Abstract

Terahertz (THz) time-domain spectroscopy probes the optical properties of naturally occurring solid aggregates of minerals, or stones, in the THz frequency range. Refractive index and extinction coefficient measurement reveals that most natural stones, including mudstone, sandstone, granite, tuff, gneiss, diorite, slate, marble, and dolomite, are fairly transparent for THz frequency waves. Dolomite in particular exhibits a nearly uniform refractive index of 2.7 over the broad frequency range from 0.1 to 1 THz. The high index of refraction allows flexibility in lens designing with a shorter accessible focal length or a thinner lens with a given focal length. Good agreement between the experiment and calculation for the THz beam profile confirms that dolomite has high homogeneity as a lens material, suggesting the possibility of using natural stones for THz optical elements.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
    [CrossRef]
  2. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
    [CrossRef]
  3. Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).
  4. J. Chen, Y. Chen, H. Zhao, G. J. Bastiaans, and X.-C. Zhang, “Absorption coefficients of selected explosives and related compounds in the range of 0.1–2.8  THz,” Opt. Express 15, 12060–12067 (2007).
    [CrossRef]
  5. Y. Kim, J. Ahn, B. G. Kim, and D.-S. Yee, “Terahertz birefringence in zinc oxide,” Jpn. J. Appl. Phys. 50, 030203 (2011).
    [CrossRef]
  6. M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy: a new tool for the study of glasses in the far infrared,” J. Non-Cryst. Solids 351, 3341–3346 (2005).
    [CrossRef]
  7. D. S. Venables and C. A. Schmuttenmaer, “Far-infrared spectra and associated dynamics in acetonitrile-water mixtures measured with femtosecond THz pulse spectroscopy,” J. Chem. Phys. 108, 4935–4944 (1998).
    [CrossRef]
  8. K. J. Tielrooij, N. Garcia-Araez, M. Bonn, and H. J. Bakker, “Cooperativity in ion hydration,” Science 328, 1006–1009 (2010).
    [CrossRef]
  9. J.-H. Son, “Terahertz electromagnetic interactions with biological matter and their applications,” J. Appl. Phys. 105, 102033 (2009).
    [CrossRef]
  10. S. Wietzke, C. Jansen, T. Jung, M. Reuter, B. Baudrit, M. Bastian, S. Chatterjee, and M. Koch, “Terahertz time-domain spectroscopy as a tool to monitor the glass transition in polymers,” Opt. Express 17, 19006–19014 (2009).
    [CrossRef]
  11. N. Krumbholz, T. Hochreina, N. Viewega, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28, 30–35 (2009).
    [CrossRef]
  12. S. Gorenflo, “A comprehensive study of macromolecules in composites using broadband terahertz spectroscopy,” Ph.D. thesis (University of Freiburg, 2006).
  13. B. M. Fischer, “Broadband THz time-domain spectroscopy of biomolecules: a comprehensive study of the dielectric properties of biomaterials in the far-infrared,” Ph.D. thesis (University of Freiburg, 2005).
  14. P. D. Cunningham, N. N. Valdes, F. A. Vallejo, M. L. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
    [CrossRef]
  15. P. E. Powers, R. A. Alkuwari, J. W. Haus, K. Suizu, and H. Ito, “Terahertz generation with tandem seeded optical parametric generators,” Opt. Lett. 30, 640–642 (2005).
    [CrossRef]
  16. D. Grbovic and G. Karunasiri, “Fabrication of bi-material MEMS detector arrays for THz imaging,” Proc. SPIE 7311, 731108 (2009).
    [CrossRef]
  17. B. Scherger, M. Scheller, C. Jansen, M. Koch, and K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Appl. Opt. 50, 2256–2262 (2011).
    [CrossRef]
  18. M. Wichmann, A. S. Mondol, N. Kocic, S. Lippert, T. Probst, M. Schwerdtfeger, S. Schumann, T. Hochrein, P. Heidemeyer, M. Bastian, G. Bastian, and M. Koch, “Terahertz plastic compound lenses,” Appl. Opt. 52, 4186–4191 (2013).
    [CrossRef]
  19. A. Siemion, A. Siemion, M. Makowski, M. Sypek, E. Hérault, F. Garet, and J.-L. Coutaz, “Off-axis metallic diffractive lens for terahertz beams,” Opt. Lett. 36, 1960–1962 (2011).
    [CrossRef]
  20. A. Siemion, A. Siemion, M. Makowski, J. Suszek, J. Bomba, A. Czerwiński, F. Garet, J.-L. Coutaz, and M. Sypek, “Diffractive paper lens for terahertz optics,” Opt. Lett. 37, 4320–4322 (2012).
    [CrossRef]
  21. B. Scherger, C. Jördens, and M. Koch, “Variable-focus terahertz lens,” Opt. Express 19, 4528–4535 (2011).
    [CrossRef]
  22. M. Wichmann, B. Scherger, S. Schumann, S. Lippert, M. Scheller, S. F. Busch, C. Jansen, and M. Koch, “Terahertz Brewster lenses,” Opt. Express 19, 25151–25160 (2011).
    [CrossRef]
  23. M. Janek, I. Bugár, D. Lorenc, V. Szöcs, D. Velič, and D. Chorvát, “Terahertz time-domain spectroscopy of selected layered silicates,” Clays Clay Miner. 57, 416–424 (2009).
    [CrossRef]
  24. M. Mizuno, K. Fukunaga, S. Saito, and I. Hosako, “Analysis of calcium carbonate for differentiating between pigments using terahertz spectroscopy,” J. Eur. Opt. Soc. 4, 09044 (2009).
    [CrossRef]
  25. M. Schwerdtfeger, E. Castro-Camus, K. Krügener, W. Viöl, and M. Koch, “Beating the wavelength limit: three-dimensional imaging of buried subwavelength fractures in sculpture and construction materials by terahertz time-domain reflection spectroscopy,” Appl. Opt. 52, 375–380 (2013).
    [CrossRef]
  26. A. Dreyhaupt, S. Winner, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114 (2005).
    [CrossRef]
  27. G. Gallot and D. Grischkowsky, “Electro-optic detection of terahertz radiation,” J. Opt. Soc. Am. B 16, 1204–1212 (1999).
    [CrossRef]
  28. P. C. M. Planken, H.-K. Nienhuys, H. J. Bakker, and T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B 18, 313–317 (2001).
    [CrossRef]
  29. Y. Kim, D.-S. Yee, M. Yi, and J. Ahn, “High-speed high-resolution terahertz spectrometers,” J. Korean Phys. Soc. 56, 255–261 (2010).
    [CrossRef]
  30. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716–1718 (1995).
    [CrossRef]
  31. G. R. Fowles, Introduction to Modern Optics, 2nd ed. (Dover Publications, 1989).
  32. W. Withayachumnankul, B. Ferguson, T. Rainsford, S. P. Mickan, and D. Abbott, “Material parameter extraction for terahertz time-domain spectroscopy using fixed-point iteration,” Proc. SPIE 5840, 221–231 (2005).
    [CrossRef]
  33. W. Withayachumnankul, B. Ferguson, T. Rainsford, S. P. Mickan, and D. Abbott, “Simple material parameter estimation via terahertz time-domain spectroscopy,” Electron. Lett. 41, 800–801 (2005).
    [CrossRef]
  34. A. C. Tennissen, Nature of Earth Materials (Prentice Hall, 1974).
  35. B. K. Johnson, Optics and Optical Instruments: An Introduction with Special Reference to Practical Applications (Dover Publications, 1960).
  36. E. Hecht, Optics, 4th ed. (Addison Wesley, 2002).

2013 (2)

2012 (1)

2011 (6)

2010 (2)

Y. Kim, D.-S. Yee, M. Yi, and J. Ahn, “High-speed high-resolution terahertz spectrometers,” J. Korean Phys. Soc. 56, 255–261 (2010).
[CrossRef]

K. J. Tielrooij, N. Garcia-Araez, M. Bonn, and H. J. Bakker, “Cooperativity in ion hydration,” Science 328, 1006–1009 (2010).
[CrossRef]

2009 (6)

J.-H. Son, “Terahertz electromagnetic interactions with biological matter and their applications,” J. Appl. Phys. 105, 102033 (2009).
[CrossRef]

N. Krumbholz, T. Hochreina, N. Viewega, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28, 30–35 (2009).
[CrossRef]

D. Grbovic and G. Karunasiri, “Fabrication of bi-material MEMS detector arrays for THz imaging,” Proc. SPIE 7311, 731108 (2009).
[CrossRef]

M. Janek, I. Bugár, D. Lorenc, V. Szöcs, D. Velič, and D. Chorvát, “Terahertz time-domain spectroscopy of selected layered silicates,” Clays Clay Miner. 57, 416–424 (2009).
[CrossRef]

M. Mizuno, K. Fukunaga, S. Saito, and I. Hosako, “Analysis of calcium carbonate for differentiating between pigments using terahertz spectroscopy,” J. Eur. Opt. Soc. 4, 09044 (2009).
[CrossRef]

S. Wietzke, C. Jansen, T. Jung, M. Reuter, B. Baudrit, M. Bastian, S. Chatterjee, and M. Koch, “Terahertz time-domain spectroscopy as a tool to monitor the glass transition in polymers,” Opt. Express 17, 19006–19014 (2009).
[CrossRef]

2007 (3)

J. Chen, Y. Chen, H. Zhao, G. J. Bastiaans, and X.-C. Zhang, “Absorption coefficients of selected explosives and related compounds in the range of 0.1–2.8  THz,” Opt. Express 15, 12060–12067 (2007).
[CrossRef]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[CrossRef]

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[CrossRef]

2006 (1)

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

2005 (5)

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy: a new tool for the study of glasses in the far infrared,” J. Non-Cryst. Solids 351, 3341–3346 (2005).
[CrossRef]

A. Dreyhaupt, S. Winner, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114 (2005).
[CrossRef]

W. Withayachumnankul, B. Ferguson, T. Rainsford, S. P. Mickan, and D. Abbott, “Material parameter extraction for terahertz time-domain spectroscopy using fixed-point iteration,” Proc. SPIE 5840, 221–231 (2005).
[CrossRef]

W. Withayachumnankul, B. Ferguson, T. Rainsford, S. P. Mickan, and D. Abbott, “Simple material parameter estimation via terahertz time-domain spectroscopy,” Electron. Lett. 41, 800–801 (2005).
[CrossRef]

P. E. Powers, R. A. Alkuwari, J. W. Haus, K. Suizu, and H. Ito, “Terahertz generation with tandem seeded optical parametric generators,” Opt. Lett. 30, 640–642 (2005).
[CrossRef]

2001 (1)

1999 (1)

1998 (1)

D. S. Venables and C. A. Schmuttenmaer, “Far-infrared spectra and associated dynamics in acetonitrile-water mixtures measured with femtosecond THz pulse spectroscopy,” J. Chem. Phys. 108, 4935–4944 (1998).
[CrossRef]

1995 (1)

Abbott, D.

W. Withayachumnankul, B. Ferguson, T. Rainsford, S. P. Mickan, and D. Abbott, “Material parameter extraction for terahertz time-domain spectroscopy using fixed-point iteration,” Proc. SPIE 5840, 221–231 (2005).
[CrossRef]

W. Withayachumnankul, B. Ferguson, T. Rainsford, S. P. Mickan, and D. Abbott, “Simple material parameter estimation via terahertz time-domain spectroscopy,” Electron. Lett. 41, 800–801 (2005).
[CrossRef]

Ahn, J.

Y. Kim, J. Ahn, B. G. Kim, and D.-S. Yee, “Terahertz birefringence in zinc oxide,” Jpn. J. Appl. Phys. 50, 030203 (2011).
[CrossRef]

Y. Kim, D.-S. Yee, M. Yi, and J. Ahn, “High-speed high-resolution terahertz spectrometers,” J. Korean Phys. Soc. 56, 255–261 (2010).
[CrossRef]

Alkuwari, R. A.

Bakker, H. J.

Bastiaans, G. J.

Bastian, G.

Bastian, M.

Baudrit, B.

Bomba, J.

Bonn, M.

K. J. Tielrooij, N. Garcia-Araez, M. Bonn, and H. J. Bakker, “Cooperativity in ion hydration,” Science 328, 1006–1009 (2010).
[CrossRef]

Bugár, I.

M. Janek, I. Bugár, D. Lorenc, V. Szöcs, D. Velič, and D. Chorvát, “Terahertz time-domain spectroscopy of selected layered silicates,” Clays Clay Miner. 57, 416–424 (2009).
[CrossRef]

Busch, S. F.

Castro-Camus, E.

Chan, W. L.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[CrossRef]

Chatterjee, S.

Chen, J.

Chen, Y.

Chorvát, D.

M. Janek, I. Bugár, D. Lorenc, V. Szöcs, D. Velič, and D. Chorvát, “Terahertz time-domain spectroscopy of selected layered silicates,” Clays Clay Miner. 57, 416–424 (2009).
[CrossRef]

Coutaz, J.-L.

Cunningham, P. D.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, M. L. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[CrossRef]

Czerwinski, A.

Deibel, J.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[CrossRef]

Dekorsy, T.

A. Dreyhaupt, S. Winner, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114 (2005).
[CrossRef]

Dreyhaupt, A.

A. Dreyhaupt, S. Winner, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114 (2005).
[CrossRef]

Ferguson, B.

W. Withayachumnankul, B. Ferguson, T. Rainsford, S. P. Mickan, and D. Abbott, “Simple material parameter estimation via terahertz time-domain spectroscopy,” Electron. Lett. 41, 800–801 (2005).
[CrossRef]

W. Withayachumnankul, B. Ferguson, T. Rainsford, S. P. Mickan, and D. Abbott, “Material parameter extraction for terahertz time-domain spectroscopy using fixed-point iteration,” Proc. SPIE 5840, 221–231 (2005).
[CrossRef]

Fischer, B. M.

B. M. Fischer, “Broadband THz time-domain spectroscopy of biomolecules: a comprehensive study of the dielectric properties of biomaterials in the far-infrared,” Ph.D. thesis (University of Freiburg, 2005).

Fowles, G. R.

G. R. Fowles, Introduction to Modern Optics, 2nd ed. (Dover Publications, 1989).

Fukunaga, K.

M. Mizuno, K. Fukunaga, S. Saito, and I. Hosako, “Analysis of calcium carbonate for differentiating between pigments using terahertz spectroscopy,” J. Eur. Opt. Soc. 4, 09044 (2009).
[CrossRef]

Gallot, G.

Garcia-Araez, N.

K. J. Tielrooij, N. Garcia-Araez, M. Bonn, and H. J. Bakker, “Cooperativity in ion hydration,” Science 328, 1006–1009 (2010).
[CrossRef]

Garet, F.

Gorenflo, S.

S. Gorenflo, “A comprehensive study of macromolecules in composites using broadband terahertz spectroscopy,” Ph.D. thesis (University of Freiburg, 2006).

Grbovic, D.

D. Grbovic and G. Karunasiri, “Fabrication of bi-material MEMS detector arrays for THz imaging,” Proc. SPIE 7311, 731108 (2009).
[CrossRef]

Grischkowsky, D.

Hasek, T.

N. Krumbholz, T. Hochreina, N. Viewega, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28, 30–35 (2009).
[CrossRef]

Haus, J. W.

Hayden, M. L.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, M. L. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[CrossRef]

Hecht, E.

E. Hecht, Optics, 4th ed. (Addison Wesley, 2002).

Heidemeyer, P.

Helm, M.

A. Dreyhaupt, S. Winner, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114 (2005).
[CrossRef]

Hérault, E.

Hochrein, T.

Hochreina, T.

N. Krumbholz, T. Hochreina, N. Viewega, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28, 30–35 (2009).
[CrossRef]

Hosako, I.

M. Mizuno, K. Fukunaga, S. Saito, and I. Hosako, “Analysis of calcium carbonate for differentiating between pigments using terahertz spectroscopy,” J. Eur. Opt. Soc. 4, 09044 (2009).
[CrossRef]

Hu, B. B.

Ito, H.

Janek, M.

M. Janek, I. Bugár, D. Lorenc, V. Szöcs, D. Velič, and D. Chorvát, “Terahertz time-domain spectroscopy of selected layered silicates,” Clays Clay Miner. 57, 416–424 (2009).
[CrossRef]

Jansen, C.

Jen, A. K.-Y.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, M. L. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[CrossRef]

Jeon, S.-G.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

Jin, Y.-S.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

Johnson, B. K.

B. K. Johnson, Optics and Optical Instruments: An Introduction with Special Reference to Practical Applications (Dover Publications, 1960).

Jördens, C.

Jung, T.

Karunasiri, G.

D. Grbovic and G. Karunasiri, “Fabrication of bi-material MEMS detector arrays for THz imaging,” Proc. SPIE 7311, 731108 (2009).
[CrossRef]

Kim, B. G.

Y. Kim, J. Ahn, B. G. Kim, and D.-S. Yee, “Terahertz birefringence in zinc oxide,” Jpn. J. Appl. Phys. 50, 030203 (2011).
[CrossRef]

Kim, G.-J.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

Kim, Y.

Y. Kim, J. Ahn, B. G. Kim, and D.-S. Yee, “Terahertz birefringence in zinc oxide,” Jpn. J. Appl. Phys. 50, 030203 (2011).
[CrossRef]

Y. Kim, D.-S. Yee, M. Yi, and J. Ahn, “High-speed high-resolution terahertz spectrometers,” J. Korean Phys. Soc. 56, 255–261 (2010).
[CrossRef]

Koch, M.

M. Schwerdtfeger, E. Castro-Camus, K. Krügener, W. Viöl, and M. Koch, “Beating the wavelength limit: three-dimensional imaging of buried subwavelength fractures in sculpture and construction materials by terahertz time-domain reflection spectroscopy,” Appl. Opt. 52, 375–380 (2013).
[CrossRef]

M. Wichmann, A. S. Mondol, N. Kocic, S. Lippert, T. Probst, M. Schwerdtfeger, S. Schumann, T. Hochrein, P. Heidemeyer, M. Bastian, G. Bastian, and M. Koch, “Terahertz plastic compound lenses,” Appl. Opt. 52, 4186–4191 (2013).
[CrossRef]

M. Wichmann, B. Scherger, S. Schumann, S. Lippert, M. Scheller, S. F. Busch, C. Jansen, and M. Koch, “Terahertz Brewster lenses,” Opt. Express 19, 25151–25160 (2011).
[CrossRef]

B. Scherger, C. Jördens, and M. Koch, “Variable-focus terahertz lens,” Opt. Express 19, 4528–4535 (2011).
[CrossRef]

B. Scherger, M. Scheller, C. Jansen, M. Koch, and K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Appl. Opt. 50, 2256–2262 (2011).
[CrossRef]

N. Krumbholz, T. Hochreina, N. Viewega, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28, 30–35 (2009).
[CrossRef]

S. Wietzke, C. Jansen, T. Jung, M. Reuter, B. Baudrit, M. Bastian, S. Chatterjee, and M. Koch, “Terahertz time-domain spectroscopy as a tool to monitor the glass transition in polymers,” Opt. Express 17, 19006–19014 (2009).
[CrossRef]

Kocic, N.

Kretschmer, K.

N. Krumbholz, T. Hochreina, N. Viewega, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28, 30–35 (2009).
[CrossRef]

Krügener, K.

Krumbholz, N.

N. Krumbholz, T. Hochreina, N. Viewega, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28, 30–35 (2009).
[CrossRef]

Lippert, S.

Lorenc, D.

M. Janek, I. Bugár, D. Lorenc, V. Szöcs, D. Velič, and D. Chorvát, “Terahertz time-domain spectroscopy of selected layered silicates,” Clays Clay Miner. 57, 416–424 (2009).
[CrossRef]

Luo, J.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, M. L. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[CrossRef]

Makowski, M.

Mickan, S. P.

W. Withayachumnankul, B. Ferguson, T. Rainsford, S. P. Mickan, and D. Abbott, “Simple material parameter estimation via terahertz time-domain spectroscopy,” Electron. Lett. 41, 800–801 (2005).
[CrossRef]

W. Withayachumnankul, B. Ferguson, T. Rainsford, S. P. Mickan, and D. Abbott, “Material parameter extraction for terahertz time-domain spectroscopy using fixed-point iteration,” Proc. SPIE 5840, 221–231 (2005).
[CrossRef]

Mikulics, M.

N. Krumbholz, T. Hochreina, N. Viewega, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28, 30–35 (2009).
[CrossRef]

Miles, R. E.

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy: a new tool for the study of glasses in the far infrared,” J. Non-Cryst. Solids 351, 3341–3346 (2005).
[CrossRef]

Mittleman, D. M.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[CrossRef]

Mizuno, M.

M. Mizuno, K. Fukunaga, S. Saito, and I. Hosako, “Analysis of calcium carbonate for differentiating between pigments using terahertz spectroscopy,” J. Eur. Opt. Soc. 4, 09044 (2009).
[CrossRef]

Mondol, A. S.

Naftaly, M.

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy: a new tool for the study of glasses in the far infrared,” J. Non-Cryst. Solids 351, 3341–3346 (2005).
[CrossRef]

Nienhuys, H.-K.

Nuss, M. C.

Planken, P. C. M.

Polishak, B.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, M. L. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[CrossRef]

Powers, P. E.

Probst, T.

Rainsford, T.

W. Withayachumnankul, B. Ferguson, T. Rainsford, S. P. Mickan, and D. Abbott, “Simple material parameter estimation via terahertz time-domain spectroscopy,” Electron. Lett. 41, 800–801 (2005).
[CrossRef]

W. Withayachumnankul, B. Ferguson, T. Rainsford, S. P. Mickan, and D. Abbott, “Material parameter extraction for terahertz time-domain spectroscopy using fixed-point iteration,” Proc. SPIE 5840, 221–231 (2005).
[CrossRef]

Reuter, M.

Saito, S.

M. Mizuno, K. Fukunaga, S. Saito, and I. Hosako, “Analysis of calcium carbonate for differentiating between pigments using terahertz spectroscopy,” J. Eur. Opt. Soc. 4, 09044 (2009).
[CrossRef]

Scheller, M.

Scherger, B.

Schmuttenmaer, C. A.

D. S. Venables and C. A. Schmuttenmaer, “Far-infrared spectra and associated dynamics in acetonitrile-water mixtures measured with femtosecond THz pulse spectroscopy,” J. Chem. Phys. 108, 4935–4944 (1998).
[CrossRef]

Schumann, S.

Schwerdtfeger, M.

Siemion, A.

Son, J.-H.

J.-H. Son, “Terahertz electromagnetic interactions with biological matter and their applications,” J. Appl. Phys. 105, 102033 (2009).
[CrossRef]

Suizu, K.

Suszek, J.

Sypek, M.

Szöcs, V.

M. Janek, I. Bugár, D. Lorenc, V. Szöcs, D. Velič, and D. Chorvát, “Terahertz time-domain spectroscopy of selected layered silicates,” Clays Clay Miner. 57, 416–424 (2009).
[CrossRef]

Tennissen, A. C.

A. C. Tennissen, Nature of Earth Materials (Prentice Hall, 1974).

Tielrooij, K. J.

K. J. Tielrooij, N. Garcia-Araez, M. Bonn, and H. J. Bakker, “Cooperativity in ion hydration,” Science 328, 1006–1009 (2010).
[CrossRef]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[CrossRef]

Twieg, R. J.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, M. L. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[CrossRef]

Valdes, N. N.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, M. L. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[CrossRef]

Vallejo, F. A.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, M. L. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[CrossRef]

Velic, D.

M. Janek, I. Bugár, D. Lorenc, V. Szöcs, D. Velič, and D. Chorvát, “Terahertz time-domain spectroscopy of selected layered silicates,” Clays Clay Miner. 57, 416–424 (2009).
[CrossRef]

Venables, D. S.

D. S. Venables and C. A. Schmuttenmaer, “Far-infrared spectra and associated dynamics in acetonitrile-water mixtures measured with femtosecond THz pulse spectroscopy,” J. Chem. Phys. 108, 4935–4944 (1998).
[CrossRef]

Viewega, N.

N. Krumbholz, T. Hochreina, N. Viewega, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28, 30–35 (2009).
[CrossRef]

Viöl, W.

Wenckebach, T.

Wichmann, M.

Wiesauer, K.

Wietzke, S.

Williams, J. C.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, M. L. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[CrossRef]

Winner, S.

A. Dreyhaupt, S. Winner, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114 (2005).
[CrossRef]

Withayachumnankul, W.

W. Withayachumnankul, B. Ferguson, T. Rainsford, S. P. Mickan, and D. Abbott, “Simple material parameter estimation via terahertz time-domain spectroscopy,” Electron. Lett. 41, 800–801 (2005).
[CrossRef]

W. Withayachumnankul, B. Ferguson, T. Rainsford, S. P. Mickan, and D. Abbott, “Material parameter extraction for terahertz time-domain spectroscopy using fixed-point iteration,” Proc. SPIE 5840, 221–231 (2005).
[CrossRef]

Yee, D.-S.

Y. Kim, J. Ahn, B. G. Kim, and D.-S. Yee, “Terahertz birefringence in zinc oxide,” Jpn. J. Appl. Phys. 50, 030203 (2011).
[CrossRef]

Y. Kim, D.-S. Yee, M. Yi, and J. Ahn, “High-speed high-resolution terahertz spectrometers,” J. Korean Phys. Soc. 56, 255–261 (2010).
[CrossRef]

Yi, M.

Y. Kim, D.-S. Yee, M. Yi, and J. Ahn, “High-speed high-resolution terahertz spectrometers,” J. Korean Phys. Soc. 56, 255–261 (2010).
[CrossRef]

Zhang, X.-C.

Zhao, H.

Zhou, X.-H.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, M. L. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

A. Dreyhaupt, S. Winner, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114 (2005).
[CrossRef]

Clays Clay Miner. (1)

M. Janek, I. Bugár, D. Lorenc, V. Szöcs, D. Velič, and D. Chorvát, “Terahertz time-domain spectroscopy of selected layered silicates,” Clays Clay Miner. 57, 416–424 (2009).
[CrossRef]

Electron. Lett. (1)

W. Withayachumnankul, B. Ferguson, T. Rainsford, S. P. Mickan, and D. Abbott, “Simple material parameter estimation via terahertz time-domain spectroscopy,” Electron. Lett. 41, 800–801 (2005).
[CrossRef]

J. Appl. Phys. (2)

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, M. L. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[CrossRef]

J.-H. Son, “Terahertz electromagnetic interactions with biological matter and their applications,” J. Appl. Phys. 105, 102033 (2009).
[CrossRef]

J. Chem. Phys. (1)

D. S. Venables and C. A. Schmuttenmaer, “Far-infrared spectra and associated dynamics in acetonitrile-water mixtures measured with femtosecond THz pulse spectroscopy,” J. Chem. Phys. 108, 4935–4944 (1998).
[CrossRef]

J. Eur. Opt. Soc. (1)

M. Mizuno, K. Fukunaga, S. Saito, and I. Hosako, “Analysis of calcium carbonate for differentiating between pigments using terahertz spectroscopy,” J. Eur. Opt. Soc. 4, 09044 (2009).
[CrossRef]

J. Korean Phys. Soc. (2)

Y. Kim, D.-S. Yee, M. Yi, and J. Ahn, “High-speed high-resolution terahertz spectrometers,” J. Korean Phys. Soc. 56, 255–261 (2010).
[CrossRef]

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

J. Non-Cryst. Solids (1)

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy: a new tool for the study of glasses in the far infrared,” J. Non-Cryst. Solids 351, 3341–3346 (2005).
[CrossRef]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

Y. Kim, J. Ahn, B. G. Kim, and D.-S. Yee, “Terahertz birefringence in zinc oxide,” Jpn. J. Appl. Phys. 50, 030203 (2011).
[CrossRef]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Polym. Test. (1)

N. Krumbholz, T. Hochreina, N. Viewega, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28, 30–35 (2009).
[CrossRef]

Proc. SPIE (2)

D. Grbovic and G. Karunasiri, “Fabrication of bi-material MEMS detector arrays for THz imaging,” Proc. SPIE 7311, 731108 (2009).
[CrossRef]

W. Withayachumnankul, B. Ferguson, T. Rainsford, S. P. Mickan, and D. Abbott, “Material parameter extraction for terahertz time-domain spectroscopy using fixed-point iteration,” Proc. SPIE 5840, 221–231 (2005).
[CrossRef]

Rep. Prog. Phys. (1)

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[CrossRef]

Science (1)

K. J. Tielrooij, N. Garcia-Araez, M. Bonn, and H. J. Bakker, “Cooperativity in ion hydration,” Science 328, 1006–1009 (2010).
[CrossRef]

Other (6)

G. R. Fowles, Introduction to Modern Optics, 2nd ed. (Dover Publications, 1989).

S. Gorenflo, “A comprehensive study of macromolecules in composites using broadband terahertz spectroscopy,” Ph.D. thesis (University of Freiburg, 2006).

B. M. Fischer, “Broadband THz time-domain spectroscopy of biomolecules: a comprehensive study of the dielectric properties of biomaterials in the far-infrared,” Ph.D. thesis (University of Freiburg, 2005).

A. C. Tennissen, Nature of Earth Materials (Prentice Hall, 1974).

B. K. Johnson, Optics and Optical Instruments: An Introduction with Special Reference to Practical Applications (Dover Publications, 1960).

E. Hecht, Optics, 4th ed. (Addison Wesley, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Measured refractive indices and extinction coefficients of the stones in the frequency range from 0.2 to 1.2 THz corresponding to wavelength from 1500 to 250 μm. The solid lines and the dashed lines represent the extracted refractive indices and extinction coefficients, respectively, of the stones investigated.

Fig. 2.
Fig. 2.

(a) Specification of the fabricated dolomite lens. f=effective focal length, fb=back focal length, tc=center thickness, te=edge thickness, R=radius of curvature. (b) Photo of the fabricated dolomite lens.

Fig. 3.
Fig. 3.

(a) Schematic of our linear configuration THz-TDS setup using two THz lenses: a Teflon lens and the fabricated dolomite lens. The overall intensity profiles were measured by moving the lens with an xyz translation stage. (b) Photo of the THz-TDS setup corresponding to the boxed area in (a). The THz field is focused on to ZnTe by the fabricated dolomite lens, and ITO, playing the role of a dichroic polarization beam splitter, reflects the THz field and transmits the probe beam. (c) Temporal THz amplitude signal measured at the focal point and the corresponding amplitude spectrum after Fourier transformation.

Fig. 4.
Fig. 4.

(a) Beam profile measurement geometry, where W0 in Eq. (5) is the diameter of the collimated beam. (b) Extracted diameters (FWHM) of the focused THz field at various wavelengths obtained from numerical fit of the amplitude profile to Bessel function. (c) Transmission amplitude images with respect to frequency. All amplitudes were divided by the amplitude of the THz signal without the fabricated dolomite lens. The colorbar indicates degree of magnitude compared with the THz signal without the dolomite lens. The Bessel function fitting lines (solid line) of horizontal and vertical directions across the THz amplitude profile from data (open circle) are indicated in the figures of scaled amplitude versus position with respect to frequency.

Tables (2)

Tables Icon

Table 1. Refractive Indices n, Extinction Coefficients α (cm1), and Thicknesses (mm) of the Investigated Natural Stones at a Frequency of 0.5 THz

Tables Icon

Table 2. Refractive Indices n and Extinction Coefficients α (cm1) of Dolomite and Typical Lens Materials Measured at 0.5 THz

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

T^(ω)=t21t12eiωc(n˜s(ω)na)l{1+j=1δ[r21eiωcn˜s(ω)l]2j}=ρ(ω)eiΔϕ(ω){FP(ω)},
ns=na+cωl(Δϕtan1κsns+2tan1κsns+na)κs=cωl(log4nans2+κs2(ns+na)2+κs2logρ).
α(ω)=2ωcκs(ω).
R=(n1)f,
E(r)=E(0)|2J1(kW0r/2f)kW0r/2f|,
Nij(ωk)=|Eij(ωk)Eno lens(ωk)|,
W(λ)=4.43fπW0λ.

Metrics