,” Biochem. Cell Biol. 88, 603–609 (2010).
[CrossRef]

Zhang, X.

Z. G. Xu, M. Zhang, X. Y. Lv, D. Xiang, X. Zhang, and L. Chen, “The inhibitory effect of celecoxib on mouse hepatoma H22 cell line on the arachidonic acid metabolic pathway,” Biochem. Cell Biol. 88, 603–609 (2010).
[CrossRef]

Am. J. Physiol.

P. Su, K. M. Kaushal, and D. L. Kroetz, “Inhibition of renal arachidonic acid ω-hydroxylase activity with ABT reduces blood pressure in the SHR,” Am. J. Physiol. 275, R426–R438 (1998).

Anal. Chem.

J. Lee, K. Icoz, A. Roberts, A. D. Ellington, and C. A. Savran, “Diffractometric detection of proteins using microbead-based rolling circle amplification,” Anal. Chem. 82, 197–202 (2010).
[CrossRef]

A. W. Wark, H. J. Lee, A. J. Qavi, and R. M. Corn, “Nanoparticle-enhanced diffraction gratings for ultrasensitive surface plasmon biosensing,” Anal. Chem. 79, 6697–6701 (2007).
[CrossRef]

Appl. Phys. Lett.

C. Chang, G. Acharya, and C. A. Savran, “In situ assembled diffraction grating for biomolecular detection,” Appl. Phys. Lett. 90, 233901 (2007).
[CrossRef]

J. D. Ryckman, M. Liscidini, J. E. Sipe, and S. M. Weiss, “Porous silicon structures for low-cost diffraction-based biosensing,” Appl. Phys. Lett. 96, 171103 (2010).
[CrossRef]

M. Thie, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532  nm,” Appl. Phys. Lett. 97, 221102 (2010).
[CrossRef]

A. M. Rossi, G. Amato, V. Camarchia, L. Boarino, and S. Borini, “High-quality porous-silicon buried waveguides,” Appl. Phys. Lett. 78, 3003–3005 (2001).
[CrossRef]

Biochem. Cell Biol.

Z. G. Xu, M. Zhang, X. Y. Lv, D. Xiang, X. Zhang, and L. Chen, “The inhibitory effect of celecoxib on mouse hepatoma H22 cell line on the arachidonic acid metabolic pathway,” Biochem. Cell Biol. 88, 603–609 (2010).
[CrossRef]

Biochim. Biophys. Acta

R. O. Sanchez-Mejia and L. Mucke, “Phospholipase A2 and arachidonic acid in Alzheimer’s disease,” Biochim. Biophys. Acta 1801, 784–790 (2010).
[CrossRef]

D. Dymkowska, J. Szczepanowska, M. R. Wieckowski, and L. Wojtczak, “Short-term and long-term effects of fatty acids in rat hepatoma AS-30D cells: the way to apoptosis,” Biochim. Biophys. Acta 1763, 152–163 (2006).
[CrossRef]

Biomaterials

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699–3710 (2002).
[CrossRef]

Biosens. Bioelectron.

A. M. Giovannozzi, V. E. V. Ferrero, F. Pennecchi, S. J. Sadeghi, G. Gilardi, and A. M. Rossi, “P450-based porous silicon biosensor for arachidonic acid detection,” Biosens. Bioelectron. 28, 320–325 (2011).
[CrossRef]

R. Polzius, Th. Schneider, F. F. Biert, and U. Bilitewskit, “Optimization of biosensing using grating couplers: immobilization on tantalum oxide waveguides,” Biosens. Bioelectron. 11, 503–514 (1996).
[CrossRef]

G. Ye and X. Wang, “Glucose sensing through diffraction grating of hydrogel bearing phenylboronic acid groups,” Biosens. Bioelectron. 26, 772–777 (2010).
[CrossRef]

Cancer Metastasis Rev.

D. Panigrahy, A. Kaipainen, E. R. Greene, and S. Huang, “Cytochrome P450-derived eicosanoids: the neglected pathway in cancer,” Cancer Metastasis Rev. 29, 723–735 (2010).

Nat. Biotechnol.

R. Jenison, S. Yang, A. Haeberli, and B. Polisky, “Interference-based detection of nucleic acid targets on optically coated silicon,” Nat. Biotechnol. 19, 62–65 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Science

V. S. Y. Lin, K. Motesharei, K. P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
[CrossRef]

Sens. Actuators B

J. B. Goh, R. W. Loo, and M. C. Goh, “Label-free monitoring of multiple biomolecular binding interactions in real-time with diffraction-based sensing,” Sens. Actuators B 106, 243–248 (2005).
[CrossRef]

J. Dostalek, J. Homola, and M. Miler, “Surface plasmon resonance sensor based on an array of diffraction gratings for highly parallelized observation of biomolecular interactions,” Sens. Actuators B 129, 303–310 (2008).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Other

L. Canham, Properties of Porous Silicon (INSPEC, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) SEM cross section of a relief grating with a period of 3 μm; (b) SEM top view of a relief grating with a grating period of 7 μm; (c) SEM top view of PS planar grating showing a grating period of 7 μm. All the grating depths are close to 2 μm.

Fig. 2.
Fig. 2.

(a) Patterned functionalization chemistry used for the planar grating in order to selectively attach the BMP enzyme into the oxide regions and (b) fluorescence image of planar grating surface.

Fig. 3.
Fig. 3.

(a) Functionalization chemistry used for the relief grating in order to attach the BMP enzyme and (b) fluorescence image of relief grating surface.

Fig. 4.
Fig. 4.

Schematic of experimental setup used for biosensing analysis.

Fig. 5.
Fig. 5.

Left: Camera images of light diffraction patterns for diffraction orders m=1, 0,+1. Right: The first-order m=1 diffraction light patterns for planar gratings (left column) and relief gratings (right column). From top to bottom, the images are the diffraction patterns from the fresh grating and the grating functionalized with APTMS, BMP, and AA, respectively.

Fig. 6.
Fig. 6.

(a) Change of the first-order diffraction intensity on CCD camera for relief (circle) and planar (triangle) gratings processed with APTMS, BMP, and AA, respectively. (b) Change of the first-order diffraction pattern position on CCD camera for relief (circle) and planar (triangle) grating processed with APTMS, BMP, and AA, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η=α(f,Λ,λ,)(hΔn)2,

Metrics