Abstract

Measurements of the upwelling polarized radiance in relatively shallow waters of varying depths and benthic conditions are compared to simulations, revealing the depolarizing nature of the seafloor. The simulations, executed with the software package RayXP, are solutions to the vector radiative transfer equation, which depends on the incident light field and three types of parameters: inherent optical properties, the scattering matrix, and the benthic reflectance. These were measured directly or calculated from measurements with additional assumptions. Specifically, the Lambertian model used to simulate benthic reflectances is something of a simplification of reality, but the bottoms used in this study are found to be crucial for accurate simulations of polarization. Comparisons of simulations with and without bottom contributions show that only the former corroborate measurements of the Stokes components and the degree of linear polarization (DoLP) collected by the polarimeter developed at the City College of New York. Because this polarimeter is multiangular and hyperspectral, errors can be computed point-wise over a large range of scattering angles and wavelengths. Trends also become apparent. DoLP is highly sensitive to the benthic reflectance and to the incident wavelength, peaking in the red band, but the angle of linear polarization is almost spectrally constant and independent of the bottom. These results can thus facilitate the detection of benthic materials as well as future studies of camouflage by benthic biota; to hide underwater successfully, animals must reflect light just as depolarized as that reflected by benthic materials.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ivanoff and T. H. Waterman, “Elliptical polarisation of submarine illumination,” J. Mar. Res. 16, 255–282 (1958).
  2. V. Timofeeva, “On study of polarization characteristics of light field in turbid media,” Dokl Akad Nauk SSSR 140, 361–363 (1961).
  3. T. H. Waterman, “Polarization patterns in submarine illumination,” Science 120, 927–932 (1954).
    [CrossRef]
  4. A. Ivanoff and T. H. Waterman, “Factors, mainly depth and wavelength, affecting the degree of underwater light polarization,” J. Mar. Res. 16, 283–307 (1958).
  5. R. Schwind, “Daphnia pulex swims towards the most strongly polarized light—a response that leads to ‘shore flight’,” J. Exper. Bio. 202, 3631–3635 (1999).
  6. T. W. Cronin and N. Shashar, “The linearly polarized light field in clear, tropical marine waters: spatial and temporal variation of light intensity, degree of polarization and e-vector angle,” J. Exp. Biol. 204, 2461–2467 (2001).
  7. N. Shashar, S. Sabbah, and T. W. Cronin, “Transmission of linearly polarized light in seawater: implications for polarization signaling,” J. Exp. Biol. 207, 3619–3628 (2004).
    [CrossRef]
  8. H. M. Dierssen, R. C. Zimmerman, R. A. Leathers, T. V. Downes, and C. O. Davis, “Ocean color remote sensing of sea grass and bathymetry in the Bahamas Banks by high-resolution airborne imagery,” Limnol. Oceanogr. 48, 444–455 (2003).
    [CrossRef]
  9. C. D. Mobley, H. Zhang, and K. J. Voss, “Effects of optically shallow bottoms on upwelling radiances: bidirectional reflectance distribution function effects,” Limnol. Oceanogr. 48, 337–345 (2003).
    [CrossRef]
  10. R. C. Zimmerman, “A bio-optical model of irradiance distribution and photosynthesis in sea grass canopies,” Limnol. Oceanogr. 48, 568–585 (2003).
    [CrossRef]
  11. K. J. Voss, C. D. Mobley, L. K. Sundman, J. E. Ivey, and C. H. Mazel, “The spectral upwelling radiance distribution in optically shallow waters,” Limnol. Oceanogr. 48, 364–373 (2003).
    [CrossRef]
  12. H. Zhang and K. J. Voss, “Bidirectional reflectance and polarization measurements on packed surfaces of benthic sediments and spherical particles,” Opt. Express 17, 5217–5231 (2009).
    [CrossRef]
  13. M. Mcpherson, V. J. Hill, R. C. Zimmerman, and H. M. Dierssen, “The optical properties of Greater Florida Bay: implications for sea grass abundance,” Estuaries Coasts 34, 1150–1160 (2011).
  14. C. Buonassissi and H. M. Dierssen, “A regional comparison of particle size distributions and the power-law approximation in oceanic and estuarine surface waters,” J. Geophys. Res. 115, C10028 (2010).
    [CrossRef]
  15. C. H. Mazel, “Diver-operated instrument for in situ measurement of spectral fluorescence and reflectance of benthic marine organisms and substrates,” Opt. Eng. 36, 2612–2617 (1997).
    [CrossRef]
  16. A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, 1974), pp. 1–24.
  17. J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
    [CrossRef]
  18. H. C. Van de Hulst, Light Scattering by Small Particles (Dover Publications, 1981).
  19. Y. You, A. Tonizzo, A. A. Gilerson, M. E. Cummings, P. Brady, J. M. Sullivan, M. S. Twardowski, H. M. Dierssen, S. A. Ahmed, and G. W. Kattawar, “Measurements and simulations of polarization states of underwater light in clear oceanic waters,” Appl. Opt. 50, 4873–4893 (2011).
    [CrossRef]
  20. J. M. Sullivan and M. S. Twardowski, “Angular shape of the oceanic particulate volume scattering function in the backward direction,” Appl. Opt. 48, 6811–6819 (2009).
    [CrossRef]
  21. M. Twardowski, X. Zhang, S. Vagle, J. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res. 117, C00H17 (2012).
    [CrossRef]
  22. A. Tonizzo, J. Zhou, A. Gilerson, M. S. Twardowski, D. J. Gray, R. A. Arnone, B. M. Gross, F. Moshary, and S. A. Ahmed, “Polarized light in coastal waters: hyperspectral and multiangular analysis,” Opt. Express 17, 5666–5682 (2009).
    [CrossRef]
  23. A. Tonizzo, A. Gilerson, T. Harmel, A. Ibrahim, J. Chowdhary, B. Gross, F. Moshary, and S. Ahmed, “Estimating particle composition and size distribution from polarized water-leaving radiance,” Appl. Opt. 50, 5047–5058 (2011).
    [CrossRef]
  24. E. P. Zege, L. L. Katsev, and I. N. Polonsky, “Multicomponent approach to light propagation in clouds and mists,” Appl. Opt. 32, 2803–2812 (1993).
    [CrossRef]
  25. H. H. Tynes, G. W. Kattawar, E. P. Zege, I. L. Katsev, A. S. Prikhach, and L. I. Chaikovskaya, “Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations,” Appl. Opt. 40, 400–412 (2001).
    [CrossRef]
  26. R. M. Pope and E. S. Fry, “Absorption spectrum (380–700  nm) of pure water. 2. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
    [CrossRef]
  27. G. W. Kattawar, G. N. Plass, and S. J. Hitzfelder, “Multiple scattered radiation emerging from Rayleigh and continental haze layers. 1. Radiance, polarization, and neutral points,” Appl. Opt. 15, 632–647 (1976).
    [CrossRef]
  28. G. Zibordi, F. Mélin, S. B. Hooker, D. D’Alimonte, and B. Holben, “An autonomous above-water system for the validation of ocean color radiance data,” IEEE Trans. Geosci. Remote Sens. 42, 401–415 (2004).
    [CrossRef]
  29. S. Chandrasekhar, Radiative Transfer (Dover Books on Physics, 1960).
  30. J. T. Adams, E. Aas, N. K. Hojerslev, and B. Lundgren, “Comparison of radiance and polarization values observed in the Mediterranean Sea and simulated in a Monte Carlo model,” Appl. Opt. 41, 2724–2733 (2002).
    [CrossRef]
  31. C. D. Mobley and L. K. Sundman, “Effects of optically shallow bottoms on upwelling radiances: inhomogeneous and sloping bottoms,” Limnol. Oceanogr. 48, 329–336 (2003).
    [CrossRef]
  32. J. Hedley and S. Enrıquez, “Optical properties of canopies of the tropical sea grass Thalassia testudinum estimated by a three-dimensional radiative transfer model,” Limnol. Oceanogr. 55, 1537–1550 (2010).
    [CrossRef]
  33. M. P. Lesser and C. D. Mobley, “Bathymetry, water optical properties, and benthic classification of coral reefs using hyperspectral remote sensing imagery,” Coral Reefs 26, 819–829 (2007).
    [CrossRef]
  34. C. D. Mobley, “HydroLight users’ guide”.
  35. H. M. Dierssen, R. C. Zimmerman, D. Burdige, and L. Drake, “Benthic ecology from space: optics and net primary production in sea grass and benthic algae across the Great Bahama Bank,” Mar. Ecol. Prog. Ser. 411, 1–15 (2010).
    [CrossRef]
  36. E. J. Hochberg and M. J. Atkinson, “Spectral discrimination of coral reef benthic communities,” Coral Reefs 19, 164–171 (2000).
    [CrossRef]
  37. A. Ibrahim, A. Gilerson, T. Harmel, A. Tonizzo, J. Chowdhary, and S. Ahmed, “The relationship between upwelling underwater polarization and attenuation/absorption ratio,” Opt. Express 20, 25662–25680 (2012).
    [CrossRef]
  38. P. C. Brady, K. A. Travis, T. Maginnis, and M. E. Cummings, “Polaro-cryptic mirror of the lookdown as a biological model for open ocean camouflage,” Proc. Natl. Acad. Sci. USA 110, 9764–9769 (2013).
    [CrossRef]
  39. T.-H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, and J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Current Biology 18, 429–434 (2008).
    [CrossRef]

2013 (1)

P. C. Brady, K. A. Travis, T. Maginnis, and M. E. Cummings, “Polaro-cryptic mirror of the lookdown as a biological model for open ocean camouflage,” Proc. Natl. Acad. Sci. USA 110, 9764–9769 (2013).
[CrossRef]

2012 (2)

A. Ibrahim, A. Gilerson, T. Harmel, A. Tonizzo, J. Chowdhary, and S. Ahmed, “The relationship between upwelling underwater polarization and attenuation/absorption ratio,” Opt. Express 20, 25662–25680 (2012).
[CrossRef]

M. Twardowski, X. Zhang, S. Vagle, J. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res. 117, C00H17 (2012).
[CrossRef]

2011 (3)

2010 (3)

J. Hedley and S. Enrıquez, “Optical properties of canopies of the tropical sea grass Thalassia testudinum estimated by a three-dimensional radiative transfer model,” Limnol. Oceanogr. 55, 1537–1550 (2010).
[CrossRef]

H. M. Dierssen, R. C. Zimmerman, D. Burdige, and L. Drake, “Benthic ecology from space: optics and net primary production in sea grass and benthic algae across the Great Bahama Bank,” Mar. Ecol. Prog. Ser. 411, 1–15 (2010).
[CrossRef]

C. Buonassissi and H. M. Dierssen, “A regional comparison of particle size distributions and the power-law approximation in oceanic and estuarine surface waters,” J. Geophys. Res. 115, C10028 (2010).
[CrossRef]

2009 (3)

2008 (1)

T.-H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, and J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Current Biology 18, 429–434 (2008).
[CrossRef]

2007 (1)

M. P. Lesser and C. D. Mobley, “Bathymetry, water optical properties, and benthic classification of coral reefs using hyperspectral remote sensing imagery,” Coral Reefs 26, 819–829 (2007).
[CrossRef]

2004 (2)

G. Zibordi, F. Mélin, S. B. Hooker, D. D’Alimonte, and B. Holben, “An autonomous above-water system for the validation of ocean color radiance data,” IEEE Trans. Geosci. Remote Sens. 42, 401–415 (2004).
[CrossRef]

N. Shashar, S. Sabbah, and T. W. Cronin, “Transmission of linearly polarized light in seawater: implications for polarization signaling,” J. Exp. Biol. 207, 3619–3628 (2004).
[CrossRef]

2003 (5)

H. M. Dierssen, R. C. Zimmerman, R. A. Leathers, T. V. Downes, and C. O. Davis, “Ocean color remote sensing of sea grass and bathymetry in the Bahamas Banks by high-resolution airborne imagery,” Limnol. Oceanogr. 48, 444–455 (2003).
[CrossRef]

C. D. Mobley, H. Zhang, and K. J. Voss, “Effects of optically shallow bottoms on upwelling radiances: bidirectional reflectance distribution function effects,” Limnol. Oceanogr. 48, 337–345 (2003).
[CrossRef]

R. C. Zimmerman, “A bio-optical model of irradiance distribution and photosynthesis in sea grass canopies,” Limnol. Oceanogr. 48, 568–585 (2003).
[CrossRef]

K. J. Voss, C. D. Mobley, L. K. Sundman, J. E. Ivey, and C. H. Mazel, “The spectral upwelling radiance distribution in optically shallow waters,” Limnol. Oceanogr. 48, 364–373 (2003).
[CrossRef]

C. D. Mobley and L. K. Sundman, “Effects of optically shallow bottoms on upwelling radiances: inhomogeneous and sloping bottoms,” Limnol. Oceanogr. 48, 329–336 (2003).
[CrossRef]

2002 (1)

2001 (2)

H. H. Tynes, G. W. Kattawar, E. P. Zege, I. L. Katsev, A. S. Prikhach, and L. I. Chaikovskaya, “Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations,” Appl. Opt. 40, 400–412 (2001).
[CrossRef]

T. W. Cronin and N. Shashar, “The linearly polarized light field in clear, tropical marine waters: spatial and temporal variation of light intensity, degree of polarization and e-vector angle,” J. Exp. Biol. 204, 2461–2467 (2001).

2000 (1)

E. J. Hochberg and M. J. Atkinson, “Spectral discrimination of coral reef benthic communities,” Coral Reefs 19, 164–171 (2000).
[CrossRef]

1999 (1)

R. Schwind, “Daphnia pulex swims towards the most strongly polarized light—a response that leads to ‘shore flight’,” J. Exper. Bio. 202, 3631–3635 (1999).

1997 (2)

C. H. Mazel, “Diver-operated instrument for in situ measurement of spectral fluorescence and reflectance of benthic marine organisms and substrates,” Opt. Eng. 36, 2612–2617 (1997).
[CrossRef]

R. M. Pope and E. S. Fry, “Absorption spectrum (380–700  nm) of pure water. 2. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
[CrossRef]

1993 (1)

1976 (1)

1974 (1)

J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

1961 (1)

V. Timofeeva, “On study of polarization characteristics of light field in turbid media,” Dokl Akad Nauk SSSR 140, 361–363 (1961).

1958 (2)

A. Ivanoff and T. H. Waterman, “Elliptical polarisation of submarine illumination,” J. Mar. Res. 16, 255–282 (1958).

A. Ivanoff and T. H. Waterman, “Factors, mainly depth and wavelength, affecting the degree of underwater light polarization,” J. Mar. Res. 16, 283–307 (1958).

1954 (1)

T. H. Waterman, “Polarization patterns in submarine illumination,” Science 120, 927–932 (1954).
[CrossRef]

Aas, E.

Adams, J. T.

Ahmed, S.

Ahmed, S. A.

Arnone, R. A.

Atkinson, M. J.

E. J. Hochberg and M. J. Atkinson, “Spectral discrimination of coral reef benthic communities,” Coral Reefs 19, 164–171 (2000).
[CrossRef]

Bi, L.

M. Twardowski, X. Zhang, S. Vagle, J. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res. 117, C00H17 (2012).
[CrossRef]

Brady, P.

Brady, P. C.

P. C. Brady, K. A. Travis, T. Maginnis, and M. E. Cummings, “Polaro-cryptic mirror of the lookdown as a biological model for open ocean camouflage,” Proc. Natl. Acad. Sci. USA 110, 9764–9769 (2013).
[CrossRef]

Buonassissi, C.

C. Buonassissi and H. M. Dierssen, “A regional comparison of particle size distributions and the power-law approximation in oceanic and estuarine surface waters,” J. Geophys. Res. 115, C10028 (2010).
[CrossRef]

Burdige, D.

H. M. Dierssen, R. C. Zimmerman, D. Burdige, and L. Drake, “Benthic ecology from space: optics and net primary production in sea grass and benthic algae across the Great Bahama Bank,” Mar. Ecol. Prog. Ser. 411, 1–15 (2010).
[CrossRef]

Caldwell, R.

T.-H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, and J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Current Biology 18, 429–434 (2008).
[CrossRef]

Chaikovskaya, L. I.

Chandrasekhar, S.

S. Chandrasekhar, Radiative Transfer (Dover Books on Physics, 1960).

Chiou, T.-H.

T.-H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, and J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Current Biology 18, 429–434 (2008).
[CrossRef]

Chowdhary, J.

Cronin, T.

T.-H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, and J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Current Biology 18, 429–434 (2008).
[CrossRef]

Cronin, T. W.

N. Shashar, S. Sabbah, and T. W. Cronin, “Transmission of linearly polarized light in seawater: implications for polarization signaling,” J. Exp. Biol. 207, 3619–3628 (2004).
[CrossRef]

T. W. Cronin and N. Shashar, “The linearly polarized light field in clear, tropical marine waters: spatial and temporal variation of light intensity, degree of polarization and e-vector angle,” J. Exp. Biol. 204, 2461–2467 (2001).

Cummings, M. E.

P. C. Brady, K. A. Travis, T. Maginnis, and M. E. Cummings, “Polaro-cryptic mirror of the lookdown as a biological model for open ocean camouflage,” Proc. Natl. Acad. Sci. USA 110, 9764–9769 (2013).
[CrossRef]

Y. You, A. Tonizzo, A. A. Gilerson, M. E. Cummings, P. Brady, J. M. Sullivan, M. S. Twardowski, H. M. Dierssen, S. A. Ahmed, and G. W. Kattawar, “Measurements and simulations of polarization states of underwater light in clear oceanic waters,” Appl. Opt. 50, 4873–4893 (2011).
[CrossRef]

Czerski, H.

M. Twardowski, X. Zhang, S. Vagle, J. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res. 117, C00H17 (2012).
[CrossRef]

D’Alimonte, D.

G. Zibordi, F. Mélin, S. B. Hooker, D. D’Alimonte, and B. Holben, “An autonomous above-water system for the validation of ocean color radiance data,” IEEE Trans. Geosci. Remote Sens. 42, 401–415 (2004).
[CrossRef]

Davis, C. O.

H. M. Dierssen, R. C. Zimmerman, R. A. Leathers, T. V. Downes, and C. O. Davis, “Ocean color remote sensing of sea grass and bathymetry in the Bahamas Banks by high-resolution airborne imagery,” Limnol. Oceanogr. 48, 444–455 (2003).
[CrossRef]

Dierssen, H. M.

Y. You, A. Tonizzo, A. A. Gilerson, M. E. Cummings, P. Brady, J. M. Sullivan, M. S. Twardowski, H. M. Dierssen, S. A. Ahmed, and G. W. Kattawar, “Measurements and simulations of polarization states of underwater light in clear oceanic waters,” Appl. Opt. 50, 4873–4893 (2011).
[CrossRef]

M. Mcpherson, V. J. Hill, R. C. Zimmerman, and H. M. Dierssen, “The optical properties of Greater Florida Bay: implications for sea grass abundance,” Estuaries Coasts 34, 1150–1160 (2011).

H. M. Dierssen, R. C. Zimmerman, D. Burdige, and L. Drake, “Benthic ecology from space: optics and net primary production in sea grass and benthic algae across the Great Bahama Bank,” Mar. Ecol. Prog. Ser. 411, 1–15 (2010).
[CrossRef]

C. Buonassissi and H. M. Dierssen, “A regional comparison of particle size distributions and the power-law approximation in oceanic and estuarine surface waters,” J. Geophys. Res. 115, C10028 (2010).
[CrossRef]

H. M. Dierssen, R. C. Zimmerman, R. A. Leathers, T. V. Downes, and C. O. Davis, “Ocean color remote sensing of sea grass and bathymetry in the Bahamas Banks by high-resolution airborne imagery,” Limnol. Oceanogr. 48, 444–455 (2003).
[CrossRef]

Downes, T. V.

H. M. Dierssen, R. C. Zimmerman, R. A. Leathers, T. V. Downes, and C. O. Davis, “Ocean color remote sensing of sea grass and bathymetry in the Bahamas Banks by high-resolution airborne imagery,” Limnol. Oceanogr. 48, 444–455 (2003).
[CrossRef]

Drake, L.

H. M. Dierssen, R. C. Zimmerman, D. Burdige, and L. Drake, “Benthic ecology from space: optics and net primary production in sea grass and benthic algae across the Great Bahama Bank,” Mar. Ecol. Prog. Ser. 411, 1–15 (2010).
[CrossRef]

Enriquez, S.

J. Hedley and S. Enrıquez, “Optical properties of canopies of the tropical sea grass Thalassia testudinum estimated by a three-dimensional radiative transfer model,” Limnol. Oceanogr. 55, 1537–1550 (2010).
[CrossRef]

Freeman, S.

M. Twardowski, X. Zhang, S. Vagle, J. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res. 117, C00H17 (2012).
[CrossRef]

Fry, E. S.

Gilerson, A.

Gilerson, A. A.

Goldizen, A.

T.-H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, and J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Current Biology 18, 429–434 (2008).
[CrossRef]

Gray, D. J.

Gross, B.

Gross, B. M.

Hansen, J. E.

J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Harmel, T.

Hedley, J.

J. Hedley and S. Enrıquez, “Optical properties of canopies of the tropical sea grass Thalassia testudinum estimated by a three-dimensional radiative transfer model,” Limnol. Oceanogr. 55, 1537–1550 (2010).
[CrossRef]

Hill, V. J.

M. Mcpherson, V. J. Hill, R. C. Zimmerman, and H. M. Dierssen, “The optical properties of Greater Florida Bay: implications for sea grass abundance,” Estuaries Coasts 34, 1150–1160 (2011).

Hitzfelder, S. J.

Hochberg, E. J.

E. J. Hochberg and M. J. Atkinson, “Spectral discrimination of coral reef benthic communities,” Coral Reefs 19, 164–171 (2000).
[CrossRef]

Hojerslev, N. K.

Holben, B.

G. Zibordi, F. Mélin, S. B. Hooker, D. D’Alimonte, and B. Holben, “An autonomous above-water system for the validation of ocean color radiance data,” IEEE Trans. Geosci. Remote Sens. 42, 401–415 (2004).
[CrossRef]

Hooker, S. B.

G. Zibordi, F. Mélin, S. B. Hooker, D. D’Alimonte, and B. Holben, “An autonomous above-water system for the validation of ocean color radiance data,” IEEE Trans. Geosci. Remote Sens. 42, 401–415 (2004).
[CrossRef]

Ibrahim, A.

Ivanoff, A.

A. Ivanoff and T. H. Waterman, “Factors, mainly depth and wavelength, affecting the degree of underwater light polarization,” J. Mar. Res. 16, 283–307 (1958).

A. Ivanoff and T. H. Waterman, “Elliptical polarisation of submarine illumination,” J. Mar. Res. 16, 255–282 (1958).

Ivey, J. E.

K. J. Voss, C. D. Mobley, L. K. Sundman, J. E. Ivey, and C. H. Mazel, “The spectral upwelling radiance distribution in optically shallow waters,” Limnol. Oceanogr. 48, 364–373 (2003).
[CrossRef]

Katsev, I. L.

Katsev, L. L.

Kattawar, G.

M. Twardowski, X. Zhang, S. Vagle, J. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res. 117, C00H17 (2012).
[CrossRef]

Kattawar, G. W.

Kleinlogel, S.

T.-H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, and J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Current Biology 18, 429–434 (2008).
[CrossRef]

Leathers, R. A.

H. M. Dierssen, R. C. Zimmerman, R. A. Leathers, T. V. Downes, and C. O. Davis, “Ocean color remote sensing of sea grass and bathymetry in the Bahamas Banks by high-resolution airborne imagery,” Limnol. Oceanogr. 48, 444–455 (2003).
[CrossRef]

Lesser, M. P.

M. P. Lesser and C. D. Mobley, “Bathymetry, water optical properties, and benthic classification of coral reefs using hyperspectral remote sensing imagery,” Coral Reefs 26, 819–829 (2007).
[CrossRef]

Loeffler, B.

T.-H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, and J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Current Biology 18, 429–434 (2008).
[CrossRef]

Lundgren, B.

Maginnis, T.

P. C. Brady, K. A. Travis, T. Maginnis, and M. E. Cummings, “Polaro-cryptic mirror of the lookdown as a biological model for open ocean camouflage,” Proc. Natl. Acad. Sci. USA 110, 9764–9769 (2013).
[CrossRef]

Marshall, J.

T.-H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, and J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Current Biology 18, 429–434 (2008).
[CrossRef]

Mazel, C. H.

K. J. Voss, C. D. Mobley, L. K. Sundman, J. E. Ivey, and C. H. Mazel, “The spectral upwelling radiance distribution in optically shallow waters,” Limnol. Oceanogr. 48, 364–373 (2003).
[CrossRef]

C. H. Mazel, “Diver-operated instrument for in situ measurement of spectral fluorescence and reflectance of benthic marine organisms and substrates,” Opt. Eng. 36, 2612–2617 (1997).
[CrossRef]

Mcpherson, M.

M. Mcpherson, V. J. Hill, R. C. Zimmerman, and H. M. Dierssen, “The optical properties of Greater Florida Bay: implications for sea grass abundance,” Estuaries Coasts 34, 1150–1160 (2011).

Mélin, F.

G. Zibordi, F. Mélin, S. B. Hooker, D. D’Alimonte, and B. Holben, “An autonomous above-water system for the validation of ocean color radiance data,” IEEE Trans. Geosci. Remote Sens. 42, 401–415 (2004).
[CrossRef]

Mobley, C. D.

M. P. Lesser and C. D. Mobley, “Bathymetry, water optical properties, and benthic classification of coral reefs using hyperspectral remote sensing imagery,” Coral Reefs 26, 819–829 (2007).
[CrossRef]

K. J. Voss, C. D. Mobley, L. K. Sundman, J. E. Ivey, and C. H. Mazel, “The spectral upwelling radiance distribution in optically shallow waters,” Limnol. Oceanogr. 48, 364–373 (2003).
[CrossRef]

C. D. Mobley, H. Zhang, and K. J. Voss, “Effects of optically shallow bottoms on upwelling radiances: bidirectional reflectance distribution function effects,” Limnol. Oceanogr. 48, 337–345 (2003).
[CrossRef]

C. D. Mobley and L. K. Sundman, “Effects of optically shallow bottoms on upwelling radiances: inhomogeneous and sloping bottoms,” Limnol. Oceanogr. 48, 329–336 (2003).
[CrossRef]

C. D. Mobley, “HydroLight users’ guide”.

Morel, A.

A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, 1974), pp. 1–24.

Moshary, F.

Plass, G. N.

Polonsky, I. N.

Pope, R. M.

Prikhach, A. S.

Sabbah, S.

N. Shashar, S. Sabbah, and T. W. Cronin, “Transmission of linearly polarized light in seawater: implications for polarization signaling,” J. Exp. Biol. 207, 3619–3628 (2004).
[CrossRef]

Schwind, R.

R. Schwind, “Daphnia pulex swims towards the most strongly polarized light—a response that leads to ‘shore flight’,” J. Exper. Bio. 202, 3631–3635 (1999).

Shashar, N.

N. Shashar, S. Sabbah, and T. W. Cronin, “Transmission of linearly polarized light in seawater: implications for polarization signaling,” J. Exp. Biol. 207, 3619–3628 (2004).
[CrossRef]

T. W. Cronin and N. Shashar, “The linearly polarized light field in clear, tropical marine waters: spatial and temporal variation of light intensity, degree of polarization and e-vector angle,” J. Exp. Biol. 204, 2461–2467 (2001).

Siddiqi, A.

T.-H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, and J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Current Biology 18, 429–434 (2008).
[CrossRef]

Sullivan, J.

M. Twardowski, X. Zhang, S. Vagle, J. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res. 117, C00H17 (2012).
[CrossRef]

Sullivan, J. M.

Sundman, L. K.

K. J. Voss, C. D. Mobley, L. K. Sundman, J. E. Ivey, and C. H. Mazel, “The spectral upwelling radiance distribution in optically shallow waters,” Limnol. Oceanogr. 48, 364–373 (2003).
[CrossRef]

C. D. Mobley and L. K. Sundman, “Effects of optically shallow bottoms on upwelling radiances: inhomogeneous and sloping bottoms,” Limnol. Oceanogr. 48, 329–336 (2003).
[CrossRef]

Timofeeva, V.

V. Timofeeva, “On study of polarization characteristics of light field in turbid media,” Dokl Akad Nauk SSSR 140, 361–363 (1961).

Tonizzo, A.

Travis, K. A.

P. C. Brady, K. A. Travis, T. Maginnis, and M. E. Cummings, “Polaro-cryptic mirror of the lookdown as a biological model for open ocean camouflage,” Proc. Natl. Acad. Sci. USA 110, 9764–9769 (2013).
[CrossRef]

Travis, L. D.

J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Twardowski, M.

M. Twardowski, X. Zhang, S. Vagle, J. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res. 117, C00H17 (2012).
[CrossRef]

Twardowski, M. S.

Tynes, H. H.

Vagle, S.

M. Twardowski, X. Zhang, S. Vagle, J. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res. 117, C00H17 (2012).
[CrossRef]

Voss, K. J.

H. Zhang and K. J. Voss, “Bidirectional reflectance and polarization measurements on packed surfaces of benthic sediments and spherical particles,” Opt. Express 17, 5217–5231 (2009).
[CrossRef]

K. J. Voss, C. D. Mobley, L. K. Sundman, J. E. Ivey, and C. H. Mazel, “The spectral upwelling radiance distribution in optically shallow waters,” Limnol. Oceanogr. 48, 364–373 (2003).
[CrossRef]

C. D. Mobley, H. Zhang, and K. J. Voss, “Effects of optically shallow bottoms on upwelling radiances: bidirectional reflectance distribution function effects,” Limnol. Oceanogr. 48, 337–345 (2003).
[CrossRef]

Waterman, T. H.

A. Ivanoff and T. H. Waterman, “Elliptical polarisation of submarine illumination,” J. Mar. Res. 16, 255–282 (1958).

A. Ivanoff and T. H. Waterman, “Factors, mainly depth and wavelength, affecting the degree of underwater light polarization,” J. Mar. Res. 16, 283–307 (1958).

T. H. Waterman, “Polarization patterns in submarine illumination,” Science 120, 927–932 (1954).
[CrossRef]

You, Y.

M. Twardowski, X. Zhang, S. Vagle, J. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res. 117, C00H17 (2012).
[CrossRef]

Y. You, A. Tonizzo, A. A. Gilerson, M. E. Cummings, P. Brady, J. M. Sullivan, M. S. Twardowski, H. M. Dierssen, S. A. Ahmed, and G. W. Kattawar, “Measurements and simulations of polarization states of underwater light in clear oceanic waters,” Appl. Opt. 50, 4873–4893 (2011).
[CrossRef]

Zege, E. P.

Zhang, H.

H. Zhang and K. J. Voss, “Bidirectional reflectance and polarization measurements on packed surfaces of benthic sediments and spherical particles,” Opt. Express 17, 5217–5231 (2009).
[CrossRef]

C. D. Mobley, H. Zhang, and K. J. Voss, “Effects of optically shallow bottoms on upwelling radiances: bidirectional reflectance distribution function effects,” Limnol. Oceanogr. 48, 337–345 (2003).
[CrossRef]

Zhang, X.

M. Twardowski, X. Zhang, S. Vagle, J. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res. 117, C00H17 (2012).
[CrossRef]

Zhou, J.

Zibordi, G.

G. Zibordi, F. Mélin, S. B. Hooker, D. D’Alimonte, and B. Holben, “An autonomous above-water system for the validation of ocean color radiance data,” IEEE Trans. Geosci. Remote Sens. 42, 401–415 (2004).
[CrossRef]

Zimmerman, R. C.

M. Mcpherson, V. J. Hill, R. C. Zimmerman, and H. M. Dierssen, “The optical properties of Greater Florida Bay: implications for sea grass abundance,” Estuaries Coasts 34, 1150–1160 (2011).

H. M. Dierssen, R. C. Zimmerman, D. Burdige, and L. Drake, “Benthic ecology from space: optics and net primary production in sea grass and benthic algae across the Great Bahama Bank,” Mar. Ecol. Prog. Ser. 411, 1–15 (2010).
[CrossRef]

R. C. Zimmerman, “A bio-optical model of irradiance distribution and photosynthesis in sea grass canopies,” Limnol. Oceanogr. 48, 568–585 (2003).
[CrossRef]

H. M. Dierssen, R. C. Zimmerman, R. A. Leathers, T. V. Downes, and C. O. Davis, “Ocean color remote sensing of sea grass and bathymetry in the Bahamas Banks by high-resolution airborne imagery,” Limnol. Oceanogr. 48, 444–455 (2003).
[CrossRef]

Appl. Opt. (8)

G. W. Kattawar, G. N. Plass, and S. J. Hitzfelder, “Multiple scattered radiation emerging from Rayleigh and continental haze layers. 1. Radiance, polarization, and neutral points,” Appl. Opt. 15, 632–647 (1976).
[CrossRef]

E. P. Zege, L. L. Katsev, and I. N. Polonsky, “Multicomponent approach to light propagation in clouds and mists,” Appl. Opt. 32, 2803–2812 (1993).
[CrossRef]

H. H. Tynes, G. W. Kattawar, E. P. Zege, I. L. Katsev, A. S. Prikhach, and L. I. Chaikovskaya, “Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations,” Appl. Opt. 40, 400–412 (2001).
[CrossRef]

R. M. Pope and E. S. Fry, “Absorption spectrum (380–700  nm) of pure water. 2. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
[CrossRef]

J. T. Adams, E. Aas, N. K. Hojerslev, and B. Lundgren, “Comparison of radiance and polarization values observed in the Mediterranean Sea and simulated in a Monte Carlo model,” Appl. Opt. 41, 2724–2733 (2002).
[CrossRef]

J. M. Sullivan and M. S. Twardowski, “Angular shape of the oceanic particulate volume scattering function in the backward direction,” Appl. Opt. 48, 6811–6819 (2009).
[CrossRef]

Y. You, A. Tonizzo, A. A. Gilerson, M. E. Cummings, P. Brady, J. M. Sullivan, M. S. Twardowski, H. M. Dierssen, S. A. Ahmed, and G. W. Kattawar, “Measurements and simulations of polarization states of underwater light in clear oceanic waters,” Appl. Opt. 50, 4873–4893 (2011).
[CrossRef]

A. Tonizzo, A. Gilerson, T. Harmel, A. Ibrahim, J. Chowdhary, B. Gross, F. Moshary, and S. Ahmed, “Estimating particle composition and size distribution from polarized water-leaving radiance,” Appl. Opt. 50, 5047–5058 (2011).
[CrossRef]

Coral Reefs (2)

M. P. Lesser and C. D. Mobley, “Bathymetry, water optical properties, and benthic classification of coral reefs using hyperspectral remote sensing imagery,” Coral Reefs 26, 819–829 (2007).
[CrossRef]

E. J. Hochberg and M. J. Atkinson, “Spectral discrimination of coral reef benthic communities,” Coral Reefs 19, 164–171 (2000).
[CrossRef]

Current Biology (1)

T.-H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, and J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Current Biology 18, 429–434 (2008).
[CrossRef]

Dokl Akad Nauk SSSR (1)

V. Timofeeva, “On study of polarization characteristics of light field in turbid media,” Dokl Akad Nauk SSSR 140, 361–363 (1961).

Estuaries Coasts (1)

M. Mcpherson, V. J. Hill, R. C. Zimmerman, and H. M. Dierssen, “The optical properties of Greater Florida Bay: implications for sea grass abundance,” Estuaries Coasts 34, 1150–1160 (2011).

IEEE Trans. Geosci. Remote Sens. (1)

G. Zibordi, F. Mélin, S. B. Hooker, D. D’Alimonte, and B. Holben, “An autonomous above-water system for the validation of ocean color radiance data,” IEEE Trans. Geosci. Remote Sens. 42, 401–415 (2004).
[CrossRef]

J. Exp. Biol. (2)

T. W. Cronin and N. Shashar, “The linearly polarized light field in clear, tropical marine waters: spatial and temporal variation of light intensity, degree of polarization and e-vector angle,” J. Exp. Biol. 204, 2461–2467 (2001).

N. Shashar, S. Sabbah, and T. W. Cronin, “Transmission of linearly polarized light in seawater: implications for polarization signaling,” J. Exp. Biol. 207, 3619–3628 (2004).
[CrossRef]

J. Exper. Bio. (1)

R. Schwind, “Daphnia pulex swims towards the most strongly polarized light—a response that leads to ‘shore flight’,” J. Exper. Bio. 202, 3631–3635 (1999).

J. Geophys. Res. (2)

M. Twardowski, X. Zhang, S. Vagle, J. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res. 117, C00H17 (2012).
[CrossRef]

C. Buonassissi and H. M. Dierssen, “A regional comparison of particle size distributions and the power-law approximation in oceanic and estuarine surface waters,” J. Geophys. Res. 115, C10028 (2010).
[CrossRef]

J. Mar. Res. (2)

A. Ivanoff and T. H. Waterman, “Elliptical polarisation of submarine illumination,” J. Mar. Res. 16, 255–282 (1958).

A. Ivanoff and T. H. Waterman, “Factors, mainly depth and wavelength, affecting the degree of underwater light polarization,” J. Mar. Res. 16, 283–307 (1958).

Limnol. Oceanogr. (6)

H. M. Dierssen, R. C. Zimmerman, R. A. Leathers, T. V. Downes, and C. O. Davis, “Ocean color remote sensing of sea grass and bathymetry in the Bahamas Banks by high-resolution airborne imagery,” Limnol. Oceanogr. 48, 444–455 (2003).
[CrossRef]

C. D. Mobley, H. Zhang, and K. J. Voss, “Effects of optically shallow bottoms on upwelling radiances: bidirectional reflectance distribution function effects,” Limnol. Oceanogr. 48, 337–345 (2003).
[CrossRef]

R. C. Zimmerman, “A bio-optical model of irradiance distribution and photosynthesis in sea grass canopies,” Limnol. Oceanogr. 48, 568–585 (2003).
[CrossRef]

K. J. Voss, C. D. Mobley, L. K. Sundman, J. E. Ivey, and C. H. Mazel, “The spectral upwelling radiance distribution in optically shallow waters,” Limnol. Oceanogr. 48, 364–373 (2003).
[CrossRef]

C. D. Mobley and L. K. Sundman, “Effects of optically shallow bottoms on upwelling radiances: inhomogeneous and sloping bottoms,” Limnol. Oceanogr. 48, 329–336 (2003).
[CrossRef]

J. Hedley and S. Enrıquez, “Optical properties of canopies of the tropical sea grass Thalassia testudinum estimated by a three-dimensional radiative transfer model,” Limnol. Oceanogr. 55, 1537–1550 (2010).
[CrossRef]

Mar. Ecol. Prog. Ser. (1)

H. M. Dierssen, R. C. Zimmerman, D. Burdige, and L. Drake, “Benthic ecology from space: optics and net primary production in sea grass and benthic algae across the Great Bahama Bank,” Mar. Ecol. Prog. Ser. 411, 1–15 (2010).
[CrossRef]

Opt. Eng. (1)

C. H. Mazel, “Diver-operated instrument for in situ measurement of spectral fluorescence and reflectance of benthic marine organisms and substrates,” Opt. Eng. 36, 2612–2617 (1997).
[CrossRef]

Opt. Express (3)

Proc. Natl. Acad. Sci. USA (1)

P. C. Brady, K. A. Travis, T. Maginnis, and M. E. Cummings, “Polaro-cryptic mirror of the lookdown as a biological model for open ocean camouflage,” Proc. Natl. Acad. Sci. USA 110, 9764–9769 (2013).
[CrossRef]

Science (1)

T. H. Waterman, “Polarization patterns in submarine illumination,” Science 120, 927–932 (1954).
[CrossRef]

Space Sci. Rev. (1)

J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Other (4)

H. C. Van de Hulst, Light Scattering by Small Particles (Dover Publications, 1981).

A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, 1974), pp. 1–24.

C. D. Mobley, “HydroLight users’ guide”.

S. Chandrasekhar, Radiative Transfer (Dover Books on Physics, 1960).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (27)

Fig. 1.
Fig. 1.

Definition of the viewing azimuth angle and the polarimeter’s instrument angle.

Fig. 2.
Fig. 2.

Modeling the passage of light through the atmospheric layer. (a) Decomposes the optical thickness τ of the atmosphere into its components, as measured by MODIS. The resulting downwelling irradiance Ed from Eq. (4) is compared to the measured values in (b).

Fig. 3.
Fig. 3.

Volume scattering functions, β(ψ), for the two sites. (a) Station 40 and (b) Station 49.

Fig. 4.
Fig. 4.

Extending and fitting the measured ratio F12/F11 for two sites. (a) Station 40 and (b) Station 49. The extended functions are used to execute simulations with RayXP. The depolarization factor ρ, which characterizes the fit, also is used by RayXP to solve the equations of Rayleigh scattering for the F22, F33, and F44 elements of the scattering matrix.

Fig. 5.
Fig. 5.

Spectral plots of IOPs with insets showing depth profiles for 440 and 550 nm. (a) Absorption coefficient of suspended particulate matter, denoted with a subscript p. (b) Absorption coefficient of colored dissolved organic matter (CDOM), also called gelbstoff, denoted with the subscript g. (c) Combined attenuation coefficient of suspended and dissolved matter, denoted by pg.

Fig. 6.
Fig. 6.

Normalized radiances are displayed in panel (a) as measured, as simulated with an infinite depth—which is equivalent to the absence of a bottom—and as simulated with the two benthic reflectances of (b). Curves in (a) are labeled either as measurements or based on the benthic reflectance used to simulate them. These same benthic reflectances are used to label (b).

Fig. 7.
Fig. 7.

Stokes component of radiance (I), presented hyperspectrally and for all downward-looking instrument angles 15° from the principal plane. From left to right: measurements, vector RT simulations of an ocean with effectively no bottom, and vector RT simulations of an ocean with a realistic bottom.

Fig. 8.
Fig. 8.

DoLP, presented hyperspectrally and for all downward-looking instrument angles 15° from the principal plane. From left to right: measurements, vector RT simulations of an ocean with effectively no bottom, and vector RT simulations of an ocean with a realistic bottom.

Fig. 9.
Fig. 9.

Angle ψ at which pure water scatters light most strongly and thus causes the DoLP to peak can be computed from the solar and viewing geometry. If the sun is at an elevation angle γ, quantified in Table 1, light will enter the water at γ2, in accordance with Snell’s Law of Refraction, n1sin(90γ1)=n2sinγ2. The triangle indicated in red then reveals that ψ=γ2θ+90°, where θ is the instrument angle.

Fig. 10.
Fig. 10.

AoLP based on the Stokes vector 45° from the principal plane, presented hyperspectrally and for all downward-looking instrument angles. From left to right: measurements, vector RT simulations of an ocean with effectively no bottom, and vector RT simulations of an ocean with a realistic bottom.

Fig. 11.
Fig. 11.

Measurements of the DoLP, denoted by the subscript “m,” are scattered against simulations with no bottom (“nb”) in (a) and against those with a bottom (“wb”) in (b). The one-to-one lines are shown in solid black and the actual regressions in red.

Fig. 12.
Fig. 12.

Mixture of turtle sea grass and sand from which the benthic reflectance was retrieved for Station 49.

Fig. 13.
Fig. 13.

Spectral plots of IOPs with insets showing depth profiles for 440 and 550 nm. (a) Absorption coefficient of suspended particulate matter. (b) Absorption coefficient of colored dissolved organic matter (CDOM). (c) Combined attenuation coefficient of suspended and dissolved matter.

Fig. 14.
Fig. 14.

Normalized radiances are displayed in panel (a) as measured in the field, as simulated with infinite depth—which is equivalent to the absence of a bottom—and as simulated with the two benthic reflectances presented in (b): a default sea grass leaf and the measured mixture of sea grass and sediment.

Fig. 15.
Fig. 15.

Stokes component of radiance (I), presented hyperspectrally and for all downward-looking instrument angles 15° from the principal plane. From left to right: measurements, vector RT simulations of an ocean with effectively no bottom, and vector RT simulations of an ocean with a realistic bottom.

Fig. 16.
Fig. 16.

DoLP, presented hyperspectrally and for all downward-looking instrument angles 15° from the principal plane. From left to right: measurements, vector RT simulations of an ocean with effectively no bottom, and vector RT simulations of an ocean with a realistic bottom.

Fig. 17.
Fig. 17.

Measurements of the DoLP, denoted by the subscript “m,” are scattered against simulations with no bottom (“nb”) in (a) and against those with a bottom (“wb”) in (b). The one-to-one lines are shown in solid black and the actual regressions in red.

Fig. 18.
Fig. 18.

Spectral plots of DoLP for the three angles at which the polarimeter looks horizontally, in the theoretical peak scattering direction, and vertically, shown in that order from left to right.

Fig. 19.
Fig. 19.

Angular plots of DoLP for the blue, green, and red channels.

Fig. 20.
Fig. 20.

Spectral plots of AoLP for the three instrument angles explained in the text.

Fig. 21.
Fig. 21.

Angular plots of AoLP for the blue, green, and red channels.

Fig. 22.
Fig. 22.

Normalized radiances are displayed in (a) as measured, as simulated with infinite depth, which is equivalent to the absence of a bottom, and as simulated with the three benthic reflectances of (b). Curves in (a) are labeled either as measurements or based on the benthic reflectance that was used to simulate them. These same benthic reflectances are used to label (b).

Fig. 23.
Fig. 23.

Stokes component of radiance (I), presented hyperspectrally and for all downward-looking instrument angles 15° from the principal plane. From left to right: measurements, vector RT simulations of an ocean with effectively no bottom, and vector RT simulations of an ocean with a realistic bottom.

Fig. 24.
Fig. 24.

DoLP, presented hyperspectrally and for all downward-looking instrument angles 15° from the principal plane. From left to right: measurements, vector RT simulations of an ocean with effectively no bottom, and vector RT simulations of an ocean with a realistic bottom.

Fig. 25.
Fig. 25.

Measurements of the DoLP, denoted by the subscript “m,” are scattered against simulations with no bottom (“nb”) in (a) and against those with a bottom (“wb”) in (b). The one-to-one lines are shown in solid black and the actual regressions in red.

Fig. 26.
Fig. 26.

Normalized radiances are displayed in (a) as measured, as simulated with infinite depth, which is equivalent to the absence of a bottom, and as simulated with the two benthic averages of (b). Curves in (a) are labeled either as measurements or based on the benthic average that was used to simulate them. These same benthic averages are used to label (b).

Fig. 27.
Fig. 27.

DoLP as a function of instrument angle at three wavelengths at all studied sites. Left-hand panels: measurements. Center: simulations with bottom effects. Right-hand panels: simulations without bottom effects.

Tables (6)

Tables Icon

Table 1. Characteristic Parameters of the Four Stations

Tables Icon

Table 2. Regression Coefficients for Simulations and Measurements on the 15° Scattering Plane

Tables Icon

Table 3. Regression Coefficients for Simulations and Measurements on the 45° Scattering Plane

Tables Icon

Table 4. Regression Coefficients for Simulations and Measurements on the 15° Scattering Plane

Tables Icon

Table 5. Regression Coefficients for Simulations and Measurements on the 45° Scattering Plane

Tables Icon

Table 6. Regression Coefficients for Simulations and Measurements on the 15° Scattering Plane

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

F=[F11F1200F12F220000F330000F44].
μS(τ,n)τ=ω(τ)4πF(τ,n,n)S(τ,n)dnS(τ,n),
DoLP=Q2+U2I.
AoLP=12tan1(UQ).
Ed(λ)=exp(0.5τr(λ)+0.14τa(λ)+τoz(λ)cosθS)E0(λ)cosθs,
F11(ψ)=β(ψ)b658,
βext(ψ)={F11,HG(ψ)[β(10°)F11,HG(10°)],0°ψ10°β(ψ),10°<ψ<170°β(170°),170°ψ180°.
εb=2π0πsin(ψ)βext(ψ)dψb658b658.
F11,ext(ψ)=4πβextb658(1εb)
(F12F11)a=(1ρ)(cos2ψ1)(1+cos2ψ)+ρ(3cos2ψ).

Metrics