Abstract

Resonant fiber-optic gyro (RFOG) based on the Sagnac effect has the potential to achieve the inertial navigation system requirement with a short sensing coil. A high-accuracy resonant frequency servo loop is indispensable for a high-performance RFOG. A digital proportional-integral (PI) controller is always adopted in the resonant frequency servo loop. The resonant frequency of the optical fiber ring resonator drifts with environmental temperature changes. When the resonant frequency drift is beyond the tracking range of the resonant frequency servo loop, the digital PI controller overflows and outputs a reset signal. A large reset pulse, which is equivalent to a rotation rate error of 26°/h, has been observed at the output of the RFOG, while a long time is required for returning to the lock-in state simultaneously. To reduce the effect of the overflow resetting in the digital PI controller, an auto-controlled reset technique is proposed and experimentally demonstrated. As a result, the time for returning to the lock-in state is reduced to 5 ms from 8 s. With the integration time of 1 s, the equivalent accuracy of the resonant frequency servo loop is improved to 0.18°/h.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Ezekiel and S. K. Balsmo, “Passive ring resonator laser gyroscope,” Appl. Phys. Lett. 30, 478–480 (1977).
    [CrossRef]
  2. S. Ezekiel, “Optical gyroscope options: principles and challenges,” in 18th International Optical Fiber Sensors Conference Technical Digest (Optical Society of America, 2006), paper MC1.
  3. G. A. Pavlath, “Fiber-optic gyros: the vision realized,” in 18th International Optical Fiber Sensors Conference Technical Digest (Optical Society of America, 2006), paper MA3.
  4. A. Ohno, A. Kurokawa, T. Kumagai, S. Nakamura, and K. Hotate, “Applications and technical progress of fiber-optic gyros in Japan,” in 18th International Optical Fiber Sensors Conference Technical Digest (Optical Society of America, 2006), paper MA4.
  5. G. A. Sanders, L. K. Strandjord, and T. Qiu, “Hollow core fiber-optic ring resonator for rotation sensing,” in 18th International Optical Fiber Sensors Conference Technical Digest (Optical Society of America, 2006), paper ME6.
  6. K. Takiguchi and K. Hotate, “Partially digital-feedback scheme and evaluation of optical Kerr-effect induced bias in optical passive ring-resonator gyro,” IEEE Photon. Technol. Lett. 3, 679–681 (1991).
    [CrossRef]
  7. H. Ma, X. Lu, L. Yao, X. Yu, and Z. Jin, “Full investigation of the resonant frequency servo loop for resonator fiber-optic gyro,” Appl. Opt. 51, 5178–5185 (2012).
    [CrossRef]
  8. H. Ma, W. Wang, Y. Ren, and Z. Jin, “Low-noise, low-delay digital signal processor for resonant micro optic gyro,” IEEE Photon. Technol. Lett. 25, 198–201 (2013).
    [CrossRef]
  9. Z. Jin, X. Yu, and H. Ma, “Resonator fiber-optic gyro employing a semiconductor laser,” Appl. Opt. 51, 2856–2864 (2012).
    [CrossRef]
  10. R. Kingslake and B. J. Thompson, Applied Optics and Optical Engineering (Academic, 1965).
  11. C. Ciminelli, F. D. Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photon. J. 4, 1844–1854 (2012).
    [CrossRef]
  12. H. Ma, X. Yu, and Z. Jin, “Reduction of polarization-fluctuation induced drift in resonator fiber-optic gyro by a resonator integrating in-line polarizers,” Opt. Lett. 37, 3342–33449 (2012).
    [CrossRef]
  13. X. Yu, H. Ma, and Z. Jin, “Improving thermal stability of a resonator fiber-optic gyro employing a polarizing resonator,” Opt. Express 21, 358–369 (2013).
    [CrossRef]
  14. H. Ma, Z. He, and K. Hotate, “Reduction of backscattering induced noise by carrier suppression in waveguide-type optical ring resonator gyro,” J. Lightwave Technol. 29, 85–90 (2011).
    [CrossRef]
  15. H. Mao, H. Ma, and Z. Jin, “Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique,” Opt. Express 19, 4632–4643 (2011).
    [CrossRef]
  16. X. Zhang, H. Ma, Z. Jin, and C. Ding, “Open-loop operation experiments in a resonator fiber-optic gyro using the phase modulation spectroscopy technique,” Appl. Opt. 45, 7961–7965 (2006).
    [CrossRef]

2013 (2)

H. Ma, W. Wang, Y. Ren, and Z. Jin, “Low-noise, low-delay digital signal processor for resonant micro optic gyro,” IEEE Photon. Technol. Lett. 25, 198–201 (2013).
[CrossRef]

X. Yu, H. Ma, and Z. Jin, “Improving thermal stability of a resonator fiber-optic gyro employing a polarizing resonator,” Opt. Express 21, 358–369 (2013).
[CrossRef]

2012 (4)

2011 (2)

2006 (1)

1991 (1)

K. Takiguchi and K. Hotate, “Partially digital-feedback scheme and evaluation of optical Kerr-effect induced bias in optical passive ring-resonator gyro,” IEEE Photon. Technol. Lett. 3, 679–681 (1991).
[CrossRef]

1977 (1)

S. Ezekiel and S. K. Balsmo, “Passive ring resonator laser gyroscope,” Appl. Phys. Lett. 30, 478–480 (1977).
[CrossRef]

Armenise, M. N.

C. Ciminelli, F. D. Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photon. J. 4, 1844–1854 (2012).
[CrossRef]

Balsmo, S. K.

S. Ezekiel and S. K. Balsmo, “Passive ring resonator laser gyroscope,” Appl. Phys. Lett. 30, 478–480 (1977).
[CrossRef]

Ciminelli, C.

C. Ciminelli, F. D. Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photon. J. 4, 1844–1854 (2012).
[CrossRef]

Ding, C.

Ezekiel, S.

S. Ezekiel and S. K. Balsmo, “Passive ring resonator laser gyroscope,” Appl. Phys. Lett. 30, 478–480 (1977).
[CrossRef]

S. Ezekiel, “Optical gyroscope options: principles and challenges,” in 18th International Optical Fiber Sensors Conference Technical Digest (Optical Society of America, 2006), paper MC1.

He, Z.

Hotate, K.

H. Ma, Z. He, and K. Hotate, “Reduction of backscattering induced noise by carrier suppression in waveguide-type optical ring resonator gyro,” J. Lightwave Technol. 29, 85–90 (2011).
[CrossRef]

K. Takiguchi and K. Hotate, “Partially digital-feedback scheme and evaluation of optical Kerr-effect induced bias in optical passive ring-resonator gyro,” IEEE Photon. Technol. Lett. 3, 679–681 (1991).
[CrossRef]

A. Ohno, A. Kurokawa, T. Kumagai, S. Nakamura, and K. Hotate, “Applications and technical progress of fiber-optic gyros in Japan,” in 18th International Optical Fiber Sensors Conference Technical Digest (Optical Society of America, 2006), paper MA4.

Jin, Z.

Kingslake, R.

R. Kingslake and B. J. Thompson, Applied Optics and Optical Engineering (Academic, 1965).

Kumagai, T.

A. Ohno, A. Kurokawa, T. Kumagai, S. Nakamura, and K. Hotate, “Applications and technical progress of fiber-optic gyros in Japan,” in 18th International Optical Fiber Sensors Conference Technical Digest (Optical Society of America, 2006), paper MA4.

Kurokawa, A.

A. Ohno, A. Kurokawa, T. Kumagai, S. Nakamura, and K. Hotate, “Applications and technical progress of fiber-optic gyros in Japan,” in 18th International Optical Fiber Sensors Conference Technical Digest (Optical Society of America, 2006), paper MA4.

Lu, X.

Ma, H.

Mao, H.

Nakamura, S.

A. Ohno, A. Kurokawa, T. Kumagai, S. Nakamura, and K. Hotate, “Applications and technical progress of fiber-optic gyros in Japan,” in 18th International Optical Fiber Sensors Conference Technical Digest (Optical Society of America, 2006), paper MA4.

Ohno, A.

A. Ohno, A. Kurokawa, T. Kumagai, S. Nakamura, and K. Hotate, “Applications and technical progress of fiber-optic gyros in Japan,” in 18th International Optical Fiber Sensors Conference Technical Digest (Optical Society of America, 2006), paper MA4.

Olio, F. D.

C. Ciminelli, F. D. Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photon. J. 4, 1844–1854 (2012).
[CrossRef]

Pavlath, G. A.

G. A. Pavlath, “Fiber-optic gyros: the vision realized,” in 18th International Optical Fiber Sensors Conference Technical Digest (Optical Society of America, 2006), paper MA3.

Qiu, T.

G. A. Sanders, L. K. Strandjord, and T. Qiu, “Hollow core fiber-optic ring resonator for rotation sensing,” in 18th International Optical Fiber Sensors Conference Technical Digest (Optical Society of America, 2006), paper ME6.

Ren, Y.

H. Ma, W. Wang, Y. Ren, and Z. Jin, “Low-noise, low-delay digital signal processor for resonant micro optic gyro,” IEEE Photon. Technol. Lett. 25, 198–201 (2013).
[CrossRef]

Sanders, G. A.

G. A. Sanders, L. K. Strandjord, and T. Qiu, “Hollow core fiber-optic ring resonator for rotation sensing,” in 18th International Optical Fiber Sensors Conference Technical Digest (Optical Society of America, 2006), paper ME6.

Strandjord, L. K.

G. A. Sanders, L. K. Strandjord, and T. Qiu, “Hollow core fiber-optic ring resonator for rotation sensing,” in 18th International Optical Fiber Sensors Conference Technical Digest (Optical Society of America, 2006), paper ME6.

Takiguchi, K.

K. Takiguchi and K. Hotate, “Partially digital-feedback scheme and evaluation of optical Kerr-effect induced bias in optical passive ring-resonator gyro,” IEEE Photon. Technol. Lett. 3, 679–681 (1991).
[CrossRef]

Thompson, B. J.

R. Kingslake and B. J. Thompson, Applied Optics and Optical Engineering (Academic, 1965).

Wang, W.

H. Ma, W. Wang, Y. Ren, and Z. Jin, “Low-noise, low-delay digital signal processor for resonant micro optic gyro,” IEEE Photon. Technol. Lett. 25, 198–201 (2013).
[CrossRef]

Yao, L.

Yu, X.

Zhang, X.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

S. Ezekiel and S. K. Balsmo, “Passive ring resonator laser gyroscope,” Appl. Phys. Lett. 30, 478–480 (1977).
[CrossRef]

IEEE Photon. J. (1)

C. Ciminelli, F. D. Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photon. J. 4, 1844–1854 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

K. Takiguchi and K. Hotate, “Partially digital-feedback scheme and evaluation of optical Kerr-effect induced bias in optical passive ring-resonator gyro,” IEEE Photon. Technol. Lett. 3, 679–681 (1991).
[CrossRef]

H. Ma, W. Wang, Y. Ren, and Z. Jin, “Low-noise, low-delay digital signal processor for resonant micro optic gyro,” IEEE Photon. Technol. Lett. 25, 198–201 (2013).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (2)

Opt. Lett. (1)

Other (5)

R. Kingslake and B. J. Thompson, Applied Optics and Optical Engineering (Academic, 1965).

S. Ezekiel, “Optical gyroscope options: principles and challenges,” in 18th International Optical Fiber Sensors Conference Technical Digest (Optical Society of America, 2006), paper MC1.

G. A. Pavlath, “Fiber-optic gyros: the vision realized,” in 18th International Optical Fiber Sensors Conference Technical Digest (Optical Society of America, 2006), paper MA3.

A. Ohno, A. Kurokawa, T. Kumagai, S. Nakamura, and K. Hotate, “Applications and technical progress of fiber-optic gyros in Japan,” in 18th International Optical Fiber Sensors Conference Technical Digest (Optical Society of America, 2006), paper MA4.

G. A. Sanders, L. K. Strandjord, and T. Qiu, “Hollow core fiber-optic ring resonator for rotation sensing,” in 18th International Optical Fiber Sensors Conference Technical Digest (Optical Society of America, 2006), paper ME6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Experimental setup of the RFOG based on the digital resonant frequency servo loop. C1–C3, couplers; PM1 and PM2, phase modulators; PD1 and PD2, photodetectors; LIA1 and LIA2, lock-in amplifiers; OFRR, optical fiber ring resonator; PI, proportionalintegral controller.

Fig. 2.
Fig. 2.

Model of the digital resonant frequency servo loop.

Fig. 3.
Fig. 3.

(a) Observation of the large reset pulses occurring on the overflow resetting of the digital PI controller. (b) Closed-loop output with the auto-controlled reset technique applied to the output of the digital PI controller.

Fig. 4.
Fig. 4.

Simulation results of the closed-loop output with different reset voltage differences.

Fig. 5.
Fig. 5.

Locations of the central frequency of the laser on the demodulation curve after PI output resetting with different values.

Fig. 6.
Fig. 6.

Diagram of the proposed auto-controlled reset technique. Vmax=1.15V, Vref=0.82V, and Vset=0.41V.

Fig. 7.
Fig. 7.

Measurement results of the closed-loop output with different reset values.

Fig. 8.
Fig. 8.

Demodulated voltage error and time required for returning to the lock-in state with different frequency deviations. (a) Relationship between the demodulated voltage error and the frequency deviation. (b) Relationship between the time required for returning to the lock-in state and the frequency deviation.

Fig. 9.
Fig. 9.

Closed-loop output of the residual laser frequency noise. (a) Closed-loop output for the integration time of 1 s. (b) Allan deviation of the closed-loop output.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

EFL-out(t)=E0expj[2πf0t+VDAdt],
EPM2-out(t)=E0expj[2πf0t+VDAdt+M2sin(2πf2t)],
VPSD-out(t)=kLIAx(t)r(t)=kLIA[12VsVrcosθ+12VsVrcos(4πf2t+θ)],
G(s)=kP(1+1τis)11+τLPFs,
H(s)=k(1+1τis)11+τLPFsesτD,
FSR=cnL.
FSRT=cL1nT=cL(1n2)nT=142Hz/°C.

Metrics